Compare commits

...

5 Commits

Author SHA1 Message Date
8e24730407 Merge remote-tracking branch 'origin/master' into triple-extraction 2025-07-06 07:02:15 +00:00
972b36e51a update 2025-07-05 03:38:16 +00:00
77d298c3c6 update 2025-07-05 03:03:43 +00:00
ee7aaba91d update infer 2025-07-02 12:46:37 +00:00
7ce71f24bc update 2025-06-30 15:24:50 +00:00
7 changed files with 2762 additions and 51 deletions

107
inference.py Normal file
View File

@ -0,0 +1,107 @@
import os
import json
import argparse
import torch
from tqdm import tqdm
from transformers import AutoTokenizer
from model.model_extra import MiniMindLM
from model.LMConfig import LMConfig
PREDICATE_VOCAB_PATH = '/home/rwkv/RWKV-TS/RETRO_TEST/extract/predicate_vocab.json'
with open(PREDICATE_VOCAB_PATH, 'r', encoding='utf-8') as f:
PREDICATE_LIST = json.load(f)
print(len(PREDICATE_LIST))
def decode_triple(subject_logits, predicate_logits, object_logits, tokenizer, predicate_cls_logits=None):
# logits: [1, max_len, vocab_size]
subject_ids = subject_logits.argmax(-1).squeeze(0).tolist()
object_ids = object_logits.argmax(-1).squeeze(0).tolist()
def clean(ids):
if isinstance(ids, int):
ids = [ids]
if tokenizer.eos_token_id in ids:
ids = ids[:ids.index(tokenizer.eos_token_id)]
if tokenizer.pad_token_id in ids:
ids = [i for i in ids if i != tokenizer.pad_token_id]
return ids
subject = tokenizer.decode(clean(subject_ids), skip_special_tokens=True).strip()
object_ = tokenizer.decode(clean(object_ids), skip_special_tokens=True).strip()
# 谓词用分类结果
if predicate_cls_logits is not None:
pred_id = predicate_cls_logits.argmax(-1).item()
predicate = PREDICATE_LIST[pred_id] if pred_id < len(PREDICATE_LIST) else "<UNK>"
else:
predicate_ids = predicate_logits.argmax(-1).squeeze(0).tolist()
predicate = tokenizer.decode(clean(predicate_ids), skip_special_tokens=True).strip()
return {"subject": subject, "predicate": predicate, "object": object_}
def infer_triples(model, tokenizer, sentences, device):
results = []
model.eval()
for sent in tqdm(sentences, desc="推理中"):
# 编码
inputs = tokenizer(sent, return_tensors="pt", truncation=True, max_length=512, padding='max_length')
input_ids = inputs["input_ids"].to(device)
with torch.no_grad():
output = model(input_ids=input_ids)
triple = decode_triple(output.subject_logits, output.predicate_logits, output.object_logits, tokenizer, output.predicate_cls_logits)
results.append({"input": sent, "output": [triple]})
return results
def main():
parser = argparse.ArgumentParser(description="MiniMind 三元组抽取推理脚本")
parser.add_argument('--model_path', type=str, default='/home/rwkv/RWKV-TS/RETRO_TEST/Minimind/out/pretrain_cls512.pth')
parser.add_argument('--tokenizer_path', type=str,default='/home/rwkv/RWKV-TS/RETRO_TEST/Minimind/model/minimind_tokenizer')
parser.add_argument('--input_json', type=str,default='/home/rwkv/RWKV-TS/RETRO_TEST/extract/sample_1000.json')
parser.add_argument('--output_dir', type=str,default='/home/rwkv/RWKV-TS/RETRO_TEST/Minimind/out', help='输出目录')
parser.add_argument('--device', type=str, default='cuda', help='推理设备')
# 以下参数与train保持一致
parser.add_argument('--dim', default=512, type=int)
parser.add_argument('--n_layers', default=8, type=int)
parser.add_argument('--max_seq_len', default=512, type=int)
parser.add_argument('--use_moe', default=False, type=bool)
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代")
parser.add_argument('--flash_attn', action='store_true', default=True, help="启用FlashAttention")
parser.add_argument('--knowledge_num', type=int, default=960400,help="知识库的数据数目")
parser.add_argument('--knowledge_length', type=int, default=32,help="知识库的句子长度")
parser.add_argument('--embeddings_epoch', type=int, default=2, help="embedding训练的epoch数")
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# 加载模型和分词器
print("加载模型和分词器...")
lm_config = LMConfig(
dim=args.dim,
n_layers=args.n_layers,
max_seq_len=args.max_seq_len,
use_moe=args.use_moe,
disable_db=args.disable_db,
flash_attn=args.flash_attn,
knowledge_num=args.knowledge_num,
knowledge_length=args.knowledge_length,
embeddings_epoch=args.embeddings_epoch
)
model = MiniMindLM(lm_config)
model.load_state_dict(torch.load(args.model_path, map_location=args.device))
model.to(args.device)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
with open(args.input_json, 'r', encoding='utf-8') as f:
data = json.load(f)
# 支持两种格式:[{"text":...}, ...] 或 ["句子", ...]
if isinstance(data[0], dict) and "text" in data[0]:
sentences = [item["text"] for item in data]
elif isinstance(data[0], dict) and "input" in data[0]:
sentences = [item["input"] for item in data]
else:
sentences = data
results = infer_triples(model, tokenizer, sentences, args.device)
output_path = os.path.join(args.output_dir, os.path.basename(args.input_json).replace('.json', '_triples.json'))
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"已保存预测结果到: {output_path}")
if __name__ == "__main__":
main()

