Minimind/scripts/web_demo.py
2025-04-04 11:25:40 +08:00

294 lines
12 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import random
import re
import time
import numpy as np
import streamlit as st
import torch
st.set_page_config(page_title="MiniMind", initial_sidebar_state="collapsed")
# 在文件开头的 CSS 样式中修改按钮样式
st.markdown("""
<style>
/* 添加操作按钮样式 */
.stButton button {
border-radius: 50% !important; /* 改为圆形 */
width: 32px !important; /* 固定宽度 */
height: 32px !important; /* 固定高度 */
padding: 0 !important; /* 移除内边距 */
background-color: transparent !important;
border: 1px solid #ddd !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
font-size: 14px !important;
color: #666 !important; /* 更柔和的颜色 */
margin: 5px 10px 5px 0 !important; /* 调整按钮间距 */
}
.stButton button:hover {
border-color: #999 !important;
color: #333 !important;
background-color: #f5f5f5 !important;
}
.stMainBlockContainer > div:first-child {
margin-top: -50px !important;
}
.stApp > div:last-child {
margin-bottom: -35px !important;
}
/* 重置按钮基础样式 */
.stButton > button {
all: unset !important; /* 重置所有默认样式 */
box-sizing: border-box !important;
border-radius: 50% !important;
width: 18px !important;
height: 18px !important;
min-width: 18px !important;
min-height: 18px !important;
max-width: 18px !important;
max-height: 18px !important;
padding: 0 !important;
background-color: transparent !important;
border: 1px solid #ddd !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
font-size: 14px !important;
color: #888 !important;
cursor: pointer !important;
transition: all 0.2s ease !important;
margin: 0 2px !important; /* 调整这里的 margin 值 */
}
</style>
""", unsafe_allow_html=True)
system_prompt = []
device = "cuda" if torch.cuda.is_available() else "cpu"
def process_assistant_content(content):
if 'R1' not in MODEL_PATHS[selected_model][1]:
return content
if '<think>' in content and '</think>' in content:
content = re.sub(r'(<think>)(.*?)(</think>)',
r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理内容(展开)</summary>\2</details>',
content,
flags=re.DOTALL)
if '<think>' in content and '</think>' not in content:
content = re.sub(r'<think>(.*?)$',
r'<details open style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理中...</summary>\1</details>',
content,
flags=re.DOTALL)
if '<think>' not in content and '</think>' in content:
content = re.sub(r'(.*?)</think>',
r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理内容(展开)</summary>\1</details>',
content,
flags=re.DOTALL)
return content
@st.cache_resource
def load_model_tokenizer(model_path):
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True
)
model = model.eval().to(device)
return model, tokenizer
def clear_chat_messages():
del st.session_state.messages
del st.session_state.chat_messages
def init_chat_messages():
if "messages" in st.session_state:
for i, message in enumerate(st.session_state.messages):
if message["role"] == "assistant":
with st.chat_message("assistant", avatar=image_url):
st.markdown(process_assistant_content(message["content"]), unsafe_allow_html=True)
# 在消息内容下方添加按钮
if st.button("🗑", key=f"delete_{i}"):
st.session_state.messages.pop(i)
st.session_state.messages.pop(i - 1)
st.session_state.chat_messages.pop(i)
st.session_state.chat_messages.pop(i - 1)
st.rerun()
else:
st.markdown(
f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px; background-color: #ddd; border-radius: 10px; color: black;">{message["content"]}</div></div>',
unsafe_allow_html=True)
else:
st.session_state.messages = []
st.session_state.chat_messages = []
return st.session_state.messages
# 添加这两个辅助函数
def regenerate_answer(index):
st.session_state.messages.pop()
st.session_state.chat_messages.pop()
st.rerun()
def delete_conversation(index):
st.session_state.messages.pop(index)
st.session_state.messages.pop(index - 1)
st.session_state.chat_messages.pop(index)
st.session_state.chat_messages.pop(index - 1)
st.rerun()
# 侧边栏模型选择
st.sidebar.title("模型设定调整")
st.sidebar.text("【注】训练数据偏差,增加上下文记忆时\n多轮对话(较单轮)容易出现能力衰减")
st.session_state.history_chat_num = st.sidebar.slider("Number of Historical Dialogues", 0, 6, 0, step=2)
# st.session_state.history_chat_num = 0
st.session_state.max_new_tokens = st.sidebar.slider("Max Sequence Length", 256, 8192, 8192, step=1)
st.session_state.top_p = st.sidebar.slider("Top-P", 0.8, 0.99, 0.85, step=0.01)
st.session_state.temperature = st.sidebar.slider("Temperature", 0.6, 1.2, 0.85, step=0.01)
# 模型路径映射
MODEL_PATHS = {
"MiniMind2-R1 (0.1B)": ["../MiniMind2-R1", "MiniMind2-R1"],
