#!/bin/bash # ============================================================================ # MiniMind 实验脚本 - Experiment 1.4.6 # ============================================================================ # # 🎯 实验目标: # 基于实验1.4.5,实现Token-based Memory机制,memory_bank存储token IDs而非特征向量 # # 使用方法: # bash run_file/experiment_1_4_6.sh # ============================================================================ # ---------------------------------------------------------------------------- # 🧑‍🔬 实验基本信息 # ---------------------------------------------------------------------------- EXPERIMENT_VERSION="1.4.6" EXPERIMENT_DESCRIPTION="Token-based Memory机制实验 - 可解释的记忆存储" RESEARCHER_NAME="AI Assistant" EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')" # ---------------------------------------------------------------------------- # 🤖 环境配置 # ---------------------------------------------------------------------------- # 调试和监控环境变量 export NCCL_DEBUG=INFO export PYTHONFAULTHANDLER=1 export CUDA_LAUNCH_BLOCKING=1 # SwanLab 配置 export SWANLAB_PROJECT="MiniMind-Experiment-1.4.6" # 日志配置 LOG_DIR="out/experiment_${EXPERIMENT_VERSION}" mkdir -p "$LOG_DIR" LOG_FILE="$LOG_DIR/experiment.log" # ---------------------------------------------------------------------------- # 🤖 硬件配置 # ---------------------------------------------------------------------------- CUDA_VISIBLE_DEVICES="0" NUM_PROCESSES="1" MIXED_PRECISION="bf16" MAIN_PROCESS_PORT="29500" # ---------------------------------------------------------------------------- # 🤖 模型架构参数 # ---------------------------------------------------------------------------- MODEL_TYPE="model_memory" # 🔥 新的Token-based Memory模型 MODEL_SIZE="50.0" DIM="512" N_LAYERS="8" N_HEADS="32" MAX_SEQ_LEN="512" USE_MOE="false" # 知识库配置(Token-based Memory) KNOWLEDGE_NUM="1048576" # 1024x1024 = 1048576 (restored to 1M with sparse EMA buffer) KNOWLEDGE_LENGTH="8" # 每个记忆条目8个token KNOWLEDGE_DIM="128" # 保留兼容性,实际未使用 DISABLE_DB="false" # ---------------------------------------------------------------------------- # 🤖 训练超参数 # ---------------------------------------------------------------------------- EPOCHS="3" EMBEDDING_EPOCH="2" BATCH_SIZE="48" ACCUMULATION_STEPS="12" LEARNING_RATE="2e-4" DTYPE="bfloat16" GRAD_CLIP="1.0" WARMUP_ITERS="0" # 平衡损失配置 BALANCE_LOSS_COEF="0.1" # 数据和缓存路径(沿用1.4.5保证对比公平性) DATA_PATH="/home/pci/ycz/Code/Minimind/dataset/stable/merged_pretrain.jsonl" DATABASE_INIT_PATH="/home/pci/ycz/Code/Minimind/dataset/stable/sentence_trex_data.json" CLUSTER_CACHE_PATH="None" # 禁用聚类缓存 VAL_DATA_PATH="dataset/stable/eval_data.json" # 训练配置 NUM_WORKERS="1" LOG_INTERVAL="100" VAL_INTERVAL="100" SAVE_INTERVAL="10000" # 性能分析配置 USE_PROFILE="true" PROFILE_INTERVAL="10" MEMORY_MONITOR_INTERVAL="100" # 高级功能 USE_FLASH_ATTN="true" FAST_CLUSTERING="true" # ---------------------------------------------------------------------------- # 🤖 预检查函数 # ---------------------------------------------------------------------------- check_environment() { echo "🔍 环境检查中..." # 检查GPU可用性 if ! nvidia-smi &> /dev/null; then echo "❌ 错误: 未检测到GPU或nvidia-smi不可用" exit 1 fi # 检查CUDA设备 if ! nvidia-smi -i "$CUDA_VISIBLE_DEVICES" &> /dev/null; then echo "❌ 错误: GPU $CUDA_VISIBLE_DEVICES 不可用" exit 1 fi # 检查Python环境 if ! .venv/bin/python -c "import torch; print(f'PyTorch: {torch.