View File

@ -488,7 +488,18 @@ class TriplePretrainDataset(Dataset):
# 构建训练数据 # 构建训练数据
X = input_ids[:-1] X = input_ids[:-1]
loss_mask = loss_mask[1:] loss_mask = loss_mask[1:]
# 提取谓词label
# 先尝试从target_sentence中间取出谓词
predicate_label = 0 # 默认0
try:
# target_sentence格式主语 谓语 宾语
triple_str = sample['target_sentence']
triple_parts = triple_str.strip().split()
if len(triple_parts) >= 3:
predicate = triple_parts[1]
predicate_label = PREDICATE2ID.get(predicate, 0)
except Exception:
predicate_label = 0
return { return {
'input_ids': X, 'input_ids': X,
'labels': torch.tensor(predicate_label, dtype=torch.long), # 谓词分类标签 'labels': torch.tensor(predicate_label, dtype=torch.long), # 谓词分类标签

View File

@ -475,7 +475,7 @@ class MOEFeedForward(nn.Module):
class TripleExtractionHead(nn.Module): class TripleExtractionHead(nn.Module):
"""三元组提取任务头""" """三元组提取任务头"""
def __init__(self, config: LMConfig): def __init__(self, config: LMConfig, num_predicates=None):
super().__init__() super().__init__()
self.config = config self.config = config
@ -520,6 +520,7 @@ class TripleExtractionHead(nn.Module):
predicate_logits: [batch_size, seq_len, max_predicate_len, vocab_size] - 谓语序列预测 predicate_logits: [batch_size, seq_len, max_predicate_len, vocab_size] - 谓语序列预测
subject_logits: [batch_size, seq_len, max_subject_len, vocab_size] - 主语序列预测 subject_logits: [batch_size, seq_len, max_subject_len, vocab_size] - 主语序列预测
object_logits: [batch_size, seq_len, max_object_len, vocab_size] - 宾语序列预测 object_logits: [batch_size, seq_len, max_object_len, vocab_size] - 宾语序列预测
predicate_cls_logits: [batch_size, num_predicates] - 谓词分类logits
""" """
batch_size, seq_len, dim = h.shape batch_size, seq_len, dim = h.shape
@ -585,7 +586,7 @@ class MiniMindBlock(nn.Module):
class MiniMindLM(PreTrainedModel): class MiniMindLM(PreTrainedModel):
config_class = LMConfig config_class = LMConfig
def __init__(self, params: LMConfig = None,mode="triple"): def __init__(self, params: LMConfig = None, mode="triple", num_predicates=None):
self.params = params or LMConfig() self.params = params or LMConfig()
super().__init__(self.params) super().__init__(self.params)
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
@ -598,7 +599,7 @@ class MiniMindLM(PreTrainedModel):
self.tok_embeddings.weight = self.output.weight self.tok_embeddings.weight = self.output.weight
# 添加三元组提取任务头(可训练) # 添加三元组提取任务头(可训练)
self.triple_extraction_head = TripleExtractionHead(params) self.triple_extraction_head = TripleExtractionHead(params, num_predicates=num_predicates)
self.register_buffer("pos_cis", self.register_buffer("pos_cis",
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta), precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
persistent=False) persistent=False)

