#!/bin/bash # ============================================================================ # MiniMind 实验脚本 - Experiment 1.4.8 # ============================================================================ # # 🎯 实验目标: # 基于实验1.4.7,升级GatedMemoryFusion从门控MLP为交叉注意力机制 # # 使用方法: # bash run_file/experiment_1_4_8.sh # ============================================================================ # ---------------------------------------------------------------------------- # 🧑‍🔬 实验基本信息 # ---------------------------------------------------------------------------- EXPERIMENT_VERSION="1.4.8" EXPERIMENT_DESCRIPTION="交叉注意力记忆融合机制实验 - 从门控MLP升级为Cross-Attention" RESEARCHER_NAME="AI Assistant" EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')" # ---------------------------------------------------------------------------- # 🤖 环境配置 # ---------------------------------------------------------------------------- # 调试和监控环境变量 export NCCL_DEBUG=INFO export PYTHONFAULTHANDLER=1 export CUDA_LAUNCH_BLOCKING=1 # SwanLab 配置 export SWANLAB_PROJECT="MiniMind-Experiment-1.4.8" # 日志配置 LOG_DIR="out/experiment_${EXPERIMENT_VERSION//./_}" mkdir -p "$LOG_DIR" LOG_FILE="$LOG_DIR/experiment.log" # ---------------------------------------------------------------------------- # 🤖 硬件配置 # ---------------------------------------------------------------------------- CUDA_VISIBLE_DEVICES="0" NUM_PROCESSES="1" MIXED_PRECISION="bf16" MAIN_PROCESS_PORT="29500" # ---------------------------------------------------------------------------- # 🤖 模型架构参数 # ---------------------------------------------------------------------------- MODEL_TYPE="model_memory" # 🔥 使用升级的Cross-Attention Memory模型 MODEL_SIZE="50.0" DIM="512" N_LAYERS="8" N_HEADS="32" MAX_SEQ_LEN="512" USE_MOE="false" # 知识库配置(沿用1.4.7配置确保对比公平) KNOWLEDGE_NUM="1048576" # 1024x1024 = 1048576 (1M entries) KNOWLEDGE_LENGTH="32" # 每个记忆条目32个token(与1.4.7保持一致) KNOWLEDGE_DIM="128" # 知识向量维度 DISABLE_DB="false" # ---------------------------------------------------------------------------- # 🤖 训练超参数 # ---------------------------------------------------------------------------- EPOCHS="3" EMBEDDING_EPOCH="2" BATCH_SIZE="128" # 与1.4.7保持一致 ACCUMULATION_STEPS="8" # 与1.4.7保持一致 LEARNING_RATE="2e-4" DTYPE="bfloat16" GRAD_CLIP="1.0" WARMUP_ITERS="0" # 平衡损失配置 BALANCE_LOSS_COEF="0.01" # 与1.4.7保持一致 # 数据和缓存路径(沿用1.4.7保证对比公平性) DATA_PATH="/home/pci/ycz/Code/Minimind/dataset/stable/merged_pretrain.jsonl" DATABASE_INIT_PATH="/home/pci/ycz/Code/Minimind/dataset/stable/sentence_trex_data.json" CLUSTER_CACHE_PATH="cache/memory_bank_init_1048576_32.pt" # 使用1.4.7的缓存配置 VAL_DATA_PATH="dataset/stable/eval_data.json" # 训练配置 NUM_WORKERS="1" LOG_INTERVAL="100" VAL_INTERVAL="100" SAVE_INTERVAL="10000" # 性能分析配置 USE_PROFILE="true" PROFILE_INTERVAL="10" MEMORY_MONITOR_INTERVAL="100" # 高级功能 USE_FLASH_ATTN="true" FAST_CLUSTERING="true" # ---------------------------------------------------------------------------- # 🤖 预检查函数 # ---------------------------------------------------------------------------- check_environment() { echo "🔍 环境检查中..." # 检查GPU可用性 if ! nvidia-smi &> /dev/null; then echo "❌ 错误: 未检测到GPU或nvidia-smi不可用" exit 1 fi # 检查CUDA设备 if ! nvidia-smi -i "$CUDA_VISIBLE_DEVICES" &> /dev/null; then echo "❌ 错误: GPU $CUDA_VISIBLE_DEVICES 不可用" exit 1 fi # 检查Python环境 if ! .venv/bin/python -c "import torch; print(f'PyTorch: {torch.