#!/bin/bash # ============================================================================ # MiniMind 实验脚本 - Experiment 1.4.3 # ============================================================================ # # 🎯 实验目标: 验证完整信息对记忆查询效果的影响 # 📝 实验描述: 使用完整信息h替代注意力输出h_attn进行记忆查询和交叉注意力 # 🔬 研究假设: 完整信息包含更丰富的上下文,能提升记忆查询精度和文本连贯性 # ============================================================================ # ---------------------------------------------------------------------------- # 🧑‍🔬 实验基本信息 # ---------------------------------------------------------------------------- EXPERIMENT_VERSION="1_4_3" EXPERIMENT_DESCRIPTION="Complete information (h) for memory query instead of attention output (h_attn)" RESEARCHER_NAME="Human-AI Collaboration" EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')" # ---------------------------------------------------------------------------- # 🤖 环境配置 # ---------------------------------------------------------------------------- # UV虚拟环境激活 export PYTHONFAULTHANDLER=1 export CUDA_LAUNCH_BLOCKING=0 # 设为0以提高性能 # SwanLab 配置 export SWANLAB_PROJECT="MiniMind-Memory-Query-Enhancement" # 日志配置 LOG_DIR="out/experiment_${EXPERIMENT_VERSION}" mkdir -p "$LOG_DIR" LOG_FILE="$LOG_DIR/experiment.log" # ---------------------------------------------------------------------------- # 🤖 硬件配置 # ---------------------------------------------------------------------------- CUDA_VISIBLE_DEVICES="0" NUM_PROCESSES="1" MIXED_PRECISION="bf16" MAIN_PROCESS_PORT="29500" # ---------------------------------------------------------------------------- # 🤖 模型架构参数 # ---------------------------------------------------------------------------- MODEL_TYPE="model" # 使用标准model,已修改为完整信息查询 MODEL_SIZE="26.0" DIM="512" N_LAYERS="8" N_HEADS="32" MAX_SEQ_LEN="512" USE_MOE="false" # 记忆库配置(与1.4.2保持一致以便对比) KNOWLEDGE_NUM="65536" # 64K条记忆(256x256,完全平方数) KNOWLEDGE_DIM="128" # 记忆向量维度 KNOWLEDGE_LENGTH="32" # 单条记忆长度 NUM_SELECTED="8" # 每次选择的记忆数 # ---------------------------------------------------------------------------- # 🤖 训练超参数(与1.4.2完全一致) # ---------------------------------------------------------------------------- EPOCHS="3" EMBEDDING_EPOCH="2" BATCH_SIZE="64" # 与对照实验保持一致 ACCUMULATION_STEPS="8" LEARNING_RATE="2e-4" DTYPE="bfloat16" GRAD_CLIP="1.0" WARMUP_ITERS="0" # 数据路径 DATA_PATH="/home/pci/ycz/Code/Minimind/dataset/stable/merged_pretrain.jsonl" DATABASE_INIT_PATH="None" # 随机初始化记忆库,保持一致性 CLUSTER_CACHE_PATH="None" # 训练配置 NUM_WORKERS="1" LOG_INTERVAL="1" SAVE_INTERVAL="10000" # 性能分析配置 USE_PROFILE="true" PROFILE_INTERVAL="10" MEMORY_MONITOR_INTERVAL="10" # 高级功能 USE_FLASH_ATTN="true" USE_SWANLAB="true" SWANLAB_ONLINE="false" # ---------------------------------------------------------------------------- # 🤖 预检查函数 # ---------------------------------------------------------------------------- check_environment() { echo "🔍 环境检查中..." # 检查GPU可用性 if ! nvidia-smi &> /dev/null; then echo "❌ 错误: 未检测到GPU或nvidia-smi不可用" exit 1 fi # 检查CUDA设备 if ! nvidia-smi -i "$CUDA_VISIBLE_DEVICES" &> /dev/null; then echo "❌ 错误: GPU $CUDA_VISIBLE_DEVICES 不可用" exit 1 fi # 检查Python环境 if ! .venv/bin/python -c "import torch; print(f'PyTorch: {torch.