2304
nohup.out Normal file

File diff suppressed because one or more lines are too long

27
stat_predicate_vocab.py Normal file
View File

@ -0,0 +1,27 @@
import json
from collections import Counter
input_path = '/home/rwkv/RWKV-TS/RETRO_TEST/extract/processed_trex_data.json'
output_path = '/home/rwkv/RWKV-TS/RETRO_TEST/extract/predicate_vocab.json'
with open(input_path, 'r', encoding='utf-8') as f:
data = json.load(f)
predicate_set = set()
for item in data:
if 'target' in item and isinstance(item['target'], list):
# 用集合去重本条数据的谓词
predicates_in_item = set()
for triple in item['target']:
if isinstance(triple, dict) and 'predicate' in triple:
predicates_in_item.add(triple['predicate'])
predicate_set.update(predicates_in_item)
predicate_list = list(predicate_set)
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(predicate_list, f, ensure_ascii=False, indent=2)
print(f'已统计{len(predicate_list)}个谓词,保存到 {output_path}')

244
test.py Normal file
View File

@ -0,0 +1,244 @@
import os
import json
import argparse
import torch
import numpy as np
from tqdm import tqdm
from transformers import AutoTokenizer
from model.model_extra import MiniMindLM
from model.LMConfig import LMConfig
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, classification_report
# 加载谓词词汇表
PREDICATE_VOCAB_PATH = '/home/rwkv/RWKV-TS/RETRO_TEST/extract/predicate_vocab.json'
with open(PREDICATE_VOCAB_PATH, 'r', encoding='utf-8') as f:
PREDICATE_LIST = json.load(f)
PREDICATE2ID = {p: i for i, p in enumerate(PREDICATE_LIST)}
NUM_PREDICATES = len(PREDICATE_LIST)
def evaluate_model(model, tokenizer, test_data, device):
"""
评估模型性能 - 只关注谓词分类
"""
model.eval()
results = []
all_pred_predicates = []
all_gold_predicates = []
correct_predictions = 0
total_predictions = 0
print("开始评估...")
# 添加调试信息
print(f"测试数据样本数量: {len(test_data)}")
if test_data:
print(f"第一个样本格式: {type(test_data[0])}")
print(f"第一个样本内容: {test_data[0]}")
if isinstance(test_data[0], dict):
print(f"第一个样本的键: {list(test_data[0].keys())}")
for i, item in enumerate(tqdm(test_data, desc="评估进度")):
input_text = item["input"]
gold_triples = item.get("output", [])
# 调试信息(前几个样本)
if i < 3:
print(f"\n样本 {i+1} 调试信息:")
print(f" 输入文本: {input_text[:100]}...")
print(f" 真值三元组数量: {len(gold_triples)}")
if gold_triples:
print(f" 真值三元组: {gold_triples[0]}")
# 模型推理
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512, padding='max_length')
input_ids = inputs["input_ids"].to(device)
with torch.no_grad():
output = model(input_ids=input_ids)
# 获取谓词分类结果
pred_predicate_id = output.predicate_cls_logits.argmax(-1).item()
pred_predicate = PREDICATE_LIST[pred_predicate_id] if pred_predicate_id < len(PREDICATE_LIST) else "<UNK>"
# 收集所有目标谓词
target_predicates = []
if gold_triples:
for triple in gold_triples:
if "predicate" in triple:
target_predicates.append(triple["predicate"])
# 检查预测是否正确(只要在目标谓词列表中就算正确)
is_correct = False
if target_predicates and pred_predicate in target_predicates:
is_correct = True
