from transformers import PretrainedConfig from typing import List, Optional, Union class LMConfig(PretrainedConfig): model_type = "minimind" def __init__( self, dim: int = 512, n_layers: int = 8, n_heads: int = 32, n_kv_heads: int = 8, vocab_size: int = 6400, hidden_dim: Optional[int] = None, multiple_of: int = 64, norm_eps: float = 1e-5, max_seq_len: int = 8192, rope_theta: float = 1e6, dropout: float = 0.0, flash_attn: bool = True, #################################################### # DB related configurations #################################################### disable_db: bool = False, # 特殊模式:禁用数据库功能 use_direct_semantic: bool = False, # 是否使用直接语义匹配(替代Product Key) realtime_steps: int = 2000, # 前多少步使用实时计算(后续使用渐进式缓存) db_intelligent_balance: bool = True, # 是否启用智能负载均衡 db_relevance_threshold: float = 0.7, # 相关性阈值(第一层过滤) db_balance_strength: float = 0.3, # 平衡权重的基础值 db_momentum: float = 0.9, # 使用频率统计的动量 db_adaptive_weights: bool = True, # 是否启用动态权重调整 #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### use_moe: bool = False, #################################################### num_experts_per_tok: int = 2, n_routed_experts: int = 4, n_shared_experts: bool = True, scoring_func: str = 'softmax', aux_loss_alpha: float = 0.1, seq_aux: bool = True, norm_topk_prob: bool = True, #################################################### knowledge_num: int = 64*64, knowledge_length: int = 8, **kwargs, ): self.dim = dim self.n_layers = n_layers self.n_heads = n_heads self.n_kv_heads = n_kv_heads self.vocab_size = vocab_size self.hidden_dim = hidden_dim self.multiple_of = multiple_of self.norm_eps = norm_eps self.max_seq_len = max_seq_len self.rope_theta = rope_theta self.dropout = dropout self.flash_attn = flash_attn #################################################### # DB related configurations #################################################### self.disable_db = disable_db # 设置是否禁用数据库 self.use_direct_semantic = use_direct_semantic # 是否使用直接语义匹配(替代Product Key) self.realtime_steps = realtime_steps # 前多少步使用实时计算(后续使用渐进式缓存) self.db_intelligent_balance = db_intelligent_balance # 是否启用智能负载均衡 self.db_relevance_threshold = db_relevance_threshold # 相关性阈值(第一层过滤) self.db_balance_strength = db_balance_strength # 平衡权重的基础值 self.db_momentum = db_momentum # 使用频率统计的动量 self.db_adaptive_weights = db_adaptive_weights # 是否启用动态权重调整 #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### self.use_moe = use_moe self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量 self.n_routed_experts = n_routed_experts # 总的专家数量 self.n_shared_experts = n_shared_experts # 共享专家 self.scoring_func = scoring_func # 评分函数,默认为'softmax' self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数 self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失 self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率 #################################################### self.knowledge_num = knowledge_num self.knowledge_length = knowledge_length super().__init__(**kwargs)