import torch from torch import optim, nn # 定义Lora网络结构 class LoRA(nn.Module): def __init__(self, in_features, out_features, rank): super().__init__() self.rank = rank # LoRA的秩(rank),控制低秩矩阵的大小 self.A = nn.Linear(in_features, rank, bias=False) # 低秩矩阵A self.B = nn.Linear(rank, out_features, bias=False) # 低秩矩阵B # 矩阵A高斯初始化 self.A.weight.data.normal_(mean=0.0, std=0.02) # 矩阵B全0初始化 self.B.weight.data.zero_() def forward(self, x): return self.B(self.A(x)) def apply_lora(model, rank=16): for name, module in model.named_modules(): if isinstance(module, nn.Linear) and module.weight.shape[0] == module.weight.shape[1]: lora = LoRA(module.weight.shape[0], module.weight.shape[1], rank=rank).to(model.device) setattr(module, "lora", lora) original_forward = module.forward # 显式绑定 def forward_with_lora(x, layer1=original_forward, layer2=lora): return layer1(x) + layer2(x) module.forward = forward_with_lora def load_lora(model, path): state_dict = torch.load(path, map_location=model.device) for name, module in model.named_modules(): if hasattr(module, 'lora'): lora_state = {k.replace(f'{name}.lora.', ''): v for k, v in state_dict.items() if f'{name}.lora.' in k} module.lora.load_state_dict(lora_state) def save_lora(model, path): state_dict = {} for name, module in model.named_modules(): if hasattr(module, 'lora'): lora_state = {f'{name}.lora.{k}': v for k, v in module.lora.state_dict().items()} state_dict.update(lora_state) torch.save(state_dict, path)