correct_predictions += 1
total_predictions += 1
# 调试信息(前几个样本)
if i < 3:
print(f" 预测谓词: {pred_predicate}")
print(f" 目标谓词: {target_predicates}")
print(f" 是否正确: {is_correct}")
# 收集谓词分类标签(用于详细分析)
if target_predicates:
# 取第一个目标谓词作为主要标签
# import pdb; pdb.set_trace()
main_target = target_predicates[0]
if main_target in PREDICATE2ID:
all_gold_predicates.append(PREDICATE2ID[main_target])
all_pred_predicates.append(pred_predicate_id)
results.append({
"input": input_text,
"predicted_predicate": pred_predicate,
"target_predicates": target_predicates,
"is_correct": is_correct
})
print(f"\n评估完成,总预测数: {total_predictions}, 正确数: {correct_predictions}")
return results, all_pred_predicates, all_gold_predicates, correct_predictions, total_predictions
def print_evaluation_summary(results, pred_predicates, gold_predicates, correct_predictions, total_predictions):
"""
打印评估结果摘要 - 只关注谓词分类
"""
print("\n" + "="*60)
print("谓词分类评估结果摘要")
print("="*60)
# 谓词分类准确率
if total_predictions > 0:
predicate_accuracy = correct_predictions / total_predictions
print(f"谓词分类准确率: {predicate_accuracy:.4f} ({correct_predictions}/{total_predictions})")
else:
print("谓词分类准确率: 无法计算(没有有效预测)")
# 详细的分类报告(如果有足够的标签数据)
if pred_predicates and gold_predicates and len(pred_predicates) > 10:
try:
print(f"\n谓词分类详细报告:")
print(classification_report(gold_predicates, pred_predicates,
target_names=PREDICATE_LIST[:10] + ["..."] if len(PREDICATE_LIST) > 10 else PREDICATE_LIST,
zero_division=0))
except Exception as e:
print(f"\n谓词分类详细报告生成失败: {e}")
# 样本预测示例
print(f"\n预测示例 (前5个):")
for i, result in enumerate(results[:5]):
print(f"样本 {i+1}:")
print(f" 输入: {result['input'][:100]}...")
print(f" 预测谓词: {result['predicted_predicate']}")
print(f" 目标谓词: {result['target_predicates']}")
print(f" 是否正确: {'' if result['is_correct'] else ''}")
print()
def main():
parser = argparse.ArgumentParser(description="MiniMind 三元组抽取模型评估脚本")
parser.add_argument('--model_path', type=str, default='/home/rwkv/RWKV-TS/RETRO_TEST/Minimind/out/pretrain_cls512.pth')
parser.add_argument('--tokenizer_path', type=str, default='/home/rwkv/RWKV-TS/RETRO_TEST/Minimind/model/minimind_tokenizer')
parser.add_argument('--test_json', type=str, default='/home/rwkv/RWKV-TS/RETRO_TEST/extract/sample_1000.json')
parser.add_argument('--output_dir', type=str, default='/home/rwkv/RWKV-TS/RETRO_TEST/Minimind/out', help='输出目录')
parser.add_argument('--device', type=str, default='cuda', help='推理设备')
# 模型配置参数
parser.add_argument('--dim', default=512, type=int)
parser.add_argument('--n_layers', default=8, type=int)
parser.add_argument('--max_seq_len', default=512, type=int)
parser.add_argument('--use_moe', default=False, type=bool)
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能")
parser.add_argument('--flash_attn', action='store_true', default=True, help="启用FlashAttention")
parser.add_argument('--knowledge_num', type=int, default=960400, help="知识库的数据数目")
parser.add_argument('--knowledge_length', type=int, default=32, help="知识库的句子长度")
