Compare commits
No commits in common. "master" and "Gary_Lu" have entirely different histories.
8
.gitignore
vendored
8
.gitignore
vendored
@ -2,10 +2,4 @@
|
||||
/dataset
|
||||
/out
|
||||
wandb/
|
||||
**/*.log
|
||||
models/sentence_transformers/
|
||||
models/sentence_transformers_cache/
|
||||
**/*.pyc
|
||||
qwen2-1.7B/
|
||||
images/
|
||||
cache/
|
||||
**/*.log
|
102
.vscode/launch.json
vendored
102
.vscode/launch.json
vendored
@ -1,102 +0,0 @@
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Debug Train Pretrain Accelerate",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
|
||||
"console": "integratedTerminal",
|
||||
"python": "/opt/conda/envs/mini/bin/python",
|
||||
"cwd": "${workspaceFolder}",
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}",
|
||||
"CUDA_VISIBLE_DEVICES": "0"
|
||||
},
|
||||
"justMyCode": false,
|
||||
"stopOnEntry": false,
|
||||
"redirectOutput": true
|
||||
},
|
||||
{
|
||||
"name": "Debug Train Pretrain Accelerate (Multi-GPU)",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
|
||||
"console": "integratedTerminal",
|
||||
"python": "/opt/conda/envs/mini/bin/python",
|
||||
"args": [
|
||||
"--hidden_size", "512",
|
||||
"--max_seq_len", "512",
|
||||
"--n_layers", "8",
|
||||
"--batch_size", "8",
|
||||
"--epochs", "1"
|
||||
],
|
||||
"cwd": "${workspaceFolder}",
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}",
|
||||
"CUDA_VISIBLE_DEVICES": "0,1"
|
||||
},
|
||||
"justMyCode": false,
|
||||
"stopOnEntry": false,
|
||||
"redirectOutput": true
|
||||
},
|
||||
{
|
||||
"name": "Debug Train Pretrain Accelerate (Small Test)",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
|
||||
"console": "integratedTerminal",
|
||||
"python": "/opt/conda/envs/mini/bin/python",
|
||||
"args": [
|
||||
"--hidden_size", "512",
|
||||
"--max_seq_len", "512",
|
||||
"--n_layers", "8",
|
||||
"--batch_size", "2",
|
||||
"--epochs", "1",
|
||||
"--log_interval", "10",
|
||||
"--save_interval", "100",
|
||||
"--accumulation_steps", "4"
|
||||
],
|
||||
"cwd": "${workspaceFolder}",
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}",
|
||||
"CUDA_VISIBLE_DEVICES": "0",
|
||||
"WANDB_MODE": "offline"
|
||||
},
|
||||
"justMyCode": false,
|
||||
"stopOnEntry": false,
|
||||
"redirectOutput": true
|
||||
},
|
||||
{
|
||||
"name": "Debug ExtractDB Comparison",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
|
||||
"console": "integratedTerminal",
|
||||
"python": "/opt/conda/envs/mini/bin/python",
|
||||
"args": [
|
||||
"--hidden_size", "512",
|
||||
"--max_seq_len", "256",
|
||||
"--n_layers", "4",
|
||||
"--batch_size", "2",
|
||||
"--epochs", "1",
|
||||
"--log_interval", "10",
|
||||
"--save_interval", "200",
|
||||
"--accumulation_steps", "2",
|
||||
"--comparison_mode",
|
||||
"--knowledge_num", "256",
|
||||
"--knowledge_length", "64",
|
||||
"--comparison_mode"
|
||||
],
|
||||
"cwd": "${workspaceFolder}",
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}",
|
||||
"CUDA_VISIBLE_DEVICES": "0",
|
||||
"WANDB_MODE": "offline"
|
||||
},
|
||||
"justMyCode": false,
|
||||
"stopOnEntry": false,
|
||||
"redirectOutput": true
|
||||
}
|
||||
]
|
||||
}
|
18
.vscode/settings.json
vendored
18
.vscode/settings.json
vendored
@ -1,18 +0,0 @@
|
||||
{
|
||||
"python.pythonPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
|
||||
"python.defaultInterpreterPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
|
||||
"python.terminal.activateEnvironment": true,
|
||||
"python.terminal.activateEnvInCurrentTerminal": true,
|
||||
"python.linting.enabled": true,
|
||||
"python.linting.pylintEnabled": false,
|
||||
"python.linting.flake8Enabled": true,
|
||||
"python.formatting.provider": "black",
|
||||
"python.analysis.autoImportCompletions": true,
|
||||
"python.analysis.typeCheckingMode": "off",
|
||||
"files.exclude": {
|
||||
"**/__pycache__": true,
|
||||
"**/*.pyc": true,
|
||||
"**/.git": false,
|
||||
"**/wandb": false
|
||||
}
|
||||
}
|
@ -19,7 +19,6 @@ class LMConfig(PretrainedConfig):
|
||||
rope_theta: int = 1e6,
|
||||
dropout: float = 0.0,
|
||||
flash_attn: bool = True,
|
||||
embeddings_epoch: int = 2,
|
||||
####################################################
|
||||
# DB related configurations
|
||||
####################################################
|
||||
@ -40,7 +39,6 @@ class LMConfig(PretrainedConfig):
|
||||
####################################################
|
||||
knowledge_num: int = 64*64,
|
||||
knowledge_length: int = 8,
|
||||
knowledge_dim: int = 128,
|
||||
**kwargs,
|
||||
):
|
||||
self.dim = dim
|
||||
@ -55,7 +53,6 @@ class LMConfig(PretrainedConfig):
|
||||
self.rope_theta = rope_theta
|
||||
self.dropout = dropout
|
||||
self.flash_attn = flash_attn
|
||||
self.embeddings_epoch = embeddings_epoch
|
||||
####################################################
|
||||
# DB related configurations
|
||||
####################################################
|
||||
@ -75,5 +72,4 @@ class LMConfig(PretrainedConfig):
|
||||
####################################################
|
||||
self.knowledge_num = knowledge_num
|
||||
self.knowledge_length = knowledge_length
|
||||
self.knowledge_dim = knowledge_dim
|
||||
super().__init__(**kwargs)
|
||||
|
703
model/model.py
703
model/model.py
@ -11,9 +11,14 @@ import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from transformers import PreTrainedModel
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
|
||||
# RMSNorm 类定义了一个用于归一化输入张量的模块。
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
@ -26,7 +31,7 @@ class RMSNorm(torch.nn.Module):
|
||||
def forward(self, x):
|
||||
return self.weight * self._norm(x.float()).type_as(x)
|
||||
|
||||
|
||||
# precompute_pos_cis 函数用于预计算位置编码(复数版本)。
|
||||
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||
@ -34,7 +39,7 @@ def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
||||
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
||||
return pos_cis
|
||||
|
||||
|
||||
# apply_rotary_emb 函数用于应用旋转位置编码(复数版本)。
|
||||
def apply_rotary_emb(xq, xk, pos_cis):
|
||||
def unite_shape(pos_cis, x):
|
||||
ndim = x.ndim
|
||||
@ -50,194 +55,200 @@ def apply_rotary_emb(xq, xk, pos_cis):
|
||||
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||
|
||||
class KnowledgeDataset(nn.Module):
|
||||
def __init__(self, params, tok_embeddings, is_train=True):
|
||||
# precompute_pos_cis_real 函数用于预计算位置编码(实数版本)。
|
||||
def precompute_pos_cis_real(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
||||
"""使用实数张量实现位置编码,避免使用复数张量
|
||||
|
||||
这个函数与precompute_pos_cis完全等价,但使用实数张量而非复数张量。
|
||||
原始函数生成形状为[seq_len, dim//2]的复数张量,其中实部全为1,虚部为旋转角度。
|
||||
这个函数生成形状为[seq_len, dim]的实数张量,其中偶数索引是cos(角度),奇数索引是sin(角度)。
|
||||
"""
|
||||
# 确保dim是偶数
|
||||
if dim % 2 != 0:
|
||||
raise ValueError(f"维度必须是偶数,但得到了 {dim}")
|
||||
|
||||
# 复制原始函数的频率计算逻辑
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||
t = torch.arange(end, device=freqs.device)
|
||||
freqs = torch.outer(t, freqs).float()
|
||||
|
||||
# 计算cos和sin值
|
||||
# 在复数版本中,pos_cis = torch.polar(torch.ones_like(freqs), freqs)
|
||||
# 等价于 cos(freqs) + i*sin(freqs)
|
||||
cos = torch.cos(freqs)
|
||||
sin = torch.sin(freqs)
|
||||
|
||||
# 创建实数张量,交错排列cos和sin
|
||||
pos_emb = torch.zeros((end, dim), device=freqs.device)
|
||||
pos_emb[:, 0::2] = cos # 偶数索引放cos
|
||||
pos_emb[:, 1::2] = sin # 奇数索引放sin
|
||||
|
||||
return pos_emb
|
||||
|
||||
# apply_rotary_emb_real 函数用于应用旋转位置编码(实数版本)。
|
||||
def apply_rotary_emb_real(xq, xk, pos_emb):
|
||||
"""使用实数张量实现旋转位置编码,避免使用复数张量
|
||||
|
||||
这个函数与apply_rotary_emb完全等价,但使用实数张量而非复数张量。
|
||||