__version__}')" 2>/dev/null; then echo "❌ 错误: PyTorch未正确安装" exit 1 fi # 检查数据文件 if [[ ! -f "$DATA_PATH" ]]; then echo "❌ 错误: 训练数据文件不存在: $DATA_PATH" exit 1 fi if [[ ! -f "$DATABASE_INIT_PATH" ]]; then echo "❌ 错误: 数据库初始化文件不存在: $DATABASE_INIT_PATH" exit 1 fi # 🔥 检查Token-based Memory模型实现 if ! .venv/bin/python -c "from model.model_memory import *; print('Token-based Memory模型实现检查通过')" 2>/dev/null; then echo "❌ 错误: Token-based Memory模型实现存在问题" echo "请确保model/model_memory.py文件存在且可正常导入" exit 1 fi # 检查LMConfig更新 if ! .venv/bin/python -c "from model.LMConfig import LMConfig; config = LMConfig(); assert hasattr(config, 'use_token_memory'), 'Missing use_token_memory parameter'; print('LMConfig检查通过')" 2>/dev/null; then echo "❌ 错误: LMConfig缺少use_token_memory参数" exit 1 fi echo "✅ 环境检查通过" } # ---------------------------------------------------------------------------- # 🤖 实验信息记录 # ---------------------------------------------------------------------------- log_experiment_info() { echo "📝 记录实验信息..." cat > "$LOG_DIR/experiment_info.txt" << EOF ======================================== MiniMind 实验信息 ======================================== 实验版本: $EXPERIMENT_VERSION 实验描述: $EXPERIMENT_DESCRIPTION 研究者: $RESEARCHER_NAME 开始时间: $EXPERIMENT_DATE ======================================== 硬件配置: GPU设备: $CUDA_VISIBLE_DEVICES 进程数: $NUM_PROCESSES 混合精度: $MIXED_PRECISION ======================================== 模型配置: 模型类型: $MODEL_TYPE (Token-based Memory) 模型大小: $MODEL_SIZE MB 维度: $DIM 层数: $N_LAYERS 注意力头数: $N_HEADS 最大序列长度: $MAX_SEQ_LEN 知识库大小: $KNOWLEDGE_NUM (1M entries - 稀疏EMA缓冲区优化) 知识长度: $KNOWLEDGE_LENGTH (token序列) 知识维度: $KNOWLEDGE_DIM (兼容性保留) ======================================== 训练配置: 训练轮次: $EPOCHS 批次大小: $BATCH_SIZE 学习率: $LEARNING_RATE 梯度累积: $ACCUMULATION_STEPS 数据类型: $DTYPE 平衡损失系数: $BALANCE_LOSS_COEF ======================================== Token Memory配置: 存储格式: Token IDs (human-interpretable) 有效特征维度: $(($KNOWLEDGE_LENGTH * $DIM)) = $KNOWLEDGE_LENGTH * $DIM (16,384维) 记忆条目总数: $KNOWLEDGE_NUM (1M entries - 稀疏EMA优化) EMA衰减率: 0.9 (降低自0.999) EMA更新频率: 5 (提高自1) 记忆解码: 动态tok_embeddings 记忆编码: output层+argmax ======================================== 数据路径: 训练数据: $DATA_PATH 验证数据: $VAL_DATA_PATH 数据库初始化: $DATABASE_INIT_PATH 聚类缓存: $CLUSTER_CACHE_PATH ======================================== EOF } # ---------------------------------------------------------------------------- # 🤖 主执行函数 # ---------------------------------------------------------------------------- run_experiment() { echo "🚀 开始执行实验 $EXPERIMENT_VERSION" echo "📄 实验描述: $EXPERIMENT_DESCRIPTION" echo "⏰ 开始时间: $EXPERIMENT_DATE" # 构建训练命令 local train_cmd="CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES .venv/bin/python train_pretrain_accelerate.py" # 添加训练参数 train_cmd+=" --out_dir \"$LOG_DIR\"" train_cmd+=" --epochs $EPOCHS" train_cmd+=" --embedding_epoch $EMBEDDING_EPOCH" train_cmd+=" --batch_size $BATCH_SIZE" train_cmd+=" --learning_rate $LEARNING_RATE" train_cmd+=" --dtype $DTYPE" train_cmd+=" --num_workers $NUM_WORKERS" train_cmd+=" --accumulation_steps $ACCUMULATION_STEPS" train_cmd+=" --grad_clip $GRAD_CLIP" train_cmd+=" --warmup_iters $WARMUP_ITERS" train_cmd+=" --log_interval $LOG_INTERVAL" train_cmd+=" --val_interval $VAL_INTERVAL" train_cmd+=" --save_interval $SAVE_INTERVAL" train_cmd+=" --dim $DIM" train_cmd+=" --n_layers $N_LAYERS" train_cmd+=" --n_heads $N_HEADS" train_cmd+=" --max_seq_len $MAX_SEQ_LEN" train_cmd+=" --data_path \"$DATA_PATH\"" train_cmd+=" --val_data_path \"$VAL_DATA_PATH\"" train_cmd+=" --knowledge_num $KNOWLEDGE_NUM" train_cmd+=" --knowledge_length $KNOWLEDGE_LENGTH" train_cmd+=" --database_init_path \"$DATABASE_INIT_PATH\"" train_cmd+=" --memory_monitor_interval $MEMORY_MONITOR_INTERVAL" train_cmd+=" --model_type \"$MODEL_TYPE\"" train_cmd+=" --model_size $MODEL_SIZE" train_cmd+=" --balance_loss_coef $BALANCE_LOSS_COEF" # 可选参数 if [[ "$USE_PROFILE" == "true" ]]; then train_cmd+=" --profile" train_cmd+=" --profile_interval $PROFILE_INTERVAL" fi if [[ "$USE_FLASH_ATTN" == "true" ]]; then