parser.add_argument('--embeddings_epoch', type=int, default=2, help="embedding训练的epoch数")
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
# 加载模型和分词器
print("加载模型和分词器...")
lm_config = LMConfig(
dim=args.dim,
n_layers=args.n_layers,
max_seq_len=args.max_seq_len,
use_moe=args.use_moe,
disable_db=args.disable_db,
flash_attn=args.flash_attn,
knowledge_num=args.knowledge_num,
knowledge_length=args.knowledge_length,
embeddings_epoch=args.embeddings_epoch
)
model = MiniMindLM(lm_config, mode="triple", num_predicates=NUM_PREDICATES)
# 加载模型权重
try:
state_dict = torch.load(args.model_path, map_location=args.device)
model.load_state_dict(state_dict, strict=False)
print(f"成功加载模型权重: {args.model_path}")
except Exception as e:
print(f"加载模型权重失败: {e}")
print("使用随机初始化的模型进行测试")
model.to(args.device)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
print(f"谓词词汇表大小: {len(PREDICATE_LIST)}")
# 加载测试数据
print(f"加载测试数据: {args.test_json}")
with open(args.test_json, 'r', encoding='utf-8') as f:
test_data = json.load(f)
# 支持多种数据格式
if isinstance(test_data[0], dict) and "text" in test_data[0]:
# 格式: [{"text": "...", "target": [...]}, ...]
test_data = [{"input": item["text"], "output": item.get("target", [])} for item in test_data]
elif isinstance(test_data[0], dict) and "input" in test_data[0]:
# 格式: [{"input": "...", "output": [...]}, ...]
pass
else:
# 格式: ["句子", ...] - 没有真值,只能做推理
test_data = [{"input": text, "output": []} for text in test_data]
print(f"测试样本数量: {len(test_data)}")
# 评估模型
results, pred_predicates, gold_predicates, correct_predictions, total_predictions = evaluate_model(model, tokenizer, test_data, args.device)
# 打印评估结果
print_evaluation_summary(results, pred_predicates, gold_predicates, correct_predictions, total_predictions)
# 保存详细结果
output_path = os.path.join(args.output_dir, 'evaluation_results.json')
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"\n详细评估结果已保存到: {output_path}")
# 保存准确率统计
accuracy_stats = {
"total_predictions": total_predictions,
"correct_predictions": correct_predictions,
"accuracy": correct_predictions / total_predictions if total_predictions > 0 else 0.0,
"model_path": args.model_path,
"test_data_path": args.test_json,
"predicate_vocab_size": len(PREDICATE_LIST),
"evaluation_timestamp": str(np.datetime64('now'))
}
accuracy_path = os.path.join(args.output_dir, 'accuracy_stats.json')
with open(accuracy_path, 'w', encoding='utf-8') as f:
json.dump(accuracy_stats, f, indent=2, ensure_ascii=False)
print(f"准确率统计已保存到: {accuracy_path}")
# 保存预测结果
predictions = [{"input": r["input"], "predicted_predicate": r["predicted_predicate"], "gold_predicates": r["target_predicates"]} for r in results]
pred_output_path = os.path.join(args.output_dir, 'predictions.json')
with open(pred_output_path, 'w', encoding='utf-8') as f:
json.dump(predictions, f, indent=2, ensure_ascii=False)
print(f"预测结果已保存到: {pred_output_path}")
if __name__ == "__main__":
main()