原始函数将输入张量转换为复数形式,与位置编码相乘,然后再转回实数形式。
|
||||
这个函数直接使用实数运算实现相同的旋转操作。
|
||||
"""
|
||||
# 获取形状信息
|
||||
bsz, seq_len, n_heads, head_dim = xq.shape
|
||||
|
||||
# 确保pos_emb形状正确
|
||||
assert pos_emb.shape[0] >= seq_len, f"位置编码长度 {pos_emb.shape[0]} 小于序列长度 {seq_len}"
|
||||
assert pos_emb.shape[1] == head_dim, f"位置编码维度 {pos_emb.shape[1]} 与头维度 {head_dim} 不匹配"
|
||||
|
||||
# 截取需要的位置编码长度
|
||||
pos_emb = pos_emb[:seq_len]
|
||||
|
||||
# 将pos_emb调整为广播形状 [1, seq_len, 1, head_dim]
|
||||
pos_emb = pos_emb.unsqueeze(0).unsqueeze(2)
|
||||
|
||||
# 将head_dim分成两半
|
||||
half_head_dim = head_dim // 2
|
||||
|
||||
# 提取cos和sin值(偶数索引是cos,奇数索引是sin)
|
||||
cos = pos_emb[..., 0::2]
|
||||
sin = pos_emb[..., 1::2]
|
||||
|
||||
# 将xq和xk重新排列,以便进行旋转操作
|
||||
# 原始复数版本中,xq和xk被重塑为复数张量,其中实部和虚部交错排列
|
||||
# 在实数版本中,我们需要将偶数索引和奇数索引分开处理
|
||||
|
||||
# 分离偶数和奇数索引
|
||||
xq_even = xq[..., 0::2] # 偶数索引,对应复数的实部
|
||||
xq_odd = xq[..., 1::2] # 奇数索引,对应复数的虚部
|
||||
xk_even = xk[..., 0::2]
|
||||
xk_odd = xk[..., 1::2]
|
||||
|
||||
# 应用旋转(等价于复数乘法)
|
||||
# (a + bi)(cos + sin*i) = (a*cos - b*sin) + (a*sin + b*cos)i
|
||||
# 其中a是偶数索引,b是奇数索引
|
||||
xq_out_even = xq_even * cos - xq_odd * sin # 新的偶数索引(实部)
|
||||
xq_out_odd = xq_even * sin + xq_odd * cos # 新的奇数索引(虚部)
|
||||
xk_out_even = xk_even * cos - xk_odd * sin
|
||||
xk_out_odd = xk_even * sin + xk_odd * cos
|
||||
|
||||
# 重新组合偶数和奇数索引
|
||||
xq_out = torch.zeros_like(xq)
|
||||
xk_out = torch.zeros_like(xk)
|
||||
xq_out[..., 0::2] = xq_out_even
|
||||
xq_out[..., 1::2] = xq_out_odd
|
||||
xk_out[..., 0::2] = xk_out_even
|
||||
xk_out[..., 1::2] = xk_out_odd
|
||||
|
||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||
|
||||
# repeat_kv 函数用于重复键值对。
|
||||
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
||||
bs, slen, n_kv_heads, head_dim = x.shape
|
||||
if n_rep == 1:
|
||||
return x
|
||||
return (
|
||||
x[:, :, :, None, :]
|
||||
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
||||
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
||||
)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: LMConfig):
|
||||
super().__init__()
|
||||
self.is_train = is_train
|
||||
self.params = params
|
||||
self.tok_embeddings = tok_embeddings
|
||||
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
||||
assert args.n_heads % self.n_kv_heads == 0
|
||||
self.n_local_heads = args.n_heads
|
||||
self.n_local_kv_heads = self.n_kv_heads
|
||||
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
||||
self.head_dim = args.dim // args.n_heads
|
||||
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
||||
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
||||
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
||||
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
||||
self.attn_dropout = nn.Dropout(args.dropout)
|
||||
self.resid_dropout = nn.Dropout(args.dropout)
|
||||
self.dropout = args.dropout
|
||||
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
||||
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
||||
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
||||
mask = torch.triu(mask, diagonal=1)
|
||||
self.register_buffer("mask", mask, persistent=False)
|
||||
|
||||
# 嵌入参数
|
||||
self.knowledge_dim = params.knowledge_dim
|
||||
self.key_dim = self.knowledge_dim // 2
|
||||
self.to_queries = nn.Sequential(
|
||||
nn.Linear(params.dim, self.knowledge_dim, bias=False),
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
pos_cis: torch.Tensor,
|
||||
db_value=None):
|
||||
bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度
|
||||
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换,得到查询、键和值。
|
||||
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) #将变换后的张量xq重塑为形状为(bsz, seq_len, n_local_heads, head_dim)的形状。
|
||||
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xk重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
|
||||
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xv重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
|
||||
|
||||
# 应用旋转位置编码(使用实数版本)
|
||||
xq, xk = apply_rotary_emb_real(xq, xk, pos_cis)
|
||||
# kv_cache实现 REMOVED
|
||||
# if past_key_value is not None:
|
||||
# xk = torch.cat([past_key_value[0], xk], dim=1)
|
||||
# xv = torch.cat([past_key_value[1], xv], dim=1)
|
||||
# past_kv = (xk, xv) if use_cache else None
|
||||
|
||||
# 重复键值对
|
||||
xq, xk, xv = (
|
||||
xq.transpose(1, 2),
|
||||
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
||||
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
||||
)
|
||||
|
||||
## 数据库参数
|
||||
self.knowledge_num = params.knowledge_num
|
||||
self.knowledge_length = params.knowledge_length
|
||||
self.keys = nn.Parameter(torch.randn(self.knowledge_num, self.knowledge_dim) * 0.02, requires_grad=True)
|
||||
self.product_key_topk = min(16, self.knowledge_num)
|
||||
|
||||
# 使用频率统计 - 使用register_buffer以便在GPU/CPU间正确移动
|
||||
self.register_buffer('has_update_keys', torch.zeros(self.knowledge_num))
|
||||
# 如果提供了db_value,根据头的数量调整它的形状并与xv合并
|
||||
if db_value is not None:
|
||||
# 确保db_value的形状与xv兼容,假设db_value形状为[B, N, H, D]
|
||||
if db_value.ndim == 4: # [B, N, H, D]
|
||||
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
|
||||
|
||||
# 知识库存储 - 使用register_buffer因为这是整数索引,不需要梯度
|
||||
self.register_buffer('knowledge_dataset',
|
||||
torch.randint(low=0, high=params.vocab_size, size=(self.knowledge_num, self.knowledge_length), dtype=torch.long)
|
||||
)
|
||||
# 检查是否需要调整D维度
|
||||
if db_value.shape[-1] != xv.shape[-1]:
|
||||
# 如果db_value的维度与xv不同,可以添加一个投影层
|
||||
# 或者在这里使用简单的调整方法
|
||||
# 这里我们简单地通过均值池化或重复来调整维度
|
||||
if db_value.shape[-1] > xv.shape[-1]:
|
||||
# 降维
|
||||
factor = db_value.shape[-1] // xv.shape[-1]
|
||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, factor, xv.shape[-1])
|
||||
db_value = db_value.mean(dim=3)
|
||||
else:
|
||||
# 升维
|
||||
factor = xv.shape[-1] // db_value.shape[-1]
|
||||
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
|
||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
|
||||
|
||||
# 计算step数目,用于动态调整权重
|
||||
self.step_counter = 0
|
||||
# 将db_value与xv相加或融合
|
||||
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
|
||||
xv = xv + db_value
|
||||
|
||||
self.freeze_embedding = False
|
||||
# 使用Flash Attention
|
||||
if self.flash and seq_len != 1:
|
||||
dropout_p = self.dropout if self.training else 0.0
|
||||
output = F.scaled_dot_product_attention(
|
||||
xq, xk, xv,
|
||||
attn_mask=None,
|
||||
dropout_p=dropout_p,
|
||||
is_causal=True
|
||||
)
|
||||
else:
|
||||
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
||||
scores += self.mask[:, :, :seq_len, :seq_len]
|
||||
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
||||
scores = self.attn_dropout(scores)
|
||||
output = scores @ xv
|
||||
|
||||
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
||||
output = self.resid_dropout(self.wo(output))
|
||||
return output
|
||||
|
||||
|
||||
|
||||
def intelligent_selection(self, query, all_scores, all_indices):
|
||||
"""智能分层选择策略"""
|
||||
if self.is_train == False:
|
||||
return all_scores, all_indices
|
||||
|
||||
batch_size = all_scores.size(0)
|
||||
device = all_scores.device
|
||||
dtype = all_scores.dtype
|
||||
|
||||
# 对每个batch进行分层选择
|
||||
enhanced_scores = all_scores.clone()
|
||||
query_features = query.mean(dim=1) # [batch_size, dim]
|
||||
|
||||
# 预先计算所有候选条目的嵌入(批量优化)
|
||||
all_candidate_indices = torch.cat([all_indices[i] for i in range(batch_size)], dim=0)
|
||||
unique_indices, inverse_indices = torch.unique(all_candidate_indices, return_inverse=True)
|
||||
|
||||
# 批量计算唯一候选条目的嵌入
|
||||