__version__}')" 2>/dev/null; then echo "❌ 错误: PyTorch未正确安装" exit 1 fi # 检查数据文件 if [[ ! -f "$DATA_PATH" ]]; then echo "❌ 错误: 训练数据文件不存在: $DATA_PATH" exit 1 fi if [[ ! -f "$DATABASE_INIT_PATH" ]]; then echo "❌ 错误: 数据库初始化文件不存在: $DATABASE_INIT_PATH" exit 1 fi # 🔥 检查Cross-Attention Memory模型实现 if ! .venv/bin/python -c "from model.model_memory import *; print('Cross-Attention Memory模型实现检查通过')" 2>/dev/null; then echo "❌ 错误: Cross-Attention Memory模型实现存在问题" echo "请确保model/model_memory.py文件存在且可正常导入" exit 1 fi # 检查新的GatedMemoryFusion实现 if ! .venv/bin/python -c "from model.model_memory import GatedMemoryFusion; import torch.nn as nn; fusion = GatedMemoryFusion(type('Config', (), {'dim': 512})()); assert hasattr(fusion, 'cross_attention'), 'Missing cross_attention'; print('GatedMemoryFusion交叉注意力检查通过')" 2>/dev/null; then echo "❌ 错误: GatedMemoryFusion缺少交叉注意力机制" exit 1 fi echo "✅ 环境检查通过" } # ---------------------------------------------------------------------------- # 🤖 实验信息记录 # ---------------------------------------------------------------------------- log_experiment_info() { echo "📝 记录实验信息..." cat > "$LOG_DIR/experiment_info.txt" << EOF ======================================== MiniMind 实验信息 ======================================== 实验版本: $EXPERIMENT_VERSION 实验描述: $EXPERIMENT_DESCRIPTION 研究者: $RESEARCHER_NAME 开始时间: $EXPERIMENT_DATE ======================================== 硬件配置: GPU设备: $CUDA_VISIBLE_DEVICES 进程数: $NUM_PROCESSES 混合精度: $MIXED_PRECISION ======================================== 模型配置: 模型类型: $MODEL_TYPE (Cross-Attention Memory) 模型大小: $MODEL_SIZE MB 维度: $DIM 层数: $N_LAYERS 注意力头数: $N_HEADS 最大序列长度: $MAX_SEQ_LEN 知识库大小: $KNOWLEDGE_NUM (1M entries) 知识长度: $KNOWLEDGE_LENGTH (token序列) 知识维度: $KNOWLEDGE_DIM (兼容性保留) ======================================== 训练配置: 训练轮次: $EPOCHS 批次大小: $BATCH_SIZE 学习率: $LEARNING_RATE 梯度累积: $ACCUMULATION_STEPS 数据类型: $DTYPE 平衡损失系数: $BALANCE_LOSS_COEF ======================================== Cross-Attention Memory配置: 融合机制: Cross-Attention (vs 1.4.6的门控MLP) 注意力头数: 8头 (dim=512 -> 8*64) 注意力Dropout: 0.1 融合Dropout: 0.15 (比普通Dropout稍高) 层标准化: 是 (残差连接后) 注意力熵正则化: 0.01 (可调整) 温度参数: 可训练 (防止过度集中) ======================================== 数据路径: 训练数据: $DATA_PATH 验证数据: $VAL_DATA_PATH 数据库初始化: $DATABASE_INIT_PATH 聚类缓存: $CLUSTER_CACHE_PATH ======================================== EOF } # ---------------------------------------------------------------------------- # 🤖 主执行函数 # ---------------------------------------------------------------------------- run_experiment() { echo "🚀 开始执行实验 $EXPERIMENT_VERSION" echo "📄 实验描述: $EXPERIMENT_DESCRIPTION" echo "⏰ 开始时间: $EXPERIMENT_DATE" # 构建训练命令 local train_cmd="CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES .venv/bin/python train_pretrain_accelerate.py" # 添加训练参数 train_cmd+=" --out_dir \"$LOG_DIR\"" train_cmd+=" --epochs $EPOCHS" train_cmd+=" --embedding_epoch $EMBEDDING_EPOCH" train_cmd+=" --batch_size $BATCH_SIZE" train_cmd+=" --learning_rate $LEARNING_RATE" train_cmd+=" --dtype $DTYPE" train_cmd+=" --num_workers $NUM_WORKERS" train_cmd+=" --accumulation_steps $ACCUMULATION_STEPS" train_cmd+=" --grad_clip $GRAD_CLIP" train_cmd+=" --warmup_iters $WARMUP_ITERS" train_cmd+=" --log_interval $LOG_INTERVAL" train_cmd+=" --val_interval $VAL_INTERVAL" train_cmd+=" --save_interval $SAVE_INTERVAL" train_cmd+=" --dim $DIM" train_cmd+=" --n_layers $N_LAYERS" train_cmd+=" --n_heads $N_HEADS" train_cmd+=" --max_seq_len $MAX_SEQ_LEN" train_cmd+=" --data_path \"$DATA_PATH\"" train_cmd+=" --val_data_path \"$VAL_DATA_PATH\"" train_cmd+=" --knowledge_num $KNOWLEDGE_NUM" train_cmd+=" --knowledge_length $KNOWLEDGE_LENGTH" train_cmd+=" --database_init_path \"$DATABASE_INIT_PATH\"" train_cmd+=" --memory_monitor_interval $MEMORY_MONITOR_INTERVAL" train_cmd+=" --model_type \"$MODEL_TYPE\"" train_cmd+=" --model_size $MODEL_SIZE" train_cmd+=" --balance_loss_coef $BALANCE_LOSS_COEF" # 可选参数 if [[ "$USE_PROFILE" == "true" ]]; then