View File

@ -24,7 +24,10 @@ from sklearn.metrics.pairwise import cosine_similarity
import swanlab # 替换wandb导入 import swanlab # 替换wandb导入
import gc # 添加垃圾回收模块 import gc # 添加垃圾回收模块
import psutil # 添加系统资源监控模块 import psutil # 添加系统资源监控模块
import os
import json
os.environ['CUDA_VISIBLE_DEVICES']='2'
from model.model_extra import MiniMindLM, RMSNorm # 使用model_extra from model.model_extra import MiniMindLM, RMSNorm # 使用model_extra
from model.LMConfig import LMConfig from model.LMConfig import LMConfig
from model.dataset import TriplePretrainDataset # 只需要三元组数据集 from model.dataset import TriplePretrainDataset # 只需要三元组数据集
@ -206,7 +209,7 @@ def compute_cosine_similarity_batch(pred_embeddings, target_embeddings):
return similarities return similarities
def triple_to_sentence(subject_logits, predicate_logits, object_logits, tokenizer): def triple_to_sentence(subject_logits, predicate_logits, object_logits, tokenizer, predicate_cls_logits=None):
""" """
将三元组logits转换为句子 将三元组logits转换为句子
Args: Args:
@ -214,54 +217,54 @@ def triple_to_sentence(subject_logits, predicate_logits, object_logits, tokenize
predicate_logits: [batch_size, seq_len, max_predicate_len, vocab_size] predicate_logits: [batch_size, seq_len, max_predicate_len, vocab_size]
object_logits: [batch_size, seq_len, max_object_len, vocab_size] object_logits: [batch_size, seq_len, max_object_len, vocab_size]
tokenizer: 分词器 tokenizer: 分词器
predicate_cls_logits: [batch_size, num_predicates]如果提供则用分类结果输出谓词
Returns: Returns:
List[List[str]]: 每个样本每个位置的三元组句子 List[str]: 每个样本的三元组句子
""" """
batch_size = subject_logits.shape[0] batch_size = subject_logits.shape[0]
predicate_seq_len = predicate_logits.shape[1] # 主语
subject_seq_len = subject_logits.shape[1] subject_seq_len = subject_logits.shape[1]
subject_logits_ = subject_logits.reshape(batch_size * subject_seq_len, -1)
subject_ids = torch.argmax(subject_logits_, dim=-1)
subject_ids = subject_ids.reshape(batch_size, subject_seq_len)
# 宾语
object_seq_len = object_logits.shape[1] object_seq_len = object_logits.shape[1]
object_logits_ = object_logits.reshape(batch_size * object_seq_len, -1)
object_ids = torch.argmax(object_logits_, dim=-1)
object_ids = object_ids.reshape(batch_size, object_seq_len)
predicate_logits = predicate_logits.reshape(batch_size*predicate_seq_len, -1) # 谓词
subject_logits = subject_logits.reshape(batch_size*subject_seq_len, -1) predicate_texts = []
object_logits = object_logits.reshape(batch_size*object_seq_len, -1) if predicate_cls_logits is not None:
# 用分类结果输出谓词
pred_ids = torch.argmax(predicate_cls_logits, dim=-1) # [batch_size]
for i in range(batch_size):
pred_id = pred_ids[i].item()
pred_text = PREDICATE_LIST[pred_id] if pred_id < len(PREDICATE_LIST) else "<UNK>"
predicate_texts.append(pred_text)
else:
# 兼容原有行为:用序列生成的谓词
predicate_seq_len = predicate_logits.shape[1]
predicate_logits_ = predicate_logits.reshape(batch_size * predicate_seq_len, -1)
predicate_ids = torch.argmax(predicate_logits_, dim=-1)
predicate_ids = predicate_ids.reshape(batch_size, predicate_seq_len)
predicate_texts = tokenizer.batch_decode(predicate_ids, skip_special_tokens=True)
predicate_logits = torch.argmax(predicate_logits, dim=-1) # 主语和宾语文本
subject_logits = torch.argmax(subject_logits, dim=-1) subject_texts = tokenizer.batch_decode(subject_ids, skip_special_tokens=True)