candidate_tokens = self.knowledge_dataset[unique_indices]
|
||||
flat_tokens = candidate_tokens.view(-1)
|
||||
flat_embeddings = self.tok_embeddings(flat_tokens)
|
||||
#获取flat_tokens对应的index
|
||||
pre_update_indices = unique_indices.view(-1)
|
||||
pre_update_embeddings = flat_embeddings.view(
|
||||
len(unique_indices), self.knowledge_length, -1
|
||||
)
|
||||
|
||||
unique_candidate_features = flat_embeddings.view(
|
||||
len(unique_indices), self.knowledge_length, -1
|
||||
).mean(dim=1) # [num_unique_candidates, dim]
|
||||
|
||||
# 归一化候选特征(优化相似度计算)
|
||||
normalized_candidates = F.normalize(unique_candidate_features, dim=-1)
|
||||
normalized_queries = F.normalize(query_features, dim=-1)
|
||||
|
||||
# 收集所有batch的best_tokens
|
||||
batch_best_tokens = []
|
||||
batch_best_tokens_embeddings = []
|
||||
|
||||
for batch_idx in range(batch_size):
|
||||
indices = all_indices[batch_idx]
|
||||
|
||||
# 获取当前batch候选条目对应的特征索引
|
||||
start_idx = batch_idx * len(indices)
|
||||
end_idx = start_idx + len(indices)
|
||||
batch_inverse_indices = inverse_indices[start_idx:end_idx]
|
||||
|
||||
# 使用预计算的归一化特征进行优化相似度计算
|
||||
batch_candidate_features = normalized_candidates[batch_inverse_indices]
|
||||
query_feature = normalized_queries[batch_idx]
|
||||
|
||||
# 使用矩阵乘法计算余弦相似度
|
||||
similarity_scores = torch.mv(batch_candidate_features, query_feature)
|
||||
|
||||
# 找到最大相似度分数的索引
|
||||
max_similarity_idx = torch.argmax(similarity_scores)
|
||||
|
||||
# 获取最大相似度对应的候选条目索引
|
||||
best_candidate_idx = indices[max_similarity_idx]
|
||||
|
||||
# 获取对应的tokens
|
||||
best_tokens = self.knowledge_dataset[best_candidate_idx]
|
||||
best_tokens_embeddings = self.tok_embeddings(best_tokens)
|
||||
|
||||
# 将当前batch的best_tokens添加到列表中
|
||||
batch_best_tokens.append(best_tokens)
|
||||
batch_best_tokens_embeddings.append(best_tokens_embeddings)
|
||||
|
||||
# 将所有batch的best_tokens堆叠成一个张量
|
||||
# [batch_size, knowledge_length]
|
||||
all_best_tokens = torch.stack(batch_best_tokens, dim=0)
|
||||
all_best_tokens_embeddings = torch.stack(batch_best_tokens_embeddings, dim=0)
|
||||
|
||||
# 获取
|
||||
|
||||
# 使用重新计算的embeddings更新self.keys
|
||||
if self.is_train:
|
||||
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
|
||||
|
||||
# 更新被修改过的key
|
||||
with torch.no_grad():
|
||||
self.has_update_keys[pre_update_indices] = 1
|
||||
|
||||
return all_best_tokens, all_best_tokens_embeddings
|
||||
|
||||
def _update_keys_with_embeddings(self, pre_update_indices, pre_update_embeddings):
|
||||
if self.freeze_embedding:
|
||||
return
|
||||
# 使用pre_update_embeddings更新self.keys
|
||||
with torch.no_grad():
|
||||
pre_update_embeddings = pre_update_embeddings.mean(dim=1) # [337, 512]
|
||||
pre_update_embeddings = self.to_queries(pre_update_embeddings)
|
||||
self.keys[pre_update_indices] = pre_update_embeddings
|
||||
|
||||
def search_index(self,x):
|
||||
batch_size, seq_len, dim = x.shape
|
||||
|
||||
# collapse sequence dimension by averaging
|
||||
x_flat = x.mean(dim=1) # [batch_size, dim]
|
||||
|
||||
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
||||
# queries = queries.reshape(batch_size, 2, self.key_dim)
|
||||
# queries = queries.permute(1, 0, 2)
|
||||
|
||||
# 2. 计算queries与keys的相似度
|
||||
sim = torch.einsum('b d, k d -> b k', queries, self.keys)
|
||||
|
||||
# 3. 在两个子空间分别做top-k
|
||||
scores_and_indices = sim.topk(self.product_key_topk, dim=-1)
|
||||
scores, indices = scores_and_indices[0], scores_and_indices[1]
|
||||
|
||||
# 5. 应用智能分层选择策略
|
||||
best_tokens, best_tokens_embeddings = self.intelligent_selection(x, scores, indices)
|
||||
|
||||
# 6. 更新1%的keys
|
||||
if self.is_train:
|
||||
# 获取未更新过的keys的索引
|
||||
not_updated_indices = torch.where(self.has_update_keys == 0)[0]
|
||||
|
||||
# 如果有未更新的keys,随机选择num_update_keys个进行更新
|
||||
if len(not_updated_indices) > 0:
|
||||
num_update_keys = int(self.knowledge_num * 0.01)
|
||||
perm = torch.randperm(len(not_updated_indices))[:num_update_keys]
|
||||
perm_num = perm.shape[0]
|
||||
pre_update_indices = not_updated_indices[perm]
|
||||
pre_update_tokens = self.knowledge_dataset[pre_update_indices]
|
||||
pre_update_embeddings = self.tok_embeddings(pre_update_tokens.view(-1))
|
||||
pre_update_embeddings = pre_update_embeddings.view(perm_num, self.knowledge_length, -1)
|
||||
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
|
||||
# 更新被修改过的key
|
||||
with torch.no_grad():
|
||||
self.has_update_keys[pre_update_indices] = 1
|
||||
else:
|
||||
print("all keys are updated")
|
||||
# 重置所有keys的更新状态
|
||||
self.has_update_keys.zero_()
|
||||
# 重新获取所有可更新的索引
|
||||
not_updated_indices = torch.arange(len(self.has_update_keys), device=self.has_update_keys.device)
|
||||
num_update_keys = int(self.knowledge_num * 0.01)
|
||||
perm = torch.randperm(len(not_updated_indices))[:num_update_keys]
|
||||
pre_update_indices = not_updated_indices[perm]
|
||||
pre_update_tokens = self.knowledge_dataset[pre_update_indices]
|
||||
pre_update_embeddings = self.tok_embeddings(pre_update_tokens.view(-1))
|
||||
pre_update_embeddings = pre_update_embeddings.view(num_update_keys, self.knowledge_length, -1)
|
||||
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
|
||||
# 更新被修改过的key
|
||||
with torch.no_grad():
|
||||
self.has_update_keys[pre_update_indices] = 1
|
||||
|
||||
|
||||
|
||||
|
||||
return best_tokens, best_tokens_embeddings
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(
|
||||
@ -284,58 +295,6 @@ class CrossAttention(nn.Module):
|
||||
|
||||
return context
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: LMConfig):
|
||||
super().__init__()
|
||||
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
||||
assert args.n_heads % self.n_kv_heads == 0
|
||||
self.n_local_heads = args.n_heads
|
||||
self.n_local_kv_heads = self.n_kv_heads
|
||||
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
||||
self.head_dim = args.dim // args.n_heads
|
||||
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
||||
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
||||
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
||||
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
||||
self.attn_dropout = nn.Dropout(args.dropout)
|
||||
self.resid_dropout = nn.Dropout(args.dropout)
|
||||
self.dropout = args.dropout
|
||||
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
||||
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
||||
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
||||
mask = torch.triu(mask, diagonal=1)
|
||||
self.register_buffer("mask", mask, persistent=False)
|
||||
|
||||
def forward(self,
|
||||
x: torch.Tensor,
|
||||
pos_cis: torch.Tensor):
|
||||
bsz, seq_len, _ = x.shape
|
||||
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
||||
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
||||
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||
|
||||
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
||||
if self.flash and seq_len != 1:
|
||||
dropout_p = self.dropout if self.training else 0.0
|
||||
output = F.scaled_dot_product_attention(
|
||||
xq, xk, xv,
|
||||
attn_mask=None,
|
||||
dropout_p=dropout_p,
|
||||
is_causal=True
|
||||
)
|
||||
else:
|
||||
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
||||
scores += self.mask[:, :, :seq_len, :seq_len]
|
||||
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
||||
scores = self.attn_dropout(scores)
|
||||
output = scores @ xv
|
||||
|
||||
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
||||
output = self.resid_dropout(self.wo(output))
|
||||
return output
