import torch import warnings import sys import os __package__ = "scripts" sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from transformers import AutoTokenizer, AutoModelForCausalLM from model.LMConfig import LMConfig from model.model import MiniMindLM warnings.filterwarnings('ignore', category=UserWarning) def convert_torch2transformers(torch_path, transformers_path): def export_tokenizer(transformers_path): tokenizer = AutoTokenizer.from_pretrained('../model/minimind_tokenizer') tokenizer.save_pretrained(transformers_path) LMConfig.register_for_auto_class() MiniMindLM.register_for_auto_class("AutoModelForCausalLM") lm_model = MiniMindLM(lm_config) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') state_dict = torch.load(torch_path, map_location=device) lm_model.load_state_dict(state_dict, strict=False) model_params = sum(p.numel() for p in lm_model.parameters() if p.requires_grad) print(f'模型参数: {model_params / 1e6} 百万 = {model_params / 1e9} B (Billion)') lm_model.save_pretrained(transformers_path, safe_serialization=False) export_tokenizer(transformers_path) print(f"模型已保存为 Transformers 格式: {transformers_path}") def convert_transformers2torch(transformers_path, torch_path): model = AutoModelForCausalLM.from_pretrained(transformers_path, trust_remote_code=True) torch.save(model.state_dict(), torch_path) print(f"模型已保存为 PyTorch 格式: {torch_path}") # don't need to use def push_to_hf(export_model_path): def init_model(): tokenizer = AutoTokenizer.from_pretrained('../model/minimind_tokenizer') model = AutoModelForCausalLM.from_pretrained(export_model_path, trust_remote_code=True) return model, tokenizer model, tokenizer = init_model() # model.push_to_hub(model_path) # tokenizer.push_to_hub(model_path, safe_serialization=False) if __name__ == '__main__': lm_config = LMConfig(dim=512, n_layers=8, max_seq_len=8192, use_moe=False) torch_path = f"../out/rlhf_{lm_config.dim}{'_moe' if lm_config.use_moe else ''}.pth" transformers_path = '../MiniMind2-Small' # convert torch to transformers model convert_torch2transformers(torch_path, transformers_path) # # convert transformers to torch model # convert_transformers2torch(transformers_path, torch_path)