__version__}')" 2>/dev/null; then echo "❌ 错误: PyTorch未正确安装" exit 1 fi # 检查数据文件 if [[ ! -f "$DATA_PATH" ]]; then echo "❌ 错误: 训练数据文件不存在: $DATA_PATH" exit 1 fi # 检查model.py中的修改是否正确 if ! grep -q "h = x + h_attn # 计算完整信息" model/model.py; then echo "❌ 错误: model.py中未找到完整信息查询的修改" echo "请确认已正确修改MiniMindBlock.forward方法" exit 1 fi echo "✅ 环境检查通过" } # ---------------------------------------------------------------------------- # 🤖 实验信息记录 # ---------------------------------------------------------------------------- log_experiment_info() { echo "📝 记录实验信息..." cat > "$LOG_DIR/experiment_info.txt" << EOF ======================================== MiniMind 记忆查询增强实验信息 ======================================== 实验版本: $EXPERIMENT_VERSION 实验描述: $EXPERIMENT_DESCRIPTION 研究者: $RESEARCHER_NAME 开始时间: $EXPERIMENT_DATE ======================================== 核心改进: - 记忆查询使用完整信息h替代注意力输出h_attn - 交叉注意力输入也使用完整信息h - 保持Product Key Memory选择机制不变 - 保持交叉注意力架构不变 ======================================== 技术细节: 原方案: db, db_embeddings = self.knowledge_dataset.search_index(h_attn) h_attn = self.cross_attention(h_attn, db_embeddings) 新方案: h = x + h_attn # 计算完整信息 db, db_embeddings = self.knowledge_dataset.search_index(h) memory_output = self.cross_attention(h, db_embeddings) ======================================== 对照实验: - 基准实验: 1.4.0 (model_original, Loss: 1.9) - 对比实验: 1.4.1 (h_attn查询, Loss: 0.6, 但文本碎片化) - 本实验: 1.4.3 (h完整信息查询) ======================================== 硬件配置: GPU设备: $CUDA_VISIBLE_DEVICES 进程数: $NUM_PROCESSES 混合精度: $MIXED_PRECISION ======================================== 模型配置: 模型类型: $MODEL_TYPE (完整信息查询版本) 模型大小: $MODEL_SIZE MB 维度: $DIM 层数: $N_LAYERS 注意力头数: $N_HEADS 最大序列长度: $MAX_SEQ_LEN 记忆库条目数: $KNOWLEDGE_NUM 记忆向量维度: $KNOWLEDGE_DIM 每次选择记忆数: $NUM_SELECTED ======================================== 训练配置: 训练轮次: $EPOCHS 批次大小: $BATCH_SIZE 学习率: $LEARNING_RATE 梯度累积: $ACCUMULATION_STEPS 数据类型: $DTYPE ======================================== 数据路径: 训练数据: $DATA_PATH 记忆库初始化: $DATABASE_INIT_PATH ======================================== EOF } # ---------------------------------------------------------------------------- # 🤖 主执行函数 # ---------------------------------------------------------------------------- run_experiment() { echo "🚀 开始执行实验 $EXPERIMENT_VERSION" echo "📄 实验描述: $EXPERIMENT_DESCRIPTION" echo "⏰ 开始时间: $EXPERIMENT_DATE" # 构建训练命令 local train_cmd="CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES uv run python -m accelerate.commands.launch" train_cmd+=" --num_processes=$NUM_PROCESSES" train_cmd+=" --mixed_precision=$MIXED_PRECISION" train_cmd+=" --main_process_port=$MAIN_PROCESS_PORT" train_cmd+=" train_pretrain_accelerate.py" # 添加训练参数 train_cmd+=" --out_dir \"$LOG_DIR\"" train_cmd+=" --epochs $EPOCHS" train_cmd+=" --embedding_epoch $EMBEDDING_EPOCH" train_cmd+=" --batch_size $BATCH_SIZE" train_cmd+=" --learning_rate $LEARNING_RATE" train_cmd+=" --dtype $DTYPE" train_cmd+=" --num_workers $NUM_WORKERS" train_cmd+=" --accumulation_steps $ACCUMULATION_STEPS" train_cmd+=" --grad_clip $GRAD_CLIP" train_cmd+=" --warmup_iters $WARMUP_ITERS" train_cmd+=" --log_interval $LOG_INTERVAL" train_cmd+=" --save_interval $SAVE_INTERVAL" train_cmd+=" --dim $DIM" train_cmd+=" --n_layers $N_LAYERS" train_cmd+=" --n_heads $N_HEADS" train_cmd+=" --max_seq_len $MAX_SEQ_LEN" train_cmd+=" --data_path \"$DATA_PATH\"" train_cmd+=" --knowledge_num $KNOWLEDGE_NUM" train_cmd+=" --knowledge_length $KNOWLEDGE_LENGTH" train_cmd+=" --knowledge_dim $KNOWLEDGE_DIM" train_cmd+=" --memory_monitor_interval $MEMORY_MONITOR_INTERVAL" train_cmd+=" --model_type \"$MODEL_TYPE\"" train_cmd+=" --model_size $MODEL_SIZE" train_cmd+=" --swanlab_online $SWANLAB_ONLINE" train_cmd+=" --database_init_path \"$DATABASE_INIT_PATH\"" # 可选参数 if [[ "$USE_PROFILE" == "true" ]]; then train_cmd+=" --profile" train_cmd+=" --profile_interval $PROFILE_INTERVAL" fi if [[ "$USE_FLASH_ATTN" == "true" ]]; then train_cmd+=" --use_flash_attn" fi if [[ "$USE_SWANLAB" == "true" ]]; then train_cmd+=" --use_swanlab" train_cmd+=" --swanlab_project \"$SWANLAB_PROJECT\"" fi echo "📋 执行命令:" echo "$train_cmd" echo # 记录命令到日志文件 echo "执行命令: $train_cmd" >> "$LOG_FILE" echo "开始时间: $(date)" >> "$LOG_FILE" # 使用nohup执行训练(后台运行) echo "🔄 使用nohup后台运行训练,输出将写入日志文件: $LOG_FILE" # 创建训练脚本 train_script="/tmp/train_${EXPERIMENT_VERSION}.sh" cat > "$train_script" << EOF #!/bin/bash cd /home/pci/ycz/Code/pretrain-worktree export PYTHONFAULTHANDLER=1 export SWANLAB_PROJECT="$SWANLAB_PROJECT" $train_cmd echo "结束时间: \$(date)" echo "退出代码: \$?" EOF chmod +x "$train_script" # 使用nohup后台运行 nohup bash "$train_script" >> "$LOG_FILE" 2>&1 & local train_pid=$! echo "🔥 训练进程已启动,PID: $train_pid" echo "训练PID: $train_pid" >> "$LOG_FILE" echo "训练脚本: $train_script" >> "$LOG_FILE" # 等待几秒确保进程启动 sleep 5 # 检查进程是否还在运行 if kill -0 $train_pid 2>/dev/null; then echo "✅ 训练进程正在后台运行" echo "📋 实时查看日志: tail -f $LOG_FILE" echo "📋 检查进程状态: ps aux | grep train_pretrain_accelerate" echo "🛑 停止训练: kill $train_pid" echo "⏰ 预计训练时间: 10-15小时 (3 epochs, RTX 4090)" echo "📈 SwanLab: 本地模式,输出目录中查看" echo "" echo "🎯 实验重点:" echo " - 对比完整信息h vs 注意力输出h_attn的查询效果" echo " - 验证是否能改善文本连贯性问题" echo " - 观察Loss收敛情况和生成质量" echo " - 期望: Loss保持低水平,文本连贯性提升" echo "" echo "训练正在后台运行,可以安全关闭终端。" else echo "❌ 训练进程启动失败" echo "📋 查看日志: $LOG_FILE" exit 1 fi } # ---------------------------------------------------------------------------- # 🤖 清理函数 # ---------------------------------------------------------------------------- cleanup() { echo "🧹 清理临时文件..." # 清理临时脚本 if [[ -f "/tmp/train_${EXPERIMENT_VERSION}.sh" ]]; then rm -f "/tmp/train_${EXPERIMENT_VERSION}.sh" fi } # ---------------------------------------------------------------------------- # 🤖 信号处理 # ---------------------------------------------------------------------------- trap cleanup EXIT trap 'echo "❌ 实验被中断"; cleanup; exit 130' INT TERM # ---------------------------------------------------------------------------- # 🤖 主程序入口 # ---------------------------------------------------------------------------- main() { echo "============================================================================" echo "🧠 MiniMind 记忆查询增强实验" echo "============================================================================" echo "🎯 实验版本: $EXPERIMENT_VERSION" echo "📝 实验目标: 完整信息查询vs注意力输出查询" echo "🔬 核心假设: 完整信息能提升记忆查询精度和文本连贯性" echo "============================================================================" # 执行检查和初始化 check_environment log_experiment_info # 运行实验 run_experiment echo "============================================================================" echo "✅ 实验 $EXPERIMENT_VERSION 已启动" echo "📅 启动时间: $(date)" echo "🔍 对照实验: 1.4.1 (h_attn查询) vs 1.4.3 (h完整信息查询)" echo "============================================================================" } # 执行主程序 main "$@"