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, config: LMConfig):
|
||||
super().__init__()
|
||||
@ -468,30 +427,169 @@ class MOEFeedForward(nn.Module):
|
||||
|
||||
|
||||
class MiniMindBlock(nn.Module):
|
||||
def __init__(self, layer_id: int, config: LMConfig, knowledge_dataset: KnowledgeDataset):
|
||||
def __init__(self, layer_id: int, config: LMConfig):
|
||||
super().__init__()
|
||||
self.n_heads = config.n_heads
|
||||
self.dim = config.dim
|
||||
self.head_dim = config.dim // config.n_heads
|
||||
self.self_attention = Attention(config)
|
||||
self.cross_attention = CrossAttention(config)
|
||||
self.knowledge_dataset = knowledge_dataset
|
||||
self.attention = Attention(config)
|
||||
self.cross_att = CrossAttention(config)
|
||||
|
||||
self.layer_id = layer_id
|
||||
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
||||
|
||||
def forward(self, x, pos_cis):
|
||||
h_attn = self.self_attention(
|
||||
# 假设num_experts是已定义的总专家数量的平方根
|
||||
|
||||
|
||||
# 查询生成的参数
|
||||
|
||||
|
||||
# 创建查询生成模块
|
||||
# if weight_down_embed is not None:
|
||||
# self.to_queries = nn.Sequential(
|
||||
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
|
||||
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
|
||||
# )
|
||||
|
||||
# # 超参数
|
||||
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
|
||||
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
|
||||
|
||||
def forward(self, x, db_value, pos_cis):
|
||||
# import pdb;pdb.set_trace()
|
||||
# db_value = None
|
||||
|
||||
# # 如果有weight_down_embed,使用Product Key机制
|
||||
# if self.weight_down_embed is not None:
|
||||
# # 1. 生成queries
|
||||
# batch_size, seq_len, dim = x.shape
|
||||
|
||||
# # collapse sequence dimension by averaging
|
||||
# x_flat = x.mean(dim=1) # [batch_size, dim]
|
||||
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
||||
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
||||
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
||||
|
||||
# # 2. 计算queries与keys的相似度
|
||||
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
||||
|
||||
# # 3. 在两个子空间分别做top-k
|
||||
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
||||
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
||||
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
||||
|
||||
# # 4. 组合两个子空间的分数和索引
|
||||
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
||||
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
||||
|
||||
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
||||
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
||||
|
||||
# # 5. 最终top-k选择
|
||||
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
||||
# indices = all_indices.gather(-1, pk_indices)
|
||||
|
||||
# # 6. 从embedding中获取专家值
|
||||
|
||||
# # 从embedding中获取值
|
||||
# flat_indices = indices.view(-1) # 将索引展平为一维张量
|
||||
# db_values = self.weight_down_embed(flat_indices)
|
||||
|
||||
# # 重塑回原始形状
|
||||
# db_value = db_values.view(batch_size, -1, dim)
|
||||
|
||||
|
||||
# 注意力计算
|
||||
h_attn = self.attention(
|
||||
self.attention_norm(x),
|
||||
pos_cis
|
||||
pos_cis,
|
||||
db_value=db_value
|
||||
)
|
||||
db, db_embeddings = self.knowledge_dataset.search_index(h_attn)
|
||||
h_attn = self.cross_attention(h_attn, db_embeddings)
|
||||
|
||||
h_attn = self.cross_att(h_attn, db_value)
|
||||
|
||||
# 残差连接
|
||||
h = x + h_attn
|
||||
|
||||
# 前馈神经网络
|
||||
out = h + self.feed_forward(self.ffn_norm(h))
|
||||
return out
|
||||
return out
|
||||
|
||||
class ExtractDB(nn.Module):
|
||||
def __init__(self,params):
|
||||
# 修改专家数量和知识维度,确保能开方
|
||||
super().__init__()
|
||||
self.batch_size = None
|
||||
self.dim = params.dim
|
||||
self.dim_key = self.dim // 2
|
||||
self.knowledge_num = params.knowledge_num # 100专家,确保是完全平方数
|
||||
# 将knowledge_dim设置为与head_dim相同,以便在attention中直接使用
|
||||
self.head_dim = params.dim // params.n_heads
|
||||
self.knowledge_length = params.knowledge_length
|
||||
|
||||
# 使用register_buffer代替nn.Parameter,避免梯度问题
|
||||
# self.register_buffer('weight_down_embed', torch.randn(self.knowledge_num, self.knowledge_length) * 0.02)
|
||||
self.register_buffer('weight_down_embed',torch.randint(low=0,high=6400, size=(self.knowledge_num, self.knowledge_length),dtype=torch.long))
|
||||
|
||||
|
||||
|
||||
|
||||
self.num_keys = int(math.sqrt(self.knowledge_num)) if self.knowledge_num > 0 else 0
|
||||
self.product_key_topk = min(16, self.num_keys)
|
||||
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
|
||||
self.num_experts_per_head_topk = 1
|
||||
self.to_queries = nn.Sequential(
|
||||
nn.Linear(params.dim, self.dim_key * 2, bias=False),
|
||||
)
|
||||
|
||||
def q_to_k(self,x):
|
||||
# 1. 生成queries
|
||||
self.batch_size, seq_len, dim = x.shape
|
||||
|
||||
# collapse sequence dimension by averaging
|
||||
x_flat = x.mean(dim=1) # [batch_size, dim]
|
||||
|
||||
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
||||
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
||||
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
||||
|
||||
# 2. 计算queries与keys的相似度
|
||||
sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
||||
|
||||
# 3. 在两个子空间分别做top-k
|
||||
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
||||
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
||||
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
||||
|
||||
# 4. 组合两个子空间的分数和索引
|
||||
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
||||
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
||||
|
||||
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
||||
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
||||
|
||||
# 5. 最终top-k选择
|
||||
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
||||
indices = all_indices.gather(-1, pk_indices)
|
||||
flat_indices = indices.view(-1)
|
||||
return flat_indices
|
||||
|
||||
def get_data(self, index):
|
||||
# 直接从GPU获取embedding
|
||||
db_values = self.weight_down_embed[index]#变成token了所以是1,后续再过emb
|
||||
# db_value = db_values.view(self.batch_size,-1)
|
||||
return db_values
|
||||
|
||||
@torch.no_grad()
|
||||
def updata_value(self, k, v):#要加一个从向量返回index的过程
|
||||
# 直接更新buffer上的值 (不需要梯度)
|
||||
v_reshaped = v.view(v.size(0), -1)
|
||||
# 确保数据类型匹配
|
||||
v_reshaped = v_reshaped.to(dtype=self.weight_down_embed.dtype)
|
||||
self.weight_down_embed[k] = v_reshaped
|
||||
|
||||
|
||||
|
||||
class MiniMindLM(PreTrainedModel):
|
||||
@ -503,36 +601,110 @@ class MiniMindLM(PreTrainedModel):
|
||||
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
||||
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
||||
self.dropout = nn.Dropout(params.dropout)
|
||||
self.knowledge_dataset = KnowledgeDataset(params, self.tok_embeddings)
|
||||
self.layers = nn.ModuleList([MiniMindBlock(l, params, self.knowledge_dataset) for l in range(self.n_layers)])
|
||||
# 移除旧的weight_down_embed声明
|
||||
self.extract_db = ExtractDB(self.params)
|
||||
|
||||
# 将self.weight_down_embed传递给每个MiniMindBlock
|
||||
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
||||
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
||||
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
||||
self.database_output = nn.Linear(params.dim, params.knowledge_length, bias=False)
|
||||
self.tok_embeddings.weight = self.output.weight
|
||||
self.register_buffer("pos_cis",
|
||||
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
||||
self.database_output.weight = self.output.weight
|
||||
|
||||
# Calculate input dimension
|
||||
input_dim = (self.params.max_seq_len-1)*self.params.n_layers
|
||||
# Use a bottleneck architecture to reduce parameters
|
