import random from tqdm import tqdm from transformers import AutoTokenizer import json from datasets import load_dataset from tokenizers import ( decoders, models, normalizers, pre_tokenizers, processors, trainers, Tokenizer, ) import os random.seed(42) def train_tokenizer(): # 读取JSONL文件并提取文本数据 def read_texts_from_jsonl(file_path): with open(file_path, 'r', encoding='utf-8') as f: for line in f: data = json.loads(line) yield data['text'] data_path = '../dataset/pretrain_hq.jsonl' # 初始化tokenizer tokenizer = Tokenizer(models.BPE()) tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False) # 定义特殊token special_tokens = ["", "", ""] # 设置训练器并添加特殊token trainer = trainers.BpeTrainer( vocab_size=6400, special_tokens=special_tokens, # 确保这三个token被包含 show_progress=True, initial_alphabet=pre_tokenizers.ByteLevel.alphabet() ) # 读取文本数据 texts = read_texts_from_jsonl(data_path) # 训练tokenizer tokenizer.train_from_iterator(texts, trainer=trainer) # 设置解码器 tokenizer.decoder = decoders.ByteLevel() # 检查特殊token的索引 assert tokenizer.token_to_id("") == 0 assert tokenizer.token_to_id("") == 1 assert tokenizer.token_to_id("") == 2 # 保存tokenizer tokenizer_dir = "../model/minimind_tokenizer" os.makedirs(tokenizer_dir, exist_ok=True) tokenizer.save(os.path.join(tokenizer_dir, "tokenizer.json")) tokenizer.model.save("../model/minimind_tokenizer") # 手动创建配置文件 config = { "add_bos_token": False, "add_eos_token": False, "add_prefix_space": False, "added_tokens_decoder": { "0": { "content": "", "lstrip": False, "normalized": False, "rstrip": False, "single_word": False, "special": True }, "1": { "content": "", "lstrip": False, "normalized": False, "rstrip": False, "single_word": False, "special": True }, "2": { "content": "", "lstrip": False, "normalized": False, "rstrip": False, "single_word": False, "special": True } }, "additional_special_tokens": [], "bos_token": "", "clean_up_tokenization_spaces": False, "eos_token": "", "legacy": True, "model_max_length": 32768, "pad_token": "", "sp_model_kwargs": {}, "spaces_between_special_tokens": False, "tokenizer_class": "PreTrainedTokenizerFast", "unk_token": "", "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{{ 'system\\n' + system_message + '\\n' }}{% else %}{{ 'system\\n你是 MiniMind,是一个有用的人工智能助手。\\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ 'user\\n' + content + '\\nassistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '' + '\\n' }}{% endif %}{% endfor %}" } # 保存配置文件 with open(os.path.join(tokenizer_dir, "tokenizer_config.json"), "w", encoding="utf-8") as config_file: json.dump(config, config_file, ensure_ascii=False, indent=4) print("Tokenizer training completed and saved.") def eval_tokenizer(): from transformers import AutoTokenizer # 加载预训练的tokenizer tokenizer = AutoTokenizer.from_pretrained("../model/minimind_tokenizer") messages = [ {"role": "system", "content": "你是一个优秀的聊天机器人,总是给我正确的回应!"}, {"role": "user", "content": '你来自哪里?'}, {"role": "assistant", "content": '我来自地球'} ] new_prompt = tokenizer.apply_chat_template( messages, tokenize=False ) print(new_prompt) # 获取实际词汇表长度(包括特殊符号) actual_vocab_size = len(tokenizer) print('tokenizer实际词表长度:', actual_vocab_size) model_inputs = tokenizer(new_prompt) print('encoder长度:', len(model_inputs['input_ids'])) input_ids = model_inputs['input_ids'] response = tokenizer.decode(input_ids, skip_special_tokens=False) print('decoder和原始文本是否一致:', response == new_prompt) def main(): train_tokenizer() eval_tokenizer() if __name__ == '__main__': main()