train_cmd+=" --profile" train_cmd+=" --profile_interval $PROFILE_INTERVAL" fi if [[ "$USE_FLASH_ATTN" == "true" ]]; then train_cmd+=" --use_flash_attn" fi if [[ "$FAST_CLUSTERING" == "true" ]]; then train_cmd+=" --fast_clustering" fi if [[ "$CLUSTER_CACHE_PATH" != "None" ]]; then train_cmd+=" --cluster_cache_path \"$CLUSTER_CACHE_PATH\"" fi # SwanLab配置 train_cmd+=" --use_swanlab" train_cmd+=" --swanlab_project \"$SWANLAB_PROJECT\"" train_cmd+=" --swanlab_online True" echo "📋 执行命令:" echo "$train_cmd" echo # 记录命令到日志文件 echo "执行命令: $train_cmd" >> "$LOG_FILE" echo "开始时间: $(date)" >> "$LOG_FILE" # 使用nohup执行训练(后台运行,输出写入日志文件) echo "🔄 使用nohup后台运行训练,输出将写入日志文件: $LOG_FILE" # 创建训练脚本 train_script="/tmp/train_${EXPERIMENT_VERSION//./_}.sh" cat > "$train_script" << EOF #!/bin/bash cd /home/pci/ycz/Code/pretrain-worktree source /home/pci/ycz/Code/pretrain-worktree/.venv/bin/activate $train_cmd echo "结束时间: \$(date)" echo "退出代码: \$?" EOF chmod +x "$train_script" # 使用nohup后台运行 nohup bash "$train_script" >> "$LOG_FILE" 2>&1 & local train_pid=$! echo "🔥 训练进程已启动,PID: $train_pid" echo "训练PID: $train_pid" >> "$LOG_FILE" echo "训练脚本: $train_script" >> "$LOG_FILE" # 等待几秒确保进程启动 sleep 5 # 检查进程是否还在运行 if kill -0 $train_pid 2>/dev/null; then echo "✅ 训练进程正在后台运行" echo "📋 实时查看日志: tail -f $LOG_FILE" echo "📋 检查进程状态: ps -p $train_pid" echo "🛑 停止训练: kill $train_pid" echo "📈 SwanLab: https://swanlab.cn/project/$SWANLAB_PROJECT" echo "" echo "🧠 Cross-Attention记忆融合机制正在测试中..." echo " 🔥 融合机制: 门控MLP → 交叉注意力 (8头)" echo " 🔥 注意力维度: 512维 → 8头*64维/头" echo " 🔥 Dropout策略: 注意力(0.1) + 融合(0.15)" echo " 🔥 层标准化: 残差连接后应用" echo " 🔥 温度参数: 可训练防过度集中" echo " 🔥 正则化: 注意力熵正则化(0.01)" echo "" echo "📊 与实验1.4.7对比:" echo " - 融合机制: 门控MLP → Cross-Attention" echo " - 表达能力: 线性变换 → 多头注意力" echo " - 记忆交互: 串联拼接 → 查询-键-值交互" echo " - 正则化: 基础Dropout → 熵正则化" echo "" echo "训练正在后台运行,可以安全关闭终端。" echo "" echo "🎯 预期改进:" echo " - 推理Loss < 2.47 (优于1.4.7的2.47)" echo " - 记忆选择更精准和适应性" echo " - 生成文本连贯性显著提升" echo " - 利用1.4.7的文本初始化优势" echo "" echo "⏱️ 预计训练时间: 15-20小时" echo "📊 预计GPU占用: ~23GB" echo "" else echo "❌ 训练进程启动失败" echo "📋 查看日志: $LOG_FILE" exit 1 fi } # ---------------------------------------------------------------------------- # 🤖 清理函数 # ---------------------------------------------------------------------------- cleanup() { echo "🧹 清理临时文件..." # 删除临时验证文件 rm -f /tmp/temp_val.jsonl } # ---------------------------------------------------------------------------- # 🤖 信号处理 # ---------------------------------------------------------------------------- trap cleanup EXIT trap 'echo "❌ 实验被中断"; cleanup; exit 130' INT TERM # ---------------------------------------------------------------------------- # 🤖 主程序入口 # ---------------------------------------------------------------------------- main() { echo "============================================================================" echo "🧠 MiniMind 预训练实验 1.4.8" echo "🎯 Cross-Attention记忆融合机制 - 从门控MLP升级为多头注意力" echo "============================================================================" echo "" echo "🔥 核心创新:" echo " ► 融合机制: 门控MLP → Cross-Attention (8头)" echo " ► 交互方式: 串联拼接 → 查询-键-值交互" echo " ► 正则化: 基础Dropout → 注意力熵正则化" echo " ► 自适应: 固定权重 → 可训练温度参数" echo "" echo "🎯 实验假设:" echo " ✓ 交叉注意力提供更精准的记忆选择" echo " ✓ 多头机制捕获记忆多维特征" echo " ✓ 熵正则化防止注意力过度集中" echo "" echo "============================================================================" # 执行检查和初始化 check_environment log_experiment_info # 运行实验 run_experiment echo "============================================================================" echo "✅ 实验 $EXPERIMENT_VERSION 启动完成" echo "📅 启动时间: $(date)" echo "============================================================================" } # 执行主程序 main "$@"