#!/bin/bash # ============================================================================ # MiniMind 实验脚本模版 - Experiment [VERSION] # ============================================================================ # # 🎯 使用说明: # - 🧑‍🔬 [人类填写] - 实验开始前由人类研究者配置 # - 🤖 [AI构建] - 实验构建过程中由AI自动替换占位符 # # 使用方法: # 1. 复制此模版为 experiment_X.X.X.sh # 2. 替换所有 [PLACEHOLDER] 占位符 # 3. 执行: bash run_file/experiment_X.X.X.sh # ============================================================================ # ---------------------------------------------------------------------------- # 🧑‍🔬 [人类填写] 实验基本信息 # ---------------------------------------------------------------------------- EXPERIMENT_VERSION="[VERSION]" # 实验版本号,如: 1.4.1 EXPERIMENT_DESCRIPTION="[DESCRIPTION]" # 实验简短描述 RESEARCHER_NAME="[RESEARCHER]" # 研究者姓名 EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')" # 自动记录实验开始时间 # ---------------------------------------------------------------------------- # 🤖 [AI构建] 环境配置 # ---------------------------------------------------------------------------- # Python环境设置 # 注意: 根据实际环境选择激活方式 # Option 1: Conda环境 (如果使用conda) # source $(conda info --base)/etc/profile.d/conda.sh # conda activate [CONDA_ENV] # Option 2: UV虚拟环境 (推荐) # export VIRTUAL_ENV="[VENV_PATH]" # source "$VIRTUAL_ENV/bin/activate" # 调试和监控环境变量 export NCCL_DEBUG=INFO # NCCL 调试信息 export PYTHONFAULTHANDLER=1 # Python 故障处理 export CUDA_LAUNCH_BLOCKING=1 # CUDA 同步执行(调试用) # SwanLab 配置 export SWANLAB_API_KEY="[SWANLAB_API_KEY]" # 🤖 [AI构建] SwanLab API密钥 export SWANLAB_PROJECT="[SWANLAB_PROJECT]" # 🤖 [AI构建] SwanLab项目名 # 日志配置 LOG_DIR="out/experiment_${EXPERIMENT_VERSION}" mkdir -p "$LOG_DIR" LOG_FILE="$LOG_DIR/experiment.log" # ---------------------------------------------------------------------------- # 🤖 [AI构建] 硬件配置 # ---------------------------------------------------------------------------- CUDA_VISIBLE_DEVICES="[CUDA_DEVICES]" # GPU设备,如: 0 或 0,1,2,3 NUM_PROCESSES="[NUM_PROCESSES]" # 进程数,通常等于GPU数量 MIXED_PRECISION="[MIXED_PRECISION]" # 混合精度: bf16, fp16, no MAIN_PROCESS_PORT="[MAIN_PROCESS_PORT]" # 主进程端口,默认: 29500 # ---------------------------------------------------------------------------- # 🤖 [AI构建] 模型架构参数 # ---------------------------------------------------------------------------- MODEL_TYPE="[MODEL_TYPE]" # 模型类型: model, model_original, model_no_feed MODEL_SIZE="[MODEL_SIZE]" # 模型大小 (MB) DIM="[DIM]" # 模型维度 N_LAYERS="[N_LAYERS]" # Transformer层数 N_HEADS="[N_HEADS]" # 注意力头数 MAX_SEQ_LEN="[MAX_SEQ_LEN]" # 最大序列长度 USE_MOE="[USE_MOE]" # 是否使用MOE: true/false # 知识库配置 KNOWLEDGE_NUM="[KNOWLEDGE_NUM]" # 知识条目数量 KNOWLEDGE_LENGTH="[KNOWLEDGE_LENGTH]" # 单条知识长度 DISABLE_DB="[DISABLE_DB]" # 是否禁用数据库: true/false # ---------------------------------------------------------------------------- # 🤖 [AI构建] 训练超参数 # ---------------------------------------------------------------------------- EPOCHS="[EPOCHS]" # 训练轮次 EMBEDDING_EPOCH="[EMBEDDING_EPOCH]" # 嵌入层训练轮次 BATCH_SIZE="[BATCH_SIZE]" # 批次大小 ACCUMULATION_STEPS="[ACCUMULATION_STEPS]" # 梯度累积步数 LEARNING_RATE="[LEARNING_RATE]" # 学习率 DTYPE="[DTYPE]" # 数据类型: bfloat16, float16, float32 GRAD_CLIP="[GRAD_CLIP]" # 梯度裁剪阈值 WARMUP_ITERS="[WARMUP_ITERS]" # 预热迭代数 # 数据和缓存路径 DATA_PATH="[DATA_PATH]" # 训练数据路径 DATABASE_INIT_PATH="[DATABASE_INIT_PATH]" # 数据库初始化路径 CLUSTER_CACHE_PATH="[CLUSTER_CACHE_PATH]" # 聚类缓存路径 # 训练配置 NUM_WORKERS="[NUM_WORKERS]" # 数据加载工作进程数 LOG_INTERVAL="[LOG_INTERVAL]" # 日志记录间隔 SAVE_INTERVAL="[SAVE_INTERVAL]" # 模型保存间隔 # 性能分析配置 USE_PROFILE="[USE_PROFILE]" # 是否启用性能分析: true/false