object_logits = torch.argmax(object_logits, dim=-1) object_texts = tokenizer.batch_decode(object_ids, skip_special_tokens=True)
predicate_logits = predicate_logits.reshape(batch_size, predicate_seq_len) # 拼接为三元组句子
subject_logits = subject_logits.reshape(batch_size, subject_seq_len) sentences = []
object_logits = object_logits.reshape(batch_size, object_seq_len) for i in range(batch_size):
subject = subject_texts[i].strip()
combined_logits = torch.cat([subject_logits, predicate_logits, object_logits], dim=1) predicate = predicate_texts[i].strip() if isinstance(predicate_texts[i], str) else str(predicate_texts[i])
object_ = object_texts[i].strip()
sentences = tokenizer.batch_decode(combined_logits, skip_special_tokens=True) if subject and predicate and object_:
sentence = f"{subject} {predicate} {object_}"
# sentences = [] else:
sentence = ""
# for batch_idx in range(batch_size): sentences.append(sentence)
# batch_sentences = []
# for seq_idx in range(seq_len):
# # 获取预测的token ids
# subject_ids = torch.argmax(subject_logits[batch_idx, seq_idx], dim=-1)
# predicate_ids = torch.argmax(predicate_logits[batch_idx, seq_idx], dim=-1)
# object_ids = torch.argmax(object_logits[batch_idx, seq_idx], dim=-1)
# # 转换为文本
# subject_text = tokenizer.decode(subject_ids, skip_special_tokens=True).strip()
# predicate_text = tokenizer.decode(predicate_ids, skip_special_tokens=True).strip()
# object_text = tokenizer.decode(object_ids, skip_special_tokens=True).strip()
# # 拼接为句子 (主语 + 谓语 + 宾语)
# if subject_text and predicate_text and object_text:
# sentence = f"{subject_text} {predicate_text} {object_text}"
# else:
# sentence = ""
# batch_sentences.append(sentence)
# sentences.append(batch_sentences)
return sentences return sentences
def compute_triple_rouge_loss_optimized(subject_logits, predicate_logits, object_logits, def compute_triple_rouge_loss_optimized(subject_logits, predicate_logits, object_logits,
@ -472,13 +475,20 @@ def get_lr(it, num_iters, learning_rate):
# 余弦学习率衰减 # 余弦学习率衰减
return learning_rate * 0.5 * (1.0 + math.cos(math.pi * it / num_iters)) return learning_rate * 0.5 * (1.0 + math.cos(math.pi * it / num_iters))
# 加载谓词类别
PREDICATE_VOCAB_PATH = '/home/rwkv/RWKV-TS/RETRO_TEST/extract/predicate_vocab.json'
with open(PREDICATE_VOCAB_PATH, 'r', encoding='utf-8') as f:
PREDICATE_LIST = json.load(f)
PREDICATE2ID = {p: i for i, p in enumerate(PREDICATE_LIST)}
NUM_PREDICATES = len(PREDICATE_LIST)
# 初始化模型函数 # 初始化模型函数
def init_model(lm_config, pretrained_embedding_path=None, database_init_path=None, args=None): def init_model(lm_config, pretrained_embedding_path=None, database_init_path=None, args=None):
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer') tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
model = MiniMindLM(lm_config, mode="triple") # 设置为三元组模式 model = MiniMindLM(lm_config, mode="triple", num_predicates=NUM_PREDICATES)
# 加载预训练权重 # 加载预训练权重
pretrained_path = "./out/Experiment_1_2_2_pretrain_512.pth" pretrained_path = "/home/rwkv/RWKV-TS/RETRO_TEST/extract/Experiment_1_2_2_pretrain_512.pth"
Logger(f"Loading pretrained weights from {pretrained_path}") Logger(f"Loading pretrained weights from {pretrained_path}")
try: try:
@ -611,6 +621,7 @@ def train_epoch(epoch, accelerator, model, train_loader,val_loader, optimizer, s
last_log_time = epoch_start_time last_log_time = epoch_start_time
