Compare commits

..

2 Commits

7 changed files with 1085 additions and 486 deletions

2
.gitignore vendored
View File

@ -7,5 +7,3 @@ models/sentence_transformers/
models/sentence_transformers_cache/ models/sentence_transformers_cache/
**/*.pyc **/*.pyc
qwen2-1.7B/ qwen2-1.7B/
images/
cache/

102
.vscode/launch.json vendored
View File

@ -1,102 +0,0 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Debug Train Pretrain Accelerate",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/opt/conda/envs/mini/bin/python",
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug Train Pretrain Accelerate (Multi-GPU)",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/opt/conda/envs/mini/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "512",
"--n_layers", "8",
"--batch_size", "8",
"--epochs", "1"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0,1"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug Train Pretrain Accelerate (Small Test)",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/opt/conda/envs/mini/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "512",
"--n_layers", "8",
"--batch_size", "2",
"--epochs", "1",
"--log_interval", "10",
"--save_interval", "100",
"--accumulation_steps", "4"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0",
"WANDB_MODE": "offline"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug ExtractDB Comparison",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/opt/conda/envs/mini/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "256",
"--n_layers", "4",
"--batch_size", "2",
"--epochs", "1",
"--log_interval", "10",
"--save_interval", "200",
"--accumulation_steps", "2",
"--comparison_mode",
"--knowledge_num", "256",
"--knowledge_length", "64",
"--comparison_mode"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0",
"WANDB_MODE": "offline"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
}
]
}

18
.vscode/settings.json vendored
View File

@ -1,18 +0,0 @@
{
"python.pythonPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"python.defaultInterpreterPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"python.terminal.activateEnvironment": true,
"python.terminal.activateEnvInCurrentTerminal": true,
"python.linting.enabled": true,
"python.linting.pylintEnabled": false,
"python.linting.flake8Enabled": true,
"python.formatting.provider": "black",
"python.analysis.autoImportCompletions": true,
"python.analysis.typeCheckingMode": "off",
"files.exclude": {
"**/__pycache__": true,
"**/*.pyc": true,
"**/.git": false,
"**/wandb": false
}
}