||||
bottleneck_dim = 256 # Significantly smaller bottleneck dimension
|
||||
|
||||
# Factorized shared downsampling using two smaller convolutions
|
||||
self.shared_downsample = nn.Sequential(
|
||||
# First reduce input dimension to bottleneck
|
||||
nn.Conv1d(input_dim, bottleneck_dim, kernel_size=1, padding='same'),
|
||||
nn.ReLU(), # Non-linearity to improve representation capacity
|
||||
# Then expand to target dimension
|
||||
nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same')
|
||||
)
|
||||
|
||||
# Specific layers for v path
|
||||
self.downsample_v_specific = nn.Sequential(
|
||||
nn.Conv1d(128*8, 128, kernel_size=1, padding='same'),
|
||||
nn.Conv1d(128, self.params.knowledge_length, kernel_size=1, padding='same')
|
||||
)
|
||||
|
||||
# Specific layers for q path
|
||||
self.downsample_q_specific = nn.Sequential(
|
||||
nn.Conv1d(128*8, 512, kernel_size=1, padding='same')
|
||||
)
|
||||
# 使用实数版本的位置编码,避免复数张量可能导致的段错误
|
||||
self.register_buffer("pos_cis_real",
|
||||
precompute_pos_cis_real(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
||||
persistent=False)
|
||||
self.OUT = CausalLMOutputWithPast()
|
||||
self.freeze_embedding = False
|
||||
self.params = params
|
||||
|
||||
def forward(self,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
logits_to_keep: Union[int, torch.Tensor] = 0,
|
||||
step: int = 0,
|
||||
**args):
|
||||
start_pos = args.get('start_pos', 0)
|
||||
if self.freeze_embedding and step == 0:
|
||||
self.tok_embeddings.weight.requires_grad = False
|
||||
# 同时冻结KnowledgeDataset的嵌入更新
|
||||
self.knowledge_dataset.freeze_embedding = True
|
||||
print("tok_embeddings.weight.requires_grad: ", self.tok_embeddings.weight.requires_grad)
|
||||
print("knowledge_dataset.freeze_embedding: ", self.knowledge_dataset.freeze_embedding)
|
||||
h = self.dropout(self.tok_embeddings(input_ids))
|
||||
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
||||
pos_cis_real = self.pos_cis_real[start_pos:start_pos + input_ids.size(1)]
|
||||
h_list = []
|
||||
|
||||
for l, layer in enumerate(self.layers):
|
||||
# 禁用数据库模式,使用固定值替代数据库查询
|
||||
if self.params.disable_db:
|
||||
# 创建一个形状为[batch_size, n_layers, dim]的tensor,所有元素值为1e-4
|
||||
batch_size = h.size(0)
|
||||
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
|
||||
dtype=h.dtype, device=h.device)
|
||||
else:
|
||||
# 正常模式,使用数据库查询
|
||||
# import pdb;pdb.set_trace()
|
||||
index = self.extract_db.q_to_k(h)
|
||||
|
||||
token_idx = self.extract_db.get_data(index) #这里是index
|
||||
|
||||
db_value =self.tok_embeddings(token_idx)
|
||||
|
||||
h = layer(
|
||||
h, pos_cis
|
||||
h, db_value, pos_cis_real
|
||||
)
|
||||
|
||||
h_list.append(h.unsqueeze(0))
|
||||
|
||||
h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3)
|
||||
|
||||
# 只在非禁用数据库模式下执行数据库更新逻辑
|
||||
if not self.params.disable_db:
|
||||
# 使用detach()分离计算图,避免多次反向传播
|
||||
h_tensor_detached = h_tensor.detach()
|
||||
h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim)
|
||||
|
||||
# 数据库更新逻辑与主计算图分离
|
||||
with torch.no_grad():
|
||||
|
||||
# Compute shared downsampling layer once
|
||||
shared_features = self.shared_downsample(h_tensor_detached)
|
||||
|
||||
# Get features from v path - now we output embedding-dimension vectors
|
||||
z_v_features = self.downsample_v_specific(shared_features)
|
||||
batch_z, seq_len, dim_z = z_v_features.shape
|
||||
|
||||
# Reshape to batch_size * knowledge_length, dim
|
||||
z_v_flat = z_v_features.reshape(-1, dim_z)
|
||||
|
||||
# Direct token prediction - like the main language model head
|
||||
token_logits = self.database_output(z_v_flat) # [batch_z * seq_len, vocab_size]
|
||||
# Get token indices directly from logits
|
||||
token_indices_flat = torch.argmax(token_logits, dim=-1)
|
||||
token_indices = token_indices_flat.reshape(batch_z, -1)
|
||||
|
||||
# Process query path as before
|
||||
z_q = self.downsample_q_specific(shared_features)
|
||||
z_k = self.extract_db.q_to_k(z_q)
|
||||
self.extract_db.updata_value(z_k, token_indices)
|
||||
|
||||
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
||||
logits = self.output(self.norm(h)[:, slice_indices, :])
|
||||
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
|
||||
@ -545,6 +717,12 @@ class MiniMindLM(PreTrainedModel):
|
||||
|
||||
output.aux_loss = aux_loss
|
||||
|
||||
# 尝试添加其他属性(如果支持的话)
|
||||
# try:
|
||||
# output.hidden_states = h
|
||||
# except:
|
||||
# pass
|
||||
|
||||
return output
|
||||
|
||||
@torch.inference_mode()
|
||||
@ -577,14 +755,13 @@ class MiniMindLM(PreTrainedModel):
|
||||
return res
|
||||
|
||||
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args):
|
||||
start, first_seq, past_kvs = input_ids.shape[1], True, None
|
||||
start, first_seq = input_ids.shape[1], True
|
||||
while input_ids.shape[1] < max_new_tokens - 1:
|
||||
if first_seq:
|
||||
out, first_seq = self(input_ids, **args), False
|
||||
else:
|
||||
out = self(input_ids[:, -1:],
|
||||
start_pos=input_ids.shape[1] - 1, **args)
|
||||
logits, past_kvs = out.logits[:, -1, :], out.past_key_values
|
||||
out = self(input_ids[:, -1:], start_pos=input_ids.shape[1] - 1, **args)
|
||||
logits = out.logits[:, -1, :]
|
||||
logits[:, list(set(input_ids.tolist()[0]))] /= rp
|
||||
logits /= (temperature + 1e-9)
|
||||
if top_p is not None and top_p < 1.0:
|
||||
@ -600,4 +777,4 @@ class MiniMindLM(PreTrainedModel):
|
||||
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
|
||||
yield input_ids[:, start:]
|
||||
if input_ids_next.item() == eos_token_id:
|
||||
break
|
||||
break
|
||||
|
@ -1,154 +0,0 @@
|
||||
# TREx 数据集处理工具使用说明
|
||||
|
||||
这个工具支持两步骤处理 TREx 数据集:
|
||||
1. **句子提取**:从 TREx 数据集提取三元组并转换为自然语言句子
|
||||
2. **LLM 处理**:使用 ollama qwen3:4b 模型进行句子修正和重要性评分
|
||||
|
||||
## 🆕 防卡死机制
|
||||
|
||||
为了解决LLM处理时可能出现的卡死问题,新增了以下功能:
|
||||
|
||||
### 超时和重试机制
|
||||
- **超时时间**:每个LLM请求60秒超时
|
||||
- **重试机制**:失败后最多重试2次,采用指数退避策略
|
||||
- **并发控制**:降低并发数至4个,减少服务器压力
|
||||
|
||||
### 心跳监控系统
|
||||
- **实时监控**:每30秒检查一次LLM响应状态
|
||||
- **异常警告**:超过30秒无成功响应时发出警告
|
||||
- **服务检测**:自动检查ollama服务状态
|
||||
- **详细统计**:实时显示成功率、超时率等统计信息
|
||||
|
||||
### 日志系统
|
||||
- **详细日志**:所有操作都记录在 `logs/` 目录下
|
||||
- **双重输出**:同时输出到日志文件和控制台
|
||||
- **时间戳标记**:日志文件包含启动时间戳
|
||||
|
||||
### 改进的错误处理
|
||||
- **异常恢复**:LLM处理失败时使用原句子和默认评分
|
||||
- **状态监控**:处理前检查ollama服务状态
|
||||
- **批次间休息**:批次之间休息5秒,避免过度压力
|
||||
|
||||
## 安装依赖
|
||||
|
||||
```bash
|
||||
pip install agno asyncio pydantic requests
|
||||
```
|
||||
|
||||
确保已安装并启动 ollama,并下载 qwen3:4b 模型:
|
||||
```bash
|
||||
ollama pull qwen3:4b
|
||||
```
|
||||
|
||||
## 使用方法
|
||||
|
||||
### 1. 完整流程(两步骤连续执行)
|
||||
|
||||
```bash
|
||||
python trex_to_sentences_simple.py --step all --input_dir dataset/TREx --max_files 2
|
||||
```
|
||||
|
||||
### 2. 分步骤执行
|
||||
|
||||
#### 步骤1:仅提取句子
|
||||
```bash
|
||||
python trex_to_sentences_simple.py --step extract --input_dir dataset/TREx --sentences_json my_sentences.json --max_files 2
|
||||
```
|
||||
|
||||
#### 步骤2:仅LLM处理
|
||||
```bash
|
||||
python trex_to_sentences_simple.py --step llm --sentences_json my_sentences.json --output_file final_output.txt
|
||||
```
|
||||
|
||||
## 主要参数说明
|
||||
|
||||
- `--step`: 运行步骤
|
||||
- `extract`: 仅提取句子
|
||||
- `llm`: 仅LLM处理
|
||||
- `all`: 完整流程(默认)
|
||||
|
||||
- `--input_dir`: TREx数据集目录(默认:`dataset/TREx`)
|
||||
- `--sentences_json`: 提取的句子JSON文件(默认:`extracted_sentences.json`)
|
||||
- `--output_file`: 最终输出文件(默认:`trex_sentences_enhanced.txt`)
|
||||
- `--max_files`: 最大处理文件数(用于测试)
|
||||
- `--no_llm`: 禁用LLM处理
|
||||
|
||||
## 输出文件
|
||||
|
||||