# 使用DataLoader内置的iterator移除自定义预取 # 使用DataLoader内置的iterator移除自定义预取
criterion_predicate = nn.CrossEntropyLoss()
for step, batch_data in enumerate(train_loader): for step, batch_data in enumerate(train_loader):
# === 每个step开始 === # === 每个step开始 ===
@ -680,8 +691,13 @@ def train_epoch(epoch, accelerator, model, train_loader,val_loader, optimizer, s
Logger(f"Error: 分类损失计算失败: {e}", accelerator) Logger(f"Error: 分类损失计算失败: {e}", accelerator)
import traceback import traceback
Logger(f"Traceback: {traceback.format_exc()}", accelerator) Logger(f"Traceback: {traceback.format_exc()}", accelerator)
loss = res.logits.sum() * 0.0 + 1.0 loss_triple = res.logits.sum() * 0.0 + 1.0
# 谓词分类loss
loss_predicate = criterion_predicate(res.predicate_cls_logits, batch_data['predicate_label'].to(accelerator.device))
# 总loss
loss = 0.99*loss_triple + 0.01*loss_predicate
loss = loss / args.accumulation_steps loss = loss / args.accumulation_steps
# === 5. 反向传播 === # === 5. 反向传播 ===
@ -784,7 +800,8 @@ def train_epoch(epoch, accelerator, model, train_loader,val_loader, optimizer, s
# 基本训练信息 # 基本训练信息
Logger(f"Epoch {epoch+1}/{args.epochs}, Step {step+1}/{total_steps_in_epoch}, " Logger(f"Epoch {epoch+1}/{args.epochs}, Step {step+1}/{total_steps_in_epoch}, "
f"Loss: {loss.item() * args.accumulation_steps:.6f}, " f"Loss(triple): {loss_triple.item() * args.accumulation_steps:.6f}, "
f"Loss(predicate): {loss_predicate.item() * args.accumulation_steps:.6f}, "
f"LR: {current_lr:.6f}, " f"LR: {current_lr:.6f}, "
f"Speed: {tokens_per_sec:.2f} tokens/sec | " f"Speed: {tokens_per_sec:.2f} tokens/sec | "
f"Epoch Time Left: {format_time(epoch_remaining_time)} | " f"Epoch Time Left: {format_time(epoch_remaining_time)} | "
@ -818,7 +835,7 @@ def train_epoch(epoch, accelerator, model, train_loader,val_loader, optimizer, s
loss_total = loss.item() * args.accumulation_steps loss_total = loss.item() * args.accumulation_steps
if epoch > 1 and best_loss > loss_total and accelerator.is_main_process: if epoch > 1 and best_loss > loss_total and accelerator.is_main_process:
best_loss = loss_total best_loss = loss_total
ckp = f'{args.save_dir}/pretrain_{args.dim}{moe_path}.pth' ckp = f'{args.save_dir}/pretrain_cls{args.dim}{moe_path}.pth'
unwrapped_model = accelerator.unwrap_model(model) unwrapped_model = accelerator.unwrap_model(model)
accelerator.save(unwrapped_model.state_dict(), ckp) accelerator.save(unwrapped_model.state_dict(), ckp)
Logger(f"Model saved to {ckp}", accelerator) Logger(f"Model saved to {ckp}", accelerator)
@ -852,7 +869,7 @@ def main():
parser.add_argument("--accumulation_steps", type=int, default=32) parser.add_argument("--accumulation_steps", type=int, default=32)
parser.add_argument("--grad_clip", type=float, default=1.0) parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--warmup_iters", type=int, default=0) parser.add_argument("--warmup_iters", type=int, default=0)
parser.add_argument("--log_interval", type=int, default=100) parser.add_argument("--log_interval", type=int, default=50)
parser.add_argument("--save_interval", type=int, default=10000) parser.add_argument("--save_interval", type=int, default=10000)
parser.add_argument('--dim', default=512, type=int) parser.add_argument('--dim', default=512, type=int)
parser.add_argument('--n_layers', default=8, type=int) parser.add_argument('--n_layers', default=8, type=int)