import json import streamlit as st import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig st.set_page_config(page_title="minimind-v1(108M)") st.title("minimind-v1(108M)") model_id = "minimind-v1" # ----------------------------------------------------------------------------- temperature = 0.5 top_k = 16 max_seq_len = 1 * 1024 # ----------------------------------------------------------------------------- @st.cache_resource def load_model_tokenizer(): model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( model_id, use_fast=False, trust_remote_code=True ) model = model.eval() generation_config = GenerationConfig.from_pretrained(model_id) return model, tokenizer, generation_config def clear_chat_messages(): del st.session_state.messages def init_chat_messages(): with st.chat_message("assistant", avatar='🤖'): st.markdown("您好,我是由JingyaoGong创造的MiniMind,很高兴为您服务😄") if "messages" in st.session_state: for message in st.session_state.messages: avatar = "🧑‍💻" if message["role"] == "user" else "🤖" with st.chat_message(message["role"], avatar=avatar): st.markdown(message["content"]) else: st.session_state.messages = [] return st.session_state.messages # max_new_tokens = st.sidebar.slider("max_new_tokens", 0, 1024, 512, step=1) # top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01) # top_k = st.sidebar.slider("top_k", 0, 100, 0, step=1) # temperature = st.sidebar.slider("temperature", 0.0, 2.0, 1.0, step=0.01) # do_sample = st.sidebar.checkbox("do_sample", value=False) def main(): model, tokenizer, generation_config = load_model_tokenizer() messages = init_chat_messages() if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"): with st.chat_message("user", avatar='🧑‍💻'): st.markdown(prompt) messages.append({"role": "user", "content": prompt}) with st.chat_message("assistant", avatar='🤖'): placeholder = st.empty() chat_messages = [] chat_messages.append({"role": "user", "content": '请问,' + prompt}) # print(messages) new_prompt = tokenizer.apply_chat_template( chat_messages, tokenize=False, add_generation_prompt=True )[-(max_seq_len - 1):] x = tokenizer(new_prompt).data['input_ids'] x = (torch.tensor(x, dtype=torch.long)[None, ...]) response = '' with torch.no_grad(): res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=max_seq_len, temperature=temperature, top_k=top_k, stream=True) try: y = next(res_y) except StopIteration: return history_idx = 0 while y != None: answer = tokenizer.decode(y[0].tolist()) if answer and answer[-1] == '�': try: y = next(res_y) except: break continue # print(answer) if not len(answer): try: y = next(res_y) except: break continue placeholder.markdown(answer) response = answer try: y = next(res_y) except: break # if contain_history_chat: # assistant_answer = answer.replace(new_prompt, "") # messages.append({"role": "assistant", "content": assistant_answer}) messages.append({"role": "assistant", "content": response}) st.button("清空对话", on_click=clear_chat_messages) if __name__ == "__main__": main()