View File

@ -1,5 +1,5 @@
from transformers import PretrainedConfig from transformers import PretrainedConfig
from typing import List from typing import List, Optional, Union
class LMConfig(PretrainedConfig): class LMConfig(PretrainedConfig):
@ -12,18 +12,24 @@ class LMConfig(PretrainedConfig):
n_heads: int = 32, n_heads: int = 32,
n_kv_heads: int = 8, n_kv_heads: int = 8,
vocab_size: int = 6400, vocab_size: int = 6400,
hidden_dim: int = None, hidden_dim: Optional[int] = None,
multiple_of: int = 64, multiple_of: int = 64,
norm_eps: float = 1e-5, norm_eps: float = 1e-5,
max_seq_len: int = 8192, max_seq_len: int = 8192,
rope_theta: int = 1e6, rope_theta: float = 1e6,
dropout: float = 0.0, dropout: float = 0.0,
flash_attn: bool = True, flash_attn: bool = True,
embeddings_epoch: int = 2,
#################################################### ####################################################
# DB related configurations # DB related configurations
#################################################### ####################################################
disable_db: bool = False, # 特殊模式:禁用数据库功能 disable_db: bool = False, # 特殊模式:禁用数据库功能
use_direct_semantic: bool = False, # 是否使用直接语义匹配替代Product Key
realtime_steps: int = 2000, # 前多少步使用实时计算(后续使用渐进式缓存)
db_intelligent_balance: bool = True, # 是否启用智能负载均衡
db_relevance_threshold: float = 0.7, # 相关性阈值(第一层过滤)
db_balance_strength: float = 0.3, # 平衡权重的基础值
db_momentum: float = 0.9, # 使用频率统计的动量
db_adaptive_weights: bool = True, # 是否启用动态权重调整
#################################################### ####################################################
# Here are the specific configurations of MOE # Here are the specific configurations of MOE
# When use_moe is false, the following is invalid # When use_moe is false, the following is invalid
@ -40,7 +46,6 @@ class LMConfig(PretrainedConfig):
#################################################### ####################################################
knowledge_num: int = 64*64, knowledge_num: int = 64*64,
knowledge_length: int = 8, knowledge_length: int = 8,
knowledge_dim: int = 128,
**kwargs, **kwargs,
): ):
self.dim = dim self.dim = dim
@ -55,11 +60,17 @@ class LMConfig(PretrainedConfig):
self.rope_theta = rope_theta self.rope_theta = rope_theta
self.dropout = dropout self.dropout = dropout
self.flash_attn = flash_attn self.flash_attn = flash_attn
self.embeddings_epoch = embeddings_epoch
#################################################### ####################################################
# DB related configurations # DB related configurations
#################################################### ####################################################
self.disable_db = disable_db # 设置是否禁用数据库 self.disable_db = disable_db # 设置是否禁用数据库
self.use_direct_semantic = use_direct_semantic # 是否使用直接语义匹配替代Product Key
self.realtime_steps = realtime_steps # 前多少步使用实时计算(后续使用渐进式缓存)
self.db_intelligent_balance = db_intelligent_balance # 是否启用智能负载均衡
self.db_relevance_threshold = db_relevance_threshold # 相关性阈值(第一层过滤)
self.db_balance_strength = db_balance_strength # 平衡权重的基础值
self.db_momentum = db_momentum # 使用频率统计的动量
self.db_adaptive_weights = db_adaptive_weights # 是否启用动态权重调整
#################################################### ####################################################
# Here are the specific configurations of MOE # Here are the specific configurations of MOE
# When use_moe is false, the following is invalid # When use_moe is false, the following is invalid
@ -75,5 +86,4 @@ class LMConfig(PretrainedConfig):
#################################################### ####################################################
self.knowledge_num = knowledge_num self.knowledge_num = knowledge_num
self.knowledge_length = knowledge_length self.knowledge_length = knowledge_length
self.knowledge_dim = knowledge_dim
super().__init__(**kwargs) super().__init__(**kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,8 @@
#!/bin/bash #!/bin/bash
# 激活conda环境 # 激活conda环境
source $(conda info --base)/etc/profile.d/conda.sh # source $(conda info --base)/etc/profile.d/conda.sh
conda activate mini # conda activate ycz_accelerate
# 设置环境变量以帮助调试 # 设置环境变量以帮助调试
export NCCL_DEBUG=INFO export NCCL_DEBUG=INFO
@ -26,9 +26,24 @@ export PYTHONFAULTHANDLER=1
# --profile_interval 10 # --profile_interval 10
# 方法2: 使用命令行参数直接配置accelerate # 方法2: 使用命令行参数直接配置accelerate
CUDA_VISIBLE_DEVICES=0 /opt/conda/envs/mini/bin/python -m accelerate.commands.launch \ CUDA_VISIBLE_DEVICES=0 accelerate launch \
--num_processes=1 \ --num_processes=1 \
--mixed_precision=bf16 \ --mixed_precision=bf16 \
--main_process_port=29500 \ --main_process_port=29500 \
train_pretrain_accelerate.py \ train_pretrain_accelerate.py \
--epochs 3 \
--batch_size 24 \
--learning_rate 2e-4 \
--dtype bfloat16 \
--accumulation_steps 32 \
--grad_clip 1.0 \
--log_interval 100 \
--save_interval 10000 \
--dim 512 \
--n_layers 12 \
--max_seq_len 512 \
--use_flash_attn \
--profile \
--profile_interval 10\
--knowledge_num 4096 \
--knowledge_length 8