**注意:所有输出文件都会自动保存在相应目录中**
|
||||
|
||||
### 句子提取输出
|
||||
- `output/extracted_sentences.json`: 提取的原始句子,包含元数据
|
||||
|
||||
### LLM处理输出
|
||||
- `output/{output_file}.txt`: 修正后的句子文本文件
|
||||
- `output/{output_file}.json`: 完整的处理结果(包含原句、修正句、评分)
|
||||
- `output/{output_file}_sorted_by_importance.txt`: 按重要性评分排序的句子
|
||||
|
||||
### 检查点文件
|
||||
- `output/{output_file}_checkpoint_{数量}.json`: 每1000条句子自动保存的检查点
|
||||
|
||||
### 日志文件
|
||||
- `logs/trex_processor_{时间戳}.log`: 详细的处理日志
|
||||
|
||||
## 🆕 故障诊断
|
||||
|
||||
### 如果遇到卡死问题:
|
||||
|
||||
1. **检查日志文件**:查看 `logs/` 目录下的最新日志
|
||||
2. **观察心跳监控**:注意控制台的心跳警告信息
|
||||
3. **检查ollama服务**:
|
||||
```bash
|
||||
ps aux | grep ollama
|
||||
curl http://localhost:11434/api/tags
|
||||
```
|
||||
4. **重启ollama服务**(如果需要):
|
||||
```bash
|
||||
pkill ollama
|
||||
ollama serve &
|
||||
```
|
||||
|
||||
### 常见警告信息:
|
||||
|
||||
- `⚠️ 心跳检测`: 30秒无成功响应(正常情况下会自动恢复)
|
||||
- `❌ 严重警告`: 90秒无成功响应(可能需要检查服务)
|
||||
- `💀 Ollama服务异常`: ollama服务可能已停止
|
||||
- `💀 致命错误`: 连续多次警告(建议重启程序)
|
||||
|
||||
## 检查点恢复机制
|
||||
|
||||
- 步骤2会自动检测已有的检查点文件(在 `output/` 目录中)
|
||||
- 只处理尚未处理的句子,避免重复工作
|
||||
- 如果所有句子都已处理,会直接生成最终输出文件
|
||||
- 中断后重新运行会自动从最新检查点继续
|
||||
|
||||
## 示例工作流
|
||||
|
||||
```bash
|
||||
# 1. 先提取句子(可以快速完成)
|
||||
python trex_to_sentences_simple.py --step extract --max_files 5
|
||||
|
||||
# 2. 后续进行LLM处理(耗时较长,支持断点续传)
|
||||
python trex_to_sentences_simple.py --step llm
|
||||
|
||||
# 如果中途中断,再次运行步骤2会自动从检查点恢复
|
||||
python trex_to_sentences_simple.py --step llm
|
||||
```
|
||||
|
||||
## 性能特点
|
||||
|
||||
- **保守的并发**: 最大4个并发LLM请求(降低卡死风险)
|
||||
- **检查点保存**: 每1000条句子自动保存,支持断点续传
|
||||
- **智能监控**: 详细的处理进度和时间预估
|
||||
- **健壮的错误处理**: LLM请求失败时使用原句子和默认评分
|
||||
- **服务监控**: 自动检测ollama服务状态
|
||||
|
||||
## 注意事项
|
||||
|
||||
1. 首次运行步骤2前,必须先完成步骤1
|
||||
2. 检查点文件会占用额外磁盘空间(每个都包含所有已处理数据)
|
||||
3. LLM处理速度取决于模型性能和网络状况
|
||||
4. 建议先用`--max_files`参数测试小批量数据
|
||||
5. **新增**:如果遇到卡死,查看日志文件和心跳监控信息
|
||||
6. **新增**:程序会自动检测并报告ollama服务状态
|
||||
7. **新增**:所有处理过程都有详细日志记录,便于问题诊断
|
@ -1,225 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
JSON文件合并脚本
|
||||
读取多个JSON文件并合并为一个JSON文件
|
||||
"""
|
||||
|
||||
import json
|
||||
import os
|
||||
from typing import Dict, List, Any, Union
|
||||
|
||||
# 需要合并的JSON文件列表
|
||||
JSON_FILES_TO_MERGE = [
|
||||
"output/trex_sentences_enhanced_checkpoint_360000.json"
|
||||
]
|
||||
for i in range(1, 1010):
|
||||
JSON_FILES_TO_MERGE.append(f"output/trex_sentences_enhanced_batch_{i}.json")
|
||||
|
||||
def load_json_file(file_path: str) -> Union[Dict, List, None]:
|
||||
"""加载JSON文件"""
|
||||
if not os.path.exists(file_path):
|
||||
print(f"警告: 文件 {file_path} 不存在")
|
||||
return None
|
||||
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
data = json.load(f)
|
||||
print(f"成功加载: {file_path}")
|
||||
return data
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"错误: 无法解析JSON文件 {file_path} - {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"错误: 读取文件 {file_path} 失败 - {e}")
|
||||
return None
|
||||
|
||||
def merge_json_data(data1: Union[Dict, List], data2: Union[Dict, List]) -> Union[Dict, List]:
|
||||
"""合并两个JSON数据结构"""
|
||||
|
||||
# 如果两个都是列表,直接合并
|
||||
if isinstance(data1, list) and isinstance(data2, list):
|
||||
print(f"合并两个列表: {len(data1)} + {len(data2)} = {len(data1) + len(data2)} 项")
|
||||
return data1 + data2
|
||||
|
||||
# 如果两个都是字典
|
||||
elif isinstance(data1, dict) and isinstance(data2, dict):
|
||||
print("合并两个字典结构")
|
||||
merged = data1.copy()
|
||||
|
||||
# 特殊处理:如果都有'sentences'字段且为列表,合并sentences
|
||||
if 'sentences' in data1 and 'sentences' in data2:
|
||||
if isinstance(data1['sentences'], list) and isinstance(data2['sentences'], list):
|
||||
print(f"合并sentences字段: {len(data1['sentences'])} + {len(data2['sentences'])} = {len(data1['sentences']) + len(data2['sentences'])} 项")
|
||||
merged['sentences'] = data1['sentences'] + data2['sentences']
|
||||
|
||||
# 更新metadata if exists
|
||||
if 'metadata' in merged:
|
||||
if isinstance(merged['metadata'], dict):
|
||||
merged['metadata']['total_sentences'] = len(merged['sentences'])
|
||||
merged['metadata']['merged_from'] = [os.path.basename(f) for f in JSON_FILES_TO_MERGE if os.path.exists(f)]
|
||||
|
||||
# 合并其他字段
|
||||
for key, value in data2.items():
|
||||
if key != 'sentences' and key not in merged:
|
||||
merged[key] = value
|
||||
|
||||
return merged
|
||||
|
||||
# 普通字典合并
|
||||
for key, value in data2.items():
|
||||
if key in merged:
|
||||
# 如果key重复且都是列表,合并列表
|
||||
if isinstance(merged[key], list) and isinstance(value, list):
|
||||
merged[key] = merged[key] + value
|
||||
# 如果key重复且都是字典,递归合并
|
||||
elif isinstance(merged[key], dict) and isinstance(value, dict):
|
||||
merged[key] = merge_json_data(merged[key], value)
|
||||
else:
|
||||
# 其他情况保留第二个文件的值
|
||||
merged[key] = value
|
||||
print(f"字段 '{key}' 被覆盖")
|
||||
else:
|
||||
merged[key] = value
|
||||
|
||||
return merged
|
||||
|
||||
# 类型不匹配的情况,创建一个包含两者的新结构
|
||||
else:
|
||||
print("数据类型不匹配,创建包含两者的新结构")
|
||||
return {
|
||||
"data_from_save.json": data1,
|
||||
"data_from_save2.json": data2,
|
||||
"merged_at": "test.py"
|
||||
}
|
||||
|
||||
def save_merged_json(data: Union[Dict, List], output_path: str):
|
||||
"""保存合并后的JSON数据"""
|
||||
try:
|
||||
# 确保输出目录存在
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
|
||||
with open(output_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(data, f, ensure_ascii=False, indent=2)
|
||||
|
||||
print(f"合并结果已保存到: {output_path}")
|
||||
|
||||
# 显示统计信息
|
||||
if isinstance(data, dict):
|
||||
if 'sentences' in data and isinstance(data['sentences'], list):
|
||||
print(f"总计句子数: {len(data['sentences'])}")
|
||||
print(f"总计字段数: {len(data)}")
|
||||
elif isinstance(data, list):
|
||||
print(f"总计列表项数: {len(data)}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"错误: 保存文件失败 - {e}")
|
||||
|
||||
def remove_duplicates_from_sentences(data: Union[Dict, List]) -> Union[Dict, List]:
|
||||
"""从合并结果中移除重复的句子(基于句子内容)"""
|
||||
if isinstance(data, dict) and 'sentences' in data:
|
||||
if isinstance(data['sentences'], list):
|
||||
original_count = len(data['sentences'])
|
||||
seen_sentences = set()
|
||||
unique_sentences = []
|
||||
|
||||
for item in data['sentences']:
|
||||
if isinstance(item, dict):
|
||||
# 如果是字典,使用sentence字段或corrected_sentence字段作为唯一标识
|
||||
sentence_key = item.get('sentence') or item.get('corrected_sentence') or item.get('original_sentence')
|
||||
elif isinstance(item, str):
|
||||
sentence_key = item
|
||||
else:
|
||||
sentence_key = str(item)
|
||||
|
||||
if sentence_key and sentence_key not in seen_sentences:
|
||||
seen_sentences.add(sentence_key)
|
||||
unique_sentences.append(item)
|
||||
|
||||
data['sentences'] = unique_sentences
|
||||
|
||||
# 更新metadata
|
||||
if 'metadata' in data and isinstance(data['metadata'], dict):
|
||||
data['metadata']['total_sentences'] = len(unique_sentences)
|
||||
data['metadata']['duplicates_removed'] = original_count - len(unique_sentences)
|
||||
|
||||
print(f"去重完成: {original_count} -> {len(unique_sentences)} (移除了 {original_count - len(unique_sentences)} 个重复项)")
|
||||
|
||||
return data
|
||||
|
||||
def merge_multiple_json_data(data_list: List[Union[Dict, List]]) -> Union[Dict, List]:
|
||||
"""合并多个JSON数据结构"""
|
||||
if not data_list:
|
||||
return {}
|
||||
|
||||
if len(data_list) == 1:
|
||||
return data_list[0]
|
||||
|
||||
print(f"准备合并 {len(data_list)} 个JSON数据结构")
|
||||
|
||||
# 从第一个数据开始,逐步合并其他数据
|
||||
merged_data = data_list[0]
|
||||
|
||||
for i, data in enumerate(data_list[1:], 1):
|
||||
print(f"正在合并第 {i+1} 个数据结构...")