PROFILE_INTERVAL="[PROFILE_INTERVAL]" # 性能分析间隔 MEMORY_MONITOR_INTERVAL="[MEMORY_MONITOR_INTERVAL]" # 内存监控间隔 # 高级功能 USE_FLASH_ATTN="[USE_FLASH_ATTN]" # 是否使用Flash Attention: true/false FAST_CLUSTERING="[FAST_CLUSTERING]" # 是否使用快速聚类: true/false # ---------------------------------------------------------------------------- # 🤖 [AI构建] 预检查函数 # ---------------------------------------------------------------------------- check_environment() { echo "🔍 环境检查中..." # 检查GPU可用性 if ! nvidia-smi &> /dev/null; then echo "❌ 错误: 未检测到GPU或nvidia-smi不可用" exit 1 fi # 检查CUDA设备 IFS=',' read -ra DEVICES <<< "$CUDA_VISIBLE_DEVICES" for device in "${DEVICES[@]}"; do if ! nvidia-smi -i "$device" &> /dev/null; then echo "❌ 错误: GPU $device 不可用" exit 1 fi done # 检查Python环境 if ! python -c "import torch; print(f'PyTorch: {torch.__version__}')" 2>/dev/null; then echo "❌ 错误: PyTorch未正确安装" exit 1 fi # 检查数据文件 if [[ ! -f "$DATA_PATH" ]]; then echo "❌ 错误: 训练数据文件不存在: $DATA_PATH" exit 1 fi if [[ "$DATABASE_INIT_PATH" != "None" && ! -f "$DATABASE_INIT_PATH" ]]; then echo "❌ 错误: 数据库初始化文件不存在: $DATABASE_INIT_PATH" exit 1 fi echo "✅ 环境检查通过" } # ---------------------------------------------------------------------------- # 🤖 [AI构建] 实验信息记录 # ---------------------------------------------------------------------------- log_experiment_info() { echo "📝 记录实验信息..." cat > "$LOG_DIR/experiment_info.txt" << EOF ======================================== MiniMind 实验信息 ======================================== 实验版本: $EXPERIMENT_VERSION 实验描述: $EXPERIMENT_DESCRIPTION 研究者: $RESEARCHER_NAME 开始时间: $EXPERIMENT_DATE ======================================== 硬件配置: GPU设备: $CUDA_VISIBLE_DEVICES 进程数: $NUM_PROCESSES 混合精度: $MIXED_PRECISION ======================================== 模型配置: 模型类型: $MODEL_TYPE 模型大小: $MODEL_SIZE MB 维度: $DIM 层数: $N_LAYERS 注意力头数: $N_HEADS 最大序列长度: $MAX_SEQ_LEN 使用MOE: $USE_MOE ======================================== 训练配置: 训练轮次: $EPOCHS 批次大小: $BATCH_SIZE 学习率: $LEARNING_RATE 梯度累积: $ACCUMULATION_STEPS 数据类型: $DTYPE ======================================== 数据路径: 训练数据: $DATA_PATH 数据库初始化: $DATABASE_INIT_PATH 聚类缓存: $CLUSTER_CACHE_PATH ======================================== EOF } # ---------------------------------------------------------------------------- # 🤖 [AI构建] 主执行函数 # ---------------------------------------------------------------------------- run_experiment() { echo "🚀 开始执行实验 $EXPERIMENT_VERSION" echo "📄 实验描述: $EXPERIMENT_DESCRIPTION" echo "⏰ 开始时间: $EXPERIMENT_DATE" # 构建accelerate命令 local accelerate_cmd="CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" # 根据是否使用uv选择执行方式 if command -v uv &> /dev/null && [[ -f "pyproject.toml" ]]; then accelerate_cmd+=" uv run -p .venv python -m accelerate.commands.launch" else accelerate_cmd+=" accelerate launch" fi # 添加accelerate参数 if [[ "$NUM_PROCESSES" -gt 1 ]]; then accelerate_cmd+=" --multi_gpu" fi accelerate_cmd+=" --num_processes=$NUM_PROCESSES" accelerate_cmd+=" --mixed_precision=$MIXED_PRECISION" accelerate_cmd+=" --main_process_port=$MAIN_PROCESS_PORT" accelerate_cmd+=" train_pretrain_accelerate.py" # 添加训练参数 accelerate_cmd+=" --out_dir \"$LOG_DIR\"" accelerate_cmd+=" --epochs $EPOCHS" accelerate_cmd+=" --embedding_epoch $EMBEDDING_EPOCH" accelerate_cmd+=" --batch_size $BATCH_SIZE" accelerate_cmd+=" --learning_rate $LEARNING_RATE" accelerate_cmd+=" --dtype $DTYPE" accelerate_cmd+=" --num_workers $NUM_WORKERS" accelerate_cmd+=" --accumulation_steps $ACCUMULATION_STEPS" accelerate_cmd+=" --grad_clip $GRAD_CLIP" accelerate_cmd+=" --warmup_iters $WARMUP_ITERS" accelerate_cmd+=" --log_interval $LOG_INTERVAL" accelerate_cmd+=" --save_interval $SAVE_INTERVAL" accelerate_cmd+=" --dim $DIM" accelerate_cmd+=" --n_layers $N_LAYERS" accelerate_cmd+=" --n_heads $N_HEADS" accelerate_cmd+=" --max_seq_len $MAX_SEQ_LEN" accelerate_cmd+=" --data_path \"$DATA_PATH\"" accelerate_cmd+=" --knowledge_num $KNOWLEDGE_NUM" accelerate_cmd+=" --knowledge_length $KNOWLEDGE_LENGTH" accelerate_cmd+=" --database_init_path \"$DATABASE_INIT_PATH\"" accelerate_cmd+=" --memory_monitor_interval $MEMORY_MONITOR_INTERVAL" accelerate_cmd+=" --model_type \"$MODEL_TYPE\"" accelerate_cmd+=" --model_size $MODEL_SIZE" # 可选参数 if [[ "$USE_PROFILE" == "true" ]]; then accelerate_cmd+=" --profile" accelerate_cmd+=" --profile_interval $PROFILE_INTERVAL" fi if [[ "$USE_FLASH_ATTN" == "true" ]]; then accelerate_cmd+=" --use_flash_attn" fi if [[ "$FAST_CLUSTERING" == "true" ]]; then accelerate_cmd+=" --fast_clustering" fi if [[ "$DISABLE_DB" == "true" ]]; then accelerate_cmd+=" --disable_db" fi if [[ "$CLUSTER_CACHE_PATH" != "None" ]]; then accelerate_cmd+=" --cluster_cache_path \"$CLUSTER_CACHE_PATH\"" fi # SwanLab配置 accelerate_cmd+=" --use_swanlab" accelerate_cmd+=" --swanlab_project \"$SWANLAB_PROJECT\"" echo "📋 执行命令:" echo "$accelerate_cmd" echo # 记录命令到日志文件 echo "执行命令: $accelerate_cmd" >> "$LOG_FILE" echo "开始时间: $(date)" >> "$LOG_FILE" # 使用nohup执行训练(后台运行,输出写入日志文件) echo "🔄 使用nohup后台运行训练,输出将写入日志文件: $LOG_FILE" echo "开始时间: $(date)" >> "$LOG_FILE" # 创建训练脚本 train_script="/tmp/train_${EXPERIMENT_VERSION}.sh" cat > "$train_script" << EOF #!/bin/bash cd /home/pci/ycz/Code/pretrain-worktree source /home/pci/ycz/Code/pretrain-worktree/.venv/bin/activate $accelerate_cmd echo "结束时间: \$(date)" echo "退出代码: \$?" EOF chmod +x "$train_script" # 使用nohup后台运行 nohup bash "$train_script" >> "$LOG_FILE" 2>&1 & local train_pid=$! echo "🔥 训练进程已启动,PID: $train_pid" echo "训练PID: $train_pid" >> "$LOG_FILE" echo "训练脚本: $train_script" >> "$LOG_FILE" # 等待几秒确保进程启动 sleep 5 # 检查进程是否还在运行 if kill -0 $train_pid 2>/dev/null; then echo "✅ 训练进程正在后台运行" echo "📋 实时查看日志: tail -f $LOG_FILE" echo "📋 检查进程状态: ps -p $train_pid" echo "🛑 停止训练: kill $train_pid" echo "⏰ 预计训练时间: 根据配置而定" echo "📈 SwanLab: https://swanlab.cn/project/$SWANLAB_PROJECT" echo "" echo "训练正在后台运行,可以安全关闭终端。" else echo "❌ 训练进程启动失败" echo "📋 查看日志: $LOG_FILE" exit 1 fi } # ---------------------------------------------------------------------------- # 🤖 [AI构建] 清理函数 # ---------------------------------------------------------------------------- cleanup() { echo "🧹 清理临时文件..." # 在这里添加清理逻辑 } # ---------------------------------------------------------------------------- # 🤖 [AI构建] 信号处理 # ---------------------------------------------------------------------------- trap cleanup EXIT trap 'echo "❌ 实验被中断"; cleanup; exit 130' INT TERM # ---------------------------------------------------------------------------- # 🤖 [AI构建] 主程序入口 # ---------------------------------------------------------------------------- main() { echo "============================================================================" echo "🧠 MiniMind 预训练实验" echo "============================================================================" # 执行检查和初始化 check_environment log_experiment_info # 运行实验 run_experiment echo "============================================================================" echo "✅ 实验 $EXPERIMENT_VERSION 完成" echo "📅 完成时间: $(date)" echo "============================================================================" } # 执行主程序 main "$@"