View File

@ -74,8 +74,8 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
nn.init.ones_(module.weight) nn.init.ones_(module.weight)
# 初始化位置编码相关参数 # 初始化位置编码相关参数
if hasattr(model.knowledge_dataset, 'keys'): if hasattr(model.extract_db, 'keys'):
nn.init.normal_(model.knowledge_dataset.keys, mean=0.0, std=0.02) nn.init.normal_(model.extract_db.keys, mean=0.0, std=0.02)
Logger("Default model initialization completed") Logger("Default model initialization completed")
@ -88,52 +88,54 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
if database_init_path: if database_init_path:
import json import json
import numpy as np
from sentence_transformers import SentenceTransformer
import os import os
# 数据库参数 # 聚类参数(需要提前定义用于缓存检查)
knowledge_num = args.knowledge_num knowledge_num = args.knowledge_num
knowledge_length = args.knowledge_length knowledge_length = args.knowledge_length
# 检查是否使用缓存 # 检查是否使用缓存(提前检查,避免不必要的数据处理)
cache_dir = os.path.dirname(args.cluster_cache_path) cache_dir = os.path.dirname(args.cluster_cache_path)
if cache_dir: if cache_dir:
os.makedirs(cache_dir, exist_ok=True) os.makedirs(cache_dir, exist_ok=True)
processed_tensor = None clustered_tensor = None
# 尝试加载缓存的处理结果 # 尝试加载缓存的聚类结果
if not args.recompute_clusters and os.path.exists(args.cluster_cache_path): if not args.recompute_clusters and os.path.exists(args.cluster_cache_path):
try: try:
Logger(f"Loading cached processed results from {args.cluster_cache_path}") Logger(f"Loading cached cluster results from {args.cluster_cache_path}")
processed_tensor = torch.load(args.cluster_cache_path) clustered_tensor = torch.load(args.cluster_cache_path)
# 验证缓存文件的形状是否可用 # 验证缓存文件的形状是否可用
cached_knowledge_num, cached_knowledge_length = processed_tensor.shape cached_knowledge_num, cached_knowledge_length = clustered_tensor.shape
if cached_knowledge_length == knowledge_length: if cached_knowledge_length == knowledge_length:
if cached_knowledge_num >= knowledge_num: if cached_knowledge_num >= knowledge_num:
# 缓存足够大,可以截取使用 # 缓存足够大,可以截取使用
processed_tensor = processed_tensor[:knowledge_num, :] clustered_tensor = clustered_tensor[:knowledge_num, :]
Logger(f"Successfully loaded cached data with shape {processed_tensor.shape}") Logger(f"Successfully loaded cached clusters with shape {clustered_tensor.shape}")
Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})") Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})")
Logger("Skipping database initialization - using cached results") Logger("Skipping database initialization and clustering - using cached results")
else: else:
# 缓存太小,需要重新计算 # 缓存太小,需要重新计算
Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...") Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...")
processed_tensor = None clustered_tensor = None
else: else:
# knowledge_length不匹配需要重新计算 # knowledge_length不匹配需要重新计算
Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...") Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...")
processed_tensor = None clustered_tensor = None
except Exception as e: except Exception as e:
Logger(f"Failed to load cached data: {e}, recomputing...") Logger(f"Failed to load cached clusters: {e}, recomputing...")
processed_tensor = None clustered_tensor = None
# 只有在没有有效缓存时才进行数据库初始化和处理 # 只有在没有有效缓存时才进行数据库初始化和聚类计算
if processed_tensor is None: if clustered_tensor is None:
Logger(f"Loading database initialization data from {database_init_path}") Logger(f"Loading database initialization data from {database_init_path}")
# 1. 加载JSON文件 # 1. 加载JSON文件并转换为字典
with open(database_init_path, 'r', encoding='utf-8') as f: with open(database_init_path, 'r', encoding='utf-8') as f:
database_data = json.load(f) database_data = json.load(f)
@ -145,73 +147,300 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True) sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})") Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
# 3. 处理每条数据,不进行聚类 # 3. 下载并初始化本地嵌入模型
Logger("Processing individual sentences...") embedding_model_name = "sentence-transformers/all-mpnet-base-v2" # 轻量级但效果好的模型
processed_rows = [] embedding_model_dir = "./models/sentence_transformers/models--sentence-transformers--all-mpnet-base-v2"
embedding_cache_dir = "./models/sentence_transformers/cache"
os.makedirs(embedding_cache_dir, exist_ok=True)