|
||||
merged_data = merge_json_data(merged_data, data)
|
||||
|
||||
return merged_data
|
||||
|
||||
def main():
|
||||
"""主函数"""
|
||||
print("=== JSON文件合并脚本 ===")
|
||||
|
||||
# 输出路径
|
||||
output_path = "output/merged.json"
|
||||
|
||||
print(f"准备合并以下文件:")
|
||||
for i, file_path in enumerate(JSON_FILES_TO_MERGE, 1):
|
||||
print(f" {i}. {file_path}")
|
||||
print(f"输出文件: {output_path}")
|
||||
print()
|
||||
|
||||
# 加载所有文件
|
||||
loaded_data = []
|
||||
successfully_loaded = []
|
||||
|
||||
for file_path in JSON_FILES_TO_MERGE:
|
||||
data = load_json_file(file_path)
|
||||
if data is not None:
|
||||
loaded_data.append(data)
|
||||
successfully_loaded.append(file_path)
|
||||
|
||||
# 检查是否至少有一个文件加载成功
|
||||
if not loaded_data:
|
||||
print("错误: 没有文件能够成功加载,退出")
|
||||
return
|
||||
|
||||
print(f"成功加载了 {len(loaded_data)} 个文件:")
|
||||
for file_path in successfully_loaded:
|
||||
print(f" ✓ {file_path}")
|
||||
|
||||
if len(loaded_data) < len(JSON_FILES_TO_MERGE):
|
||||
failed_count = len(JSON_FILES_TO_MERGE) - len(loaded_data)
|
||||
print(f"警告: {failed_count} 个文件加载失败")
|
||||
print()
|
||||
|
||||
# 合并所有数据
|
||||
if len(loaded_data) == 1:
|
||||
print("只有一个文件可用,直接使用...")
|
||||
merged_data = loaded_data[0]
|
||||
else:
|
||||
print("开始合并所有文件...")
|
||||
merged_data = merge_multiple_json_data(loaded_data)
|
||||
|
||||
# 去重处理
|
||||
print("\n检查并去除重复项...")
|
||||
merged_data = remove_duplicates_from_sentences(merged_data)
|
||||
|
||||
# 保存合并结果
|
||||
print("\n保存合并结果...")
|
||||
save_merged_json(merged_data, output_path)
|
||||
|
||||
print("\n=== 合并完成 ===")
|
||||
print(f"合并了 {len(successfully_loaded)} 个文件的数据")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
File diff suppressed because it is too large
Load Diff
@ -1,8 +1,8 @@
|
||||
#!/bin/bash
|
||||
|
||||
# 激活conda环境
|
||||
source $(conda info --base)/etc/profile.d/conda.sh
|
||||
conda activate mini
|
||||
# source $(conda info --base)/etc/profile.d/conda.sh
|
||||
# conda activate ycz_accelerate
|
||||
|
||||
# 设置环境变量以帮助调试
|
||||
export NCCL_DEBUG=INFO
|
||||
@ -26,9 +26,24 @@ export PYTHONFAULTHANDLER=1
|
||||
# --profile_interval 10
|
||||
|
||||
# 方法2: 使用命令行参数直接配置accelerate
|
||||
CUDA_VISIBLE_DEVICES=0 /opt/conda/envs/mini/bin/python -m accelerate.commands.launch \
|
||||
CUDA_VISIBLE_DEVICES=0 accelerate launch \
|
||||
--num_processes=1 \
|
||||
--mixed_precision=bf16 \
|
||||
--main_process_port=29500 \
|
||||
train_pretrain_accelerate.py \
|
||||
|
||||
--epochs 3 \
|
||||
--batch_size 24 \
|
||||
--learning_rate 2e-4 \
|
||||
--dtype bfloat16 \
|
||||
--accumulation_steps 32 \
|
||||
--grad_clip 1.0 \
|
||||
--log_interval 100 \
|
||||
--save_interval 10000 \
|
||||
--dim 512 \
|
||||
--n_layers 12 \
|
||||
--max_seq_len 512 \
|
||||
--use_flash_attn \
|
||||
--profile \
|
||||
--profile_interval 10\
|
||||
--knowledge_num 4096 \
|
||||
--knowledge_length 8
|
||||
|
@ -3,7 +3,6 @@ import os
|
||||
os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun"
|
||||
import platform
|
||||
import argparse
|
||||
from tqdm import tqdm
|
||||
import time
|
||||
import math
|
||||
import warnings
|
||||
@ -19,10 +18,8 @@ from accelerate.utils import set_seed
|
||||
from accelerate.utils import DeepSpeedPlugin
|
||||
from accelerate.utils import DistributedDataParallelKwargs
|
||||
from transformers import AutoTokenizer, get_cosine_schedule_with_warmup
|
||||
import numpy as np
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
from model.model import MiniMindLM, RMSNorm
|
||||
from model.model import MiniMindLM
|
||||
from model.LMConfig import LMConfig
|
||||
from model.dataset import PretrainDataset
|
||||
|
||||
@ -44,40 +41,9 @@ def get_lr(it, num_iters, learning_rate):
|
||||
return learning_rate * 0.5 * (1.0 + math.cos(math.pi * it / num_iters))
|
||||
|
||||
# 初始化模型函数
|
||||
def init_model(lm_config, pretrained_embedding_path=None, database_init_path=None, args=None):
|
||||
def init_model(lm_config, pretrained_embedding_path=None):
|
||||
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
||||
model = MiniMindLM(lm_config)
|
||||
|
||||
# 默认模型初始化
|
||||
Logger("Performing default model initialization...")
|
||||
|
||||
# 初始化嵌入层权重
|
||||
nn.init.normal_(model.tok_embeddings.weight, mean=0.0, std=0.02)
|
||||
|
||||
# 初始化输出层权重(如果不共享权重的话)
|
||||
if not hasattr(model.tok_embeddings, 'weight') or model.output.weight is not model.tok_embeddings.weight:
|
||||
nn.init.normal_(model.output.weight, mean=0.0, std=0.02)
|
||||
|
||||
# 初始化所有线性层
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, nn.Linear):
|
||||
# 使用Xavier/Glorot初始化
|
||||
nn.init.xavier_uniform_(module.weight)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
# 嵌入层使用正态分布初始化
|
||||
nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
||||
elif isinstance(module, RMSNorm):
|
||||
# RMSNorm的权重初始化为1
|
||||
if hasattr(module, 'weight'):
|
||||
nn.init.ones_(module.weight)
|
||||
|
||||
# 初始化位置编码相关参数
|
||||
if hasattr(model.knowledge_dataset, 'keys'):
|
||||
nn.init.normal_(model.knowledge_dataset.keys, mean=0.0, std=0.02)
|
||||
|
||||
Logger("Default model initialization completed")
|
||||
|
||||
# 如果提供了预训练的嵌入权重,加载它们
|
||||
if pretrained_embedding_path:
|
||||
@ -85,136 +51,7 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
||||
pretrained_embeddings = torch.load(pretrained_embedding_path)
|
||||
model.tok_embeddings.weight.data.copy_(pretrained_embeddings)
|
||||
model.output.weight.data.copy_(pretrained_embeddings) # 共享权重
|
||||
|
||||
if database_init_path:
|
||||
import json
|
||||
import os
|
||||
|
||||
# 数据库参数
|
||||
knowledge_num = args.knowledge_num
|
||||
knowledge_length = args.knowledge_length
|
||||
|
||||
# 检查是否使用缓存
|
||||
cache_dir = os.path.dirname(args.cluster_cache_path)
|
||||
if cache_dir:
|
||||
os.makedirs(cache_dir, exist_ok=True)
|
||||
|
||||
processed_tensor = None
|
||||
|
||||
# 尝试加载缓存的处理结果
|
||||
if not args.recompute_clusters and os.path.exists(args.cluster_cache_path):
|
||||
try:
|
||||
Logger(f"Loading cached processed results from {args.cluster_cache_path}")
|
||||
processed_tensor = torch.load(args.cluster_cache_path)
|
||||
|
||||
# 验证缓存文件的形状是否可用
|
||||
cached_knowledge_num, cached_knowledge_length = processed_tensor.shape
|
||||
|
||||
if cached_knowledge_length == knowledge_length:
|
||||
if cached_knowledge_num >= knowledge_num:
|
||||
# 缓存足够大,可以截取使用
|
||||
processed_tensor = processed_tensor[:knowledge_num, :]
|
||||
Logger(f"Successfully loaded cached data with shape {processed_tensor.shape}")
|
||||
Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})")
|
||||
Logger("Skipping database initialization - using cached results")
|
||||
else:
|
||||
# 缓存太小,需要重新计算
|
||||
Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...")
|
||||
processed_tensor = None
|
||||
else:
|
||||
# knowledge_length不匹配,需要重新计算
|
||||
Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...")
|
||||
processed_tensor = None
|
||||
except Exception as e:
|
||||
Logger(f"Failed to load cached data: {e}, recomputing...")
