import json import random import numpy as np import streamlit as st import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig st.set_page_config(page_title="MiniMind-V1") st.title("MiniMind-V1") model_id = "./minimind-v1" @st.cache_resource def load_model_tokenizer(): model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=True ) model = model.eval() generation_config = GenerationConfig.from_pretrained(model_id) return model, tokenizer, generation_config def clear_chat_messages(): del st.session_state.messages del st.session_state.chat_messages def init_chat_messages(): with st.chat_message("assistant", avatar='🤖'): st.markdown("我是由JingyaoGong创造的MiniMind,很高兴为您服务😄 \n" "注:所有AI生成内容的准确性和立场无法保证,不代表我们的态度或观点。") if "messages" in st.session_state: for message in st.session_state.messages: avatar = "🫡" if message["role"] == "user" else "🤖" with st.chat_message(message["role"], avatar=avatar): st.markdown(message["content"]) else: st.session_state.messages = [] st.session_state.chat_messages = [] return st.session_state.messages st.sidebar.title("设定调整") st.session_state.history_chat_num = st.sidebar.slider("携带历史对话条数", 0, 6, 0, step=2) st.session_state.max_new_tokens = st.sidebar.slider("最大输入/生成长度", 256, 768, 512, step=1) st.session_state.top_k = st.sidebar.slider("top_k", 0, 16, 14, step=1) st.session_state.temperature = st.sidebar.slider("temperature", 0.3, 1.3, 0.5, step=0.01) def setup_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def main(): model, tokenizer, generation_config = load_model_tokenizer() messages = init_chat_messages() if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"): with st.chat_message("user", avatar='🧑‍💻'): st.markdown(prompt) messages.append({"role": "user", "content": prompt}) st.session_state.chat_messages.append({"role": "user", "content": '请问,' + prompt + '?'}) with st.chat_message("assistant", avatar='🤖'): placeholder = st.empty() # Generate a random seed random_seed = random.randint(0, 2 ** 32 - 1) setup_seed(random_seed) new_prompt = tokenizer.apply_chat_template( st.session_state.chat_messages[-(st.session_state.history_chat_num + 1):], tokenize=False, add_generation_prompt=True )[-(st.session_state.max_new_tokens - 1):] x = tokenizer(new_prompt).data['input_ids'] x = (torch.tensor(x, dtype=torch.long)[None, ...]) with torch.no_grad(): res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=st.session_state.max_new_tokens, temperature=st.session_state.temperature, top_k=st.session_state.top_k, stream=True) try: y = next(res_y) except StopIteration: return while y != None: answer = tokenizer.decode(y[0].tolist()) if answer and answer[-1] == '�': try: y = next(res_y) except: break continue if not len(answer): try: y = next(res_y) except: break continue placeholder.markdown(answer) try: y = next(res_y) except: break assistant_answer = answer.replace(new_prompt, "") messages.append({"role": "assistant", "content": assistant_answer}) st.session_state.chat_messages.append({"role": "assistant", "content": assistant_answer}) st.button("清空对话", on_click=clear_chat_messages) if __name__ == "__main__": main()