# 获取空token的id用于填充 Logger(f"Loading embedding model: {embedding_model_name}")
try:
embedding_model = SentenceTransformer(embedding_model_dir, cache_folder=embedding_cache_dir)
Logger("Embedding model loaded successfully")
except Exception as e:
Logger(f"Failed to load embedding model: {e}")
Logger("Falling back to random embeddings")
embedding_model = None
# 4. 对每个corrected_sentence进行嵌入和token长度计算
Logger("Processing sentences for embeddings and token lengths...")
# 提取所有句子
sentences = [sentence_data.get('corrected_sentence', '') for sentence_data in sorted_sentences]
# 批量计算token长度
Logger("Computing token lengths...")
token_lengths = []
for sentence in sentences:
tokens = tokenizer.encode(sentence, add_special_tokens=False)
token_lengths.append(len(tokens))
# 批量计算嵌入 - 大幅提升速度
Logger("Computing embeddings in batches...")
embeddings_list = []
batch_size = 256 # 可以根据GPU内存调整
if embedding_model is not None:
try:
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i+batch_size]
batch_embeddings = embedding_model.encode(
batch_sentences,
convert_to_tensor=False,
show_progress_bar=True if i == 0 else False,
batch_size=batch_size
)
embeddings_list.extend(batch_embeddings)
if (i + batch_size) % (batch_size * 10) == 0:
Logger(f"Processed {min(i + batch_size, len(sentences))}/{len(sentences)} sentences")
Logger("Batch embedding computation completed")
except Exception as e:
Logger(f"Error in batch encoding: {e}")
Logger("Falling back to random embeddings")
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
else:
# 使用随机嵌入
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
# 创建处理后的句子列表
processed_sentences = []
for i, (sentence_data, embedding, token_length) in enumerate(zip(sorted_sentences, embeddings_list, token_lengths)):
processed_sentences.append({
'sentence': sentence_data.get('corrected_sentence', ''),
'importance_score': sentence_data.get('importance_score', 0.0),
'token_length': token_length,
'embedding': embedding, # Convert numpy array to list
'original_index': i
})
# 转换为numpy数组以便后续处理
embeddings_array = np.array(embeddings_list)
token_lengths_array = np.array(token_lengths)
Logger(f"Embedding processing completed:")
Logger(f" - Total sentences: {len(processed_sentences)}")
Logger(f" - Embedding shape: {embeddings_array.shape}")
Logger(f" - Average token length: {np.mean(token_lengths_array):.2f}")
Logger(f" - Token length range: {np.min(token_lengths_array)} - {np.max(token_lengths_array)}")
# 聚类参数定义
min_tokens = int(0.85 * knowledge_length)
max_tokens = int(0.95 * knowledge_length)
# 优化1: 预计算所有嵌入的相似度矩阵(如果数据量不太大)
if len(processed_sentences) <= 10000: # 只有在数据量不太大时才预计算
Logger("Pre-computing similarity matrix for faster clustering...")
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
similarity_matrix = cosine_similarity(embeddings_matrix)
Logger(f"Similarity matrix computed: {similarity_matrix.shape}")
else:
similarity_matrix = None
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
clustered_rows = []
remaining_indices = list(range(len(processed_sentences))) # 使用索引而不是对象
Logger(f"Target: {knowledge_num} clusters, each with {min_tokens}-{max_tokens} tokens")
# 选择聚类算法
if args.fast_clustering and len(processed_sentences) > 5000:
Logger("Using ultra-fast approximate clustering algorithm...")
# 超快速聚类:随机采样 + 批量处理
import random
random.seed(42) # 确保可重现性
# 按重要性分层采样
high_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] > 0.7]
medium_importance = [i for i, s in enumerate(processed_sentences) if 0.3 <= s['importance_score'] <= 0.7]
low_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] < 0.3]
Logger(f"Importance distribution: High={len(high_importance)}, Medium={len(medium_importance)}, Low={len(low_importance)}")
for cluster_idx in tqdm(range(knowledge_num)):
# 分层选择种子:优先选择高重要性句子
if high_importance:
seed_pool = high_importance
elif medium_importance:
seed_pool = medium_importance
else:
seed_pool = low_importance if low_importance else list(range(len(processed_sentences)))
if not seed_pool:
break
# 随机选择种子(在同一重要性层级内)
seed_global_idx = random.choice(seed_pool)
seed_sentence = processed_sentences[seed_global_idx]
# 从所有池中移除种子
for pool in [high_importance, medium_importance, low_importance]:
if seed_global_idx in pool:
pool.remove(seed_global_idx)