|
||||
processed_tensor = None
|
||||
|
||||
# 只有在没有有效缓存时才进行数据库初始化和处理
|
||||
if processed_tensor is None:
|
||||
Logger(f"Loading database initialization data from {database_init_path}")
|
||||
|
||||
# 1. 加载JSON文件
|
||||
with open(database_init_path, 'r', encoding='utf-8') as f:
|
||||
database_data = json.load(f)
|
||||
|
||||
# 提取sentences列表
|
||||
sentences_data = database_data.get('sentences', [])
|
||||
Logger(f"Loaded {len(sentences_data)} sentences from database")
|
||||
|
||||
# 2. 按照importance_score进行排序(从高到低)
|
||||
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
|
||||
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
|
||||
|
||||
# 3. 处理每条数据,不进行聚类
|
||||
Logger("Processing individual sentences...")
|
||||
processed_rows = []
|
||||
|
||||
# 获取空token的id(用于填充)
|
||||
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
||||
|
||||
# 处理所需数量的句子
|
||||
num_to_process = min(knowledge_num, len(sorted_sentences))
|
||||
|
||||
for i in range(num_to_process):
|
||||
sentence_data = sorted_sentences[i]
|
||||
sentence = sentence_data.get('corrected_sentence', '')
|
||||
|
||||
# 将句子转换为tokens
|
||||
sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False)
|
||||
|
||||
# 截断或填充到knowledge_length
|
||||
if len(sentence_tokens) > knowledge_length:
|
||||
# 如果超过长度,截断
|
||||
sentence_tokens = sentence_tokens[:knowledge_length]
|
||||
Logger(f"Sentence {i+1} truncated from {len(tokenizer.encode(sentence, add_special_tokens=False))} to {knowledge_length} tokens")
|
||||
else:
|
||||
# 如果不足长度,用空token填充
|
||||
original_length = len(sentence_tokens)
|
||||
sentence_tokens.extend([pad_token_id] * (knowledge_length - len(sentence_tokens)))
|
||||
if original_length < knowledge_length:
|
||||
Logger(f"Sentence {i+1} padded from {original_length} to {knowledge_length} tokens")
|
||||
|
||||
processed_rows.append(sentence_tokens)
|
||||
|
||||
if (i + 1) % 1000 == 0:
|
||||
Logger(f"Processed {i + 1}/{num_to_process} sentences")
|
||||
|
||||
# 如果句子数量不足,用空token填充剩余位置
|
||||
while len(processed_rows) < knowledge_num:
|
||||
empty_tokens = [pad_token_id] * knowledge_length
|
||||
processed_rows.append(empty_tokens)
|
||||
if len(processed_rows) % 1000 == 0:
|
||||
Logger(f"Added empty entry {len(processed_rows)}/{knowledge_num}")
|
||||
|
||||
Logger(f"Finished adding empty entries. Total: {len(processed_rows)}/{knowledge_num}")
|
||||
|
||||
# 转换为tensor
|
||||
processed_tensor = torch.tensor(processed_rows, dtype=torch.long)
|
||||
|
||||
Logger(f"Data processing completed:")
|
||||
Logger(f" - Processed {num_to_process} sentences")
|
||||
Logger(f" - Added {knowledge_num - num_to_process} empty entries")
|
||||
Logger(f" - Final shape: {processed_tensor.shape}")
|
||||
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
|
||||
|
||||
# 保存处理结果到缓存文件
|
||||
try:
|
||||
torch.save(processed_tensor, args.cluster_cache_path)
|
||||
Logger(f"Processed results saved to {args.cluster_cache_path}")
|
||||
except Exception as e:
|
||||
Logger(f"Failed to save processed results: {e}")
|
||||
|
||||
# 4. 初始化模型的knowledge_dataset
|
||||
if hasattr(model, 'knowledge_dataset') and hasattr(model.knowledge_dataset, 'knowledge_dataset'):
|
||||
model.knowledge_dataset.knowledge_dataset.data.copy_(processed_tensor)
|
||||
Logger("Successfully initialized model.knowledge_dataset.knowledge_dataset with processed data")
|
||||
else:
|
||||
Logger("Warning: Could not find model.knowledge_dataset.knowledge_dataset to initialize")
|
||||
# 存储为全局变量作为备选
|
||||
globals()['processed_database'] = processed_tensor
|
||||
|
||||
Logger(f"Database embeddings and sentences stored in model")
|
||||
|
||||
Logger(f'LLM总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
|
||||
return model, tokenizer
|
||||
|
||||
@ -224,7 +61,6 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
||||
total_steps_in_epoch = len(train_loader)
|
||||
total_training_steps = args.epochs * total_steps_in_epoch
|
||||
moe_path = '_moe' if args.use_moe else ''
|
||||
best_loss = float('10000')
|
||||
|
||||
# 添加CUDA事件来分析性能 (只在主进程进行)
|
||||
if args.profile and accelerator.is_main_process:
|
||||
@ -288,12 +124,7 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
||||
|
||||
# 前向传播
|
||||
with ctx:
|
||||
if step == 0 and args.embedding_epoch == epoch:
|
||||
# 需要设置原始模型的freeze_embedding属性,而不是包装后的模型
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.freeze_embedding = True
|
||||
Logger(f"Set freeze_embedding=True for epoch {epoch}, step {step}", accelerator)
|
||||
res = model(X, step=step)
|
||||
res = model(X)
|
||||
loss = loss_fct(
|
||||
res.logits.view(-1, res.logits.size(-1)),
|
||||
Y.view(-1)
|
||||
@ -417,9 +248,7 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
||||
wandb.log(log_dict)
|
||||
|
||||
# 保存模型 (只在主进程进行)
|
||||
loss_total = loss.item() * args.accumulation_steps
|
||||
if best_loss > loss_total and accelerator.is_main_process:
|
||||
best_loss = loss_total
|
||||
if (step + 1) % args.save_interval == 0 and accelerator.is_main_process:
|
||||
# 使用函数开始处定义的moe_path变量
|
||||
ckp = f'{args.save_dir}/pretrain_{args.dim}{moe_path}.pth'
|
||||
|
||||
@ -438,22 +267,21 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="MiniMind Pretraining with Accelerate")
|
||||
parser.add_argument("--out_dir", type=str, default="out")
|
||||
parser.add_argument("--epochs", type=int, default=4)
|
||||
parser.add_argument("--embedding_epoch", type=int, default=2, help="embedding训练的epoch数")
|
||||
parser.add_argument("--batch_size", type=int, default=64)
|
||||
parser.add_argument("--epochs", type=int, default=3)
|
||||
parser.add_argument("--batch_size", type=int, default=24)
|
||||
parser.add_argument("--learning_rate", type=float, default=2e-4)
|
||||
parser.add_argument("--dtype", type=str, default="bfloat16")
|
||||
parser.add_argument("--use_wandb", default=True, action="store_true")
|
||||
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
|
||||
parser.add_argument("--num_workers", type=int, default=8)
|
||||
parser.add_argument("--num_workers", type=int, default=48)
|
||||
parser.add_argument("--accumulation_steps", type=int, default=32)
|
||||
parser.add_argument("--grad_clip", type=float, default=1.0)
|
||||
parser.add_argument("--warmup_iters", type=int, default=0)
|
||||
parser.add_argument("--log_interval", type=int, default=100)
|
||||
parser.add_argument("--save_interval", type=int, default=10000)
|
||||
parser.add_argument('--dim', default=512, type=int)
|
||||
parser.add_argument('--n_layers', default=8, type=int)
|
||||
parser.add_argument('--max_seq_len', default=512, type=int)
|
||||
parser.add_argument('--dim', default=1024, type=int)
|
||||
parser.add_argument('--n_layers', default=32, type=int)
|
||||
parser.add_argument('--max_seq_len', default=1024, type=int)
|
||||
parser.add_argument('--use_moe', default=False, type=bool)
|
||||
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能,使用固定值1e-4替代")
|
||||
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl")
|
||||
@ -461,12 +289,8 @@ def main():
|
||||
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
|
||||
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
|
||||
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
|
||||
parser.add_argument("--knowledge_num", type=int, default=8192,help="知识库的数据数目")
|
||||
parser.add_argument("--knowledge_length", type=int, default=32,help="知识库的句子长度")
|
||||
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
|
||||
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
|
||||
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens_single.pt", help="聚类结果缓存文件路径")
|
||||
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
|
||||
parser.add_argument("--knowledge_num", type=int, default=64*64,help="知识库的数据数目")
|
||||
parser.add_argument("--knowledge_length", type=int, default=8,help="知识库的句子长度")
|
||||
args = parser.parse_args()
|
||||
|
||||
#########################################################
|
||||
@ -504,8 +328,7 @@ def main():
|
||||
disable_db=args.disable_db,
|
||||
flash_attn=args.use_flash_attn,
|
||||
knowledge_num=args.knowledge_num,
|
||||
knowledge_length=args.knowledge_length,
|
||||
embeddings_epoch=args.embedding_epoch
|
||||
knowledge_length=args.knowledge_length
|
||||
)
|
||||
|
||||
#########################################################
|
||||
@ -556,7 +379,7 @@ def main():
|
||||
#########################################################
|
||||
# 初始化模型和tokenizer
|
||||
#########################################################
|
||||
model, tokenizer = init_model(lm_config, args.pretrained_embedding_path, args.database_init_path, args)
|
||||
model, tokenizer = init_model(lm_config, args.pretrained_embedding_path)
|
||||
# 将accelerator传递给init_model函数中的Logger调用
|
||||
Logger(f'模型初始化完成', accelerator)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user