train_cmd+=" --use_flash_attn" fi if [[ "$FAST_CLUSTERING" == "true" ]]; then train_cmd+=" --fast_clustering" fi if [[ "$CLUSTER_CACHE_PATH" != "None" ]]; then train_cmd+=" --cluster_cache_path \"$CLUSTER_CACHE_PATH\"" fi # SwanLab配置 train_cmd+=" --use_swanlab" train_cmd+=" --swanlab_project \"$SWANLAB_PROJECT\"" train_cmd+=" --swanlab_online True" echo "📋 执行命令:" echo "$train_cmd" echo # 记录命令到日志文件 echo "执行命令: $train_cmd" >> "$LOG_FILE" echo "开始时间: $(date)" >> "$LOG_FILE" # 使用nohup执行训练(后台运行,输出写入日志文件) echo "🔄 使用nohup后台运行训练,输出将写入日志文件: $LOG_FILE" # 创建训练脚本 train_script="/tmp/train_${EXPERIMENT_VERSION}.sh" cat > "$train_script" << EOF #!/bin/bash cd /home/pci/ycz/Code/pretrain-worktree source /home/pci/ycz/Code/pretrain-worktree/.venv/bin/activate $train_cmd echo "结束时间: \$(date)" echo "退出代码: \$?" EOF chmod +x "$train_script" # 使用nohup后台运行 nohup bash "$train_script" >> "$LOG_FILE" 2>&1 & local train_pid=$! echo "🔥 训练进程已启动,PID: $train_pid" echo "训练PID: $train_pid" >> "$LOG_FILE" echo "训练脚本: $train_script" >> "$LOG_FILE" # 等待几秒确保进程启动 sleep 5 # 检查进程是否还在运行 if kill -0 $train_pid 2>/dev/null; then echo "✅ 训练进程正在后台运行" echo "📋 实时查看日志: tail -f $LOG_FILE" echo "📋 检查进程状态: ps -p $train_pid" echo "🛑 停止训练: kill $train_pid" echo "📈 SwanLab: https://swanlab.cn/project/$SWANLAB_PROJECT" echo "" echo "🧠 Token-based Memory机制正在测试中..." echo " 🔥 记忆存储: Token IDs (人类可理解)" echo " 🔥 表示能力: $(($KNOWLEDGE_LENGTH * $DIM))维 (16,384维 vs 原128维)" echo " 🔥 记忆规模: $KNOWLEDGE_NUM条目 (完整1M条目,稀疏EMA缓冲区优化)" echo " 🔥 EMA衰减率: 0.95 (降低自0.999,允许更大更新)" echo " 🔥 更新频率: 每3步 (提高自1步,更频繁更新)" echo " 🔥 解码机制: tok_embeddings动态解码" echo " 🔥 编码机制: output层+argmax获得最优token" echo "" echo "📊 与实验1.4.5对比:" echo " - 可解释性: 抽象向量 → 具体token序列" echo " - 表示能力: 128维 → 16,384维 (128x提升)" echo " - 内存优化: 64GB预分配 → 稀疏动态分配 (1M条目保持不变)" echo " - 更新策略: 保守EMA → 激进EMA" echo "" echo "训练正在后台运行,可以安全关闭终端。" echo "" echo "🎯 预期改进:" echo " - 推理Loss < 2.64 (优于1.4.5)" echo " - 生成质量和连贯性提升" echo " - Memory内容可人工检查和理解" echo "" echo "⏱️ 预计训练时间: 15-20小时" echo "📊 预计GPU占用: ~23GB" echo "" else echo "❌ 训练进程启动失败" echo "📋 查看日志: $LOG_FILE" exit 1 fi } # ---------------------------------------------------------------------------- # 🤖 清理函数 # ---------------------------------------------------------------------------- cleanup() { echo "🧹 清理临时文件..." # 删除临时验证文件 rm -f /tmp/temp_val.jsonl } # ---------------------------------------------------------------------------- # 🤖 信号处理 # ---------------------------------------------------------------------------- trap cleanup EXIT trap 'echo "❌ 实验被中断"; cleanup; exit 130' INT TERM # ---------------------------------------------------------------------------- # 🤖 主程序入口 # ---------------------------------------------------------------------------- main() { echo "============================================================================" echo "🧠 MiniMind 预训练实验 1.4.6" echo "🎯 Token-based Memory机制 - 人类可理解的记忆存储" echo "============================================================================" echo "" echo "🔥 核心创新:" echo " ► Memory Bank: Token IDs (可解释) vs 特征向量 (抽象)" echo " ► 表示能力: 16,384维 vs 128维 (128x提升)" echo " ► EMA策略: 激进更新 vs 保守更新" echo " ► 解码方式: 动态embedding vs 直接索引" echo "" echo "🎯 实验假设:" echo " ✓ Token-based记忆提供更好的可解释性" echo " ✓ 更大表示能力改善模型性能" echo " ✓ 优化EMA参数解决过拟合问题" echo "" echo "============================================================================" # 执行检查和初始化 check_environment log_experiment_info # 运行实验 run_experiment echo "============================================================================" echo "✅ 实验 $EXPERIMENT_VERSION 启动完成" echo "📅 启动时间: $(date)" echo "============================================================================" } # 执行主程序 main "$@"