"MiniMind2-Small-R1 (0.02B)": ["../MiniMind2-Small-R1", "MiniMind2-Small-R1"],
"MiniMind2 (0.1B)": ["../MiniMind2", "MiniMind2"],
"MiniMind2-MoE (0.15B)": ["../MiniMind2-MoE", "MiniMind2-MoE"],
"MiniMind2-Small (0.02B)": ["../MiniMind2-Small", "MiniMind2-Small"],
"MiniMind-V1 (0.1B)": ["../minimind-v1", "MiniMind-V1"],
"MiniMind-V1-MoE (0.1B)": ["../minimind-v1-moe", "MiniMind-V1-MoE"],
"MiniMind-V1-Small (0.02B)": ["../minimind-v1-small", "MiniMind-V1-Small"],
}
selected_model = st.sidebar.selectbox('Models', list(MODEL_PATHS.keys()), index=2) # 默认选择 MiniMind2
model_path = MODEL_PATHS[selected_model][0]
slogan = f"Hi, I'm {MODEL_PATHS[selected_model][1]}"
image_url = "https://www.modelscope.cn/api/v1/studio/gongjy/MiniMind/repo?Revision=master&FilePath=images%2Flogo2.png&View=true"
st.markdown(
f'<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 0; padding: 0;">'
'<div style="font-style: italic; font-weight: 900; margin: 0; padding-top: 4px; display: flex; align-items: center; justify-content: center; flex-wrap: wrap; width: 100%;">'
f'<img src="{image_url}" style="width: 45px; height: 45px; "> '
f'<span style="font-size: 26px; margin-left: 10px;">{slogan}</span>'
'</div>'
'<span style="color: #bbb; font-style: italic; margin-top: 6px; margin-bottom: 10px;">内容完全由AI生成请务必仔细甄别<br>Content AI-generated, please discern with care</span>'
'</div>',
unsafe_allow_html=True
)
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main():
model, tokenizer = load_model_tokenizer(model_path)
# 初始化消息列表
if "messages" not in st.session_state:
st.session_state.messages = []
st.session_state.chat_messages = []
# Use session state messages
messages = st.session_state.messages
# 在显示历史消息的循环中
for i, message in enumerate(messages):
if message["role"] == "assistant":
with st.chat_message("assistant", avatar=image_url):
st.markdown(process_assistant_content(message["content"]), unsafe_allow_html=True)
if st.button("×", key=f"delete_{i}"):
# 删除当前消息及其之后的所有消息
st.session_state.messages = st.session_state.messages[:i - 1]
st.session_state.chat_messages = st.session_state.chat_messages[:i - 1]
st.rerun()
else:
st.markdown(
f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px; background-color: gray; border-radius: 10px; color:white; ">{message["content"]}</div></div>',
unsafe_allow_html=True)
# 处理新的输入或重新生成
prompt = st.chat_input(key="input", placeholder="给 MiniMind 发送消息")
# 检查是否需要重新生成
if hasattr(st.session_state, 'regenerate') and st.session_state.regenerate:
prompt = st.session_state.last_user_message
regenerate_index = st.session_state.regenerate_index # 获取重新生成的位置
# 清除所有重新生成相关的状态
delattr(st.session_state, 'regenerate')
delattr(st.session_state, 'last_user_message')
delattr(st.session_state, 'regenerate_index')
if prompt:
st.markdown(
f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px; background-color: gray; border-radius: 10px; color:white; ">{prompt}</div></div>',
unsafe_allow_html=True)
messages.append({"role": "user", "content": prompt})
st.session_state.chat_messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant", avatar=image_url):
placeholder = st.empty()
random_seed = random.randint(0, 2 ** 32 - 1)
setup_seed(random_seed)
st.session_state.chat_messages = system_prompt + st.session_state.chat_messages[
-(st.session_state.history_chat_num + 1):]
new_prompt = tokenizer.apply_chat_template(
st.session_state.chat_messages,
tokenize=False,
add_generation_prompt=True
)[-(st.session_state.max_new_tokens - 1):]
x = torch.tensor(tokenizer(new_prompt)['input_ids'], device=device).unsqueeze(0)
with torch.no_grad():
res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=st.session_state.max_new_tokens,
temperature=st.session_state.temperature,
top_p=st.session_state.top_p, stream=True)
try:
for y in res_y:
answer = tokenizer.decode(y[0].tolist(), skip_special_tokens=True)
if (answer and answer[-1] == '<EFBFBD>') or not answer:
continue
placeholder.markdown(process_assistant_content(answer), unsafe_allow_html=True)
except StopIteration:
print("No answer")
assistant_answer = answer.replace(new_prompt, "")
messages.append({"role": "assistant", "content": assistant_answer})
st.session_state.chat_messages.append({"role": "assistant", "content": assistant_answer})
with st.empty():
if st.button("×", key=f"delete_{len(messages) - 1}"):
st.session_state.messages = st.session_state.messages[:-2]
st.session_state.chat_messages = st.session_state.chat_messages[:-2]
st.rerun()
if __name__ == "__main__":
from transformers import AutoModelForCausalLM, AutoTokenizer
main()