import torch import warnings from transformers import AutoTokenizer, AutoModelForCausalLM from model.LMConfig import LMConfig from model.model import Transformer warnings.filterwarnings('ignore', category=UserWarning) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def export_transformers_model(): LMConfig.register_for_auto_class() Transformer.register_for_auto_class("AutoModelForCausalLM") lm_config = LMConfig() lm_model = Transformer(lm_config) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') moe_path = '_moe' if lm_config.use_moe else '' ckpt_path = f'./out/full_sft_{lm_config.dim}{moe_path}.pth' state_dict = torch.load(ckpt_path, map_location=device) unwanted_prefix = '_orig_mod.' for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) lm_model.load_state_dict(state_dict, strict=False) print(f'模型参数: {count_parameters(lm_model) / 1e6} 百万 = {count_parameters(lm_model) / 1e9} B (Billion)') lm_model.save_pretrained("minimind-small-T", safe_serialization=False) def export_tokenizer(): tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer', trust_remote_code=True, use_fast=False) tokenizer.save_pretrained("minimind-small-T") def push_to_hf(): def init_model(): tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer', trust_remote_code=True, use_fast=False) model = AutoModelForCausalLM.from_pretrained('minimind-small', trust_remote_code=True) return model, tokenizer model, tokenizer = init_model() # 推送到huggingface model.push_to_hub("minimind-small") # tokenizer.push_to_hub("minimind-small-T", safe_serialization=False) if __name__ == '__main__': # 1 export_transformers_model() # 2 export_tokenizer() # # 3 # push_to_hf()