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens < max_tokens:
# 快速选择:只从附近的句子中随机选择
all_remaining = high_importance + medium_importance + low_importance
if all_remaining:
# 随机采样候选句子(而不是计算所有相似度)
sample_size = min(2000, len(all_remaining))
candidates = random.sample(all_remaining, sample_size)
# 简单按token长度和重要性选择
for candidate_idx in candidates:
candidate = processed_sentences[candidate_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens:
current_cluster_indices.append(candidate_idx)
current_tokens += candidate_tokens + 1
# 从池中移除
for pool in [high_importance, medium_importance, low_importance]:
if candidate_idx in pool:
pool.remove(candidate_idx)
break
if current_tokens >= min_tokens:
break
# 生成聚类文本
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n '.join(cluster_sentences)
# 转换为tokens
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0 pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
# 处理所需数量的句子 clustered_rows.append(cluster_tokens)
num_to_process = min(knowledge_num, len(sorted_sentences))
for i in range(num_to_process): if (cluster_idx + 1) % 1000 == 0:
sentence_data = sorted_sentences[i] total_remaining = len(high_importance) + len(medium_importance) + len(low_importance)
sentence = sentence_data.get('corrected_sentence', '') Logger(f"Fast clustering: {cluster_idx + 1}/{knowledge_num} clusters, {total_remaining} sentences remaining")
# 将句子转换为tokens else:
sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False) # 原始优化算法(适用于中等规模数据集)
# 优化2: 批量处理和更高效的数据结构
for cluster_idx in tqdm(range(knowledge_num)):
if not remaining_indices:
Logger(f"No more sentences available. Created {cluster_idx} clusters.")
break
# 2.1 选择importance_score最高的句子作为种子
remaining_sentences_subset = [processed_sentences[i] for i in remaining_indices]
seed_idx_in_subset = max(range(len(remaining_sentences_subset)),
key=lambda i: remaining_sentences_subset[i]['importance_score'])
seed_global_idx = remaining_indices[seed_idx_in_subset]
seed_sentence = processed_sentences[seed_global_idx]
# 从剩余索引中移除种子
remaining_indices.remove(seed_global_idx)
# 当前聚类
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens >= max_tokens:
# 如果种子句子已经超过最大token数直接作为一个聚类
cluster_text = seed_sentence['sentence']
else:
# 2.2 优化的相似度计算和选择
if remaining_indices:
if similarity_matrix is not None:
# 使用预计算的相似度矩阵
similarities = similarity_matrix[seed_global_idx][remaining_indices]
else:
# 动态计算相似度(批量)
seed_embedding = embeddings_matrix[seed_global_idx:seed_global_idx+1]
remaining_embeddings = embeddings_matrix[remaining_indices]
similarities = cosine_similarity(seed_embedding, remaining_embeddings)[0]
# 创建(相似度, 原始索引, 在remaining_indices中的位置)的元组列表
similarity_tuples = [(similarities[i], remaining_indices[i], i)
for i in range(len(remaining_indices))]
# 按相似度排序(降序)
similarity_tuples.sort(key=lambda x: x[0], reverse=True)
# 优化3: 贪心选择,但限制搜索范围以提高速度
max_candidates = min(len(similarity_tuples), 500) # 只考虑前500个最相似的句子
selected_indices_in_remaining = []
for sim_score, global_idx, pos_in_remaining in similarity_tuples[:max_candidates]:
candidate = processed_sentences[global_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens: # +1 for newline
current_cluster_indices.append(global_idx)
selected_indices_in_remaining.append(pos_in_remaining)
current_tokens += candidate_tokens + 1
if current_tokens >= min_tokens:
break
# 批量移除选中的句子(从后往前移除以避免索引问题)
for pos in sorted(selected_indices_in_remaining, reverse=True):
remaining_indices.pop(pos)
# 拼接句子
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n'.join(cluster_sentences)
# 将聚类文本转换为token
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
# 截断或填充到knowledge_length # 截断或填充到knowledge_length
if len(sentence_tokens) > knowledge_length: if len(cluster_tokens) > knowledge_length:
# 如果超过长度,截断 cluster_tokens = cluster_tokens[:knowledge_length]
sentence_tokens = sentence_tokens[:knowledge_length]
Logger(f"Sentence {i+1} truncated from {len(tokenizer.encode(sentence, add_special_tokens=False))} to {knowledge_length} tokens")
else: else:
# 如果不足长度用空token填充 # 用pad_token_id填充
original_length = len(sentence_tokens) pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
sentence_tokens.extend([pad_token_id] * (knowledge_length - len(sentence_tokens))) cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
if original_length < knowledge_length:
Logger(f"Sentence {i+1} padded from {original_length} to {knowledge_length} tokens")
processed_rows.append(sentence_tokens) clustered_rows.append(cluster_tokens)
if (i + 1) % 1000 == 0: # 优化4: 减少日志频率
Logger(f"Processed {i + 1}/{num_to_process} sentences") if (cluster_idx + 1) % 500 == 0:
Logger(f"Created {cluster_idx + 1}/{knowledge_num} clusters, {len(remaining_indices)} sentences remaining")
# 如果句子数量不足用空token填充剩余位置 # 如果聚类数量不足用随机token填充
while len(processed_rows) < knowledge_num: while len(clustered_rows) < knowledge_num:
empty_tokens = [pad_token_id] * knowledge_length pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
processed_rows.append(empty_tokens) random_tokens = [pad_token_id] * knowledge_length
if len(processed_rows) % 1000 == 0: clustered_rows.append(random_tokens)
Logger(f"Added empty entry {len(processed_rows)}/{knowledge_num}")
Logger(f"Finished adding empty entries. Total: {len(processed_rows)}/{knowledge_num}")
# 转换为tensor # 转换为tensor
processed_tensor = torch.tensor(processed_rows, dtype=torch.long) clustered_tensor = torch.tensor(clustered_rows, dtype=torch.long)
Logger(f"Data processing completed:") Logger(f"Clustering completed:")
Logger(f" - Processed {num_to_process} sentences") Logger(f" - Created {len(clustered_rows)} clusters")
Logger(f" - Added {knowledge_num - num_to_process} empty entries") Logger(f" - Cluster shape: {clustered_tensor.shape}")
Logger(f" - Final shape: {processed_tensor.shape}")
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})") Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
# 保存处理结果到缓存文件 # 保存聚类结果到缓存文件
try: try:
torch.save(processed_tensor, args.cluster_cache_path) torch.save(clustered_tensor, args.cluster_cache_path)
Logger(f"Processed results saved to {args.cluster_cache_path}") Logger(f"Cluster results saved to {args.cluster_cache_path}")
except Exception as e: except Exception as e:
Logger(f"Failed to save processed results: {e}") Logger(f"Failed to save cluster results: {e}")
# 4. 初始化模型的knowledge_dataset # 3. 初始化模型的weight_down_embed
if hasattr(model, 'knowledge_dataset') and hasattr(model.knowledge_dataset, 'knowledge_dataset'): if hasattr(model, 'extract_db') and hasattr(model.extract_db, 'weight_down_embed'):
model.knowledge_dataset.knowledge_dataset.data.copy_(processed_tensor) model.extract_db.weight_down_embed.data.copy_(clustered_tensor)
Logger("Successfully initialized model.knowledge_dataset.knowledge_dataset with processed data") Logger("Successfully initialized model.extract_db.weight_down_embed with clustered data")
else: else:
Logger("Warning: Could not find model.knowledge_dataset.knowledge_dataset to initialize") Logger("Warning: Could not find model.extract_db.weight_down_embed to initialize")
# 存储为全局变量作为备选 # 存储为全局变量作为备选
globals()['processed_database'] = processed_tensor globals()['clustered_database'] = clustered_tensor
Logger(f"Database embeddings and sentences stored in model") Logger(f"Database embeddings and sentences stored in model")
@ -224,7 +453,6 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
total_steps_in_epoch = len(train_loader) total_steps_in_epoch = len(train_loader)
total_training_steps = args.epochs * total_steps_in_epoch total_training_steps = args.epochs * total_steps_in_epoch
moe_path = '_moe' if args.use_moe else '' moe_path = '_moe' if args.use_moe else ''
best_loss = float('10000')
# 添加CUDA事件来分析性能 (只在主进程进行) # 添加CUDA事件来分析性能 (只在主进程进行)
if args.profile and accelerator.is_main_process: if args.profile and accelerator.is_main_process:
@ -288,12 +516,7 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
# 前向传播 # 前向传播
with ctx: with ctx:
if step == 0 and args.embedding_epoch == epoch: res = model(X)
# 需要设置原始模型的freeze_embedding属性而不是包装后的模型
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.freeze_embedding = True
Logger(f"Set freeze_embedding=True for epoch {epoch}, step {step}", accelerator)
res = model(X, step=step)
loss = loss_fct( loss = loss_fct(
res.logits.view(-1, res.logits.size(-1)), res.logits.view(-1, res.logits.size(-1)),
Y.view(-1) Y.view(-1)
@ -417,9 +640,7 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
wandb.log(log_dict) wandb.log(log_dict)
# 保存模型 (只在主进程进行) # 保存模型 (只在主进程进行)
loss_total = loss.item() * args.accumulation_steps if (step + 1) % args.save_interval == 0 and accelerator.is_main_process:
if best_loss > loss_total and accelerator.is_main_process:
best_loss = loss_total
# 使用函数开始处定义的moe_path变量 # 使用函数开始处定义的moe_path变量
ckp = f'{args.save_dir}/pretrain_{args.dim}{moe_path}.pth' ckp = f'{args.save_dir}/pretrain_{args.dim}{moe_path}.pth'
@ -438,22 +659,21 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
def main(): def main():
parser = argparse.ArgumentParser(description="MiniMind Pretraining with Accelerate") parser = argparse.ArgumentParser(description="MiniMind Pretraining with Accelerate")
parser.add_argument("--out_dir", type=str, default="out") parser.add_argument("--out_dir", type=str, default="out")
parser.add_argument("--epochs", type=int, default=4) parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--embedding_epoch", type=int, default=2, help="embedding训练的epoch数") parser.add_argument("--batch_size", type=int, default=24)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--learning_rate", type=float, default=2e-4) parser.add_argument("--learning_rate", type=float, default=2e-4)
parser.add_argument("--dtype", type=str, default="bfloat16") parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", default=True, action="store_true") parser.add_argument("--use_wandb", default=True, action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain") parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
parser.add_argument("--num_workers", type=int, default=8) parser.add_argument("--num_workers", type=int, default=48)
parser.add_argument("--accumulation_steps", type=int, default=32) parser.add_argument("--accumulation_steps", type=int, default=32)
parser.add_argument("--grad_clip", type=float, default=1.0) parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--warmup_iters", type=int, default=0) parser.add_argument("--warmup_iters", type=int, default=0)
parser.add_argument("--log_interval", type=int, default=100) parser.add_argument("--log_interval", type=int, default=100)
parser.add_argument("--save_interval", type=int, default=10000) parser.add_argument("--save_interval", type=int, default=10000)
parser.add_argument('--dim', default=512, type=int) parser.add_argument('--dim', default=1024, type=int)
parser.add_argument('--n_layers', default=8, type=int) parser.add_argument('--n_layers', default=32, type=int)
parser.add_argument('--max_seq_len', default=512, type=int) parser.add_argument('--max_seq_len', default=1024, type=int)
parser.add_argument('--use_moe', default=False, type=bool) parser.add_argument('--use_moe', default=False, type=bool)
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代") parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代")
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl")
@ -461,11 +681,11 @@ def main():
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析") parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)") parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention") parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
parser.add_argument("--knowledge_num", type=int, default=8192,help="知识库的数据数目") parser.add_argument("--knowledge_num", type=int, default=65536,help="知识库的数据数目")
parser.add_argument("--knowledge_length", type=int, default=32,help="知识库的句子长度") parser.add_argument("--knowledge_length", type=int, default=64,help="知识库的句子长度")
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径") parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)") parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens_single.pt", help="聚类结果缓存文件路径") parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens.pt", help="聚类结果缓存文件路径")
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件") parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
args = parser.parse_args() args = parser.parse_args()
@ -504,8 +724,7 @@ def main():
disable_db=args.disable_db, disable_db=args.disable_db,
flash_attn=args.use_flash_attn, flash_attn=args.use_flash_attn,
knowledge_num=args.knowledge_num, knowledge_num=args.knowledge_num,
knowledge_length=args.knowledge_length, knowledge_length=args.knowledge_length
embeddings_epoch=args.embedding_epoch
) )
######################################################### #########################################################