Minimind/model/model_memory_1_4_1.py
Yu Chengzhang cf9acb2064 Experiment 1.4.6: Token-based Memory架构实现
完成实验1.4.6的Token-based Memory架构,实现以下改进:
- 记忆库从连续特征向量存储改为离散token ID存储
- 实现双向编解码机制(embedding→特征→output→token)
- 优化EMA更新参数:ema_decay=0.9, ema_update_freq=5
- 显著降低GPU显存使用:从23GB降至13GB(-43%)
- 推理Loss从2.6382降至2.6142(改善0.9%)

技术亮点:
- 有效表示维度从128提升至4096(32x增强)
- 稀疏缓存机制避免内存爆炸
- 立即压缩策略平衡显存和性能
- 人类可解释的记忆内容

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-14 23:04:52 +08:00

419 lines
18 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import struct
import inspect
import time
from .LMConfig import LMConfig
from typing import Any, Optional, Tuple, List, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return pos_cis
def apply_rotary_emb(xq, xk, pos_cis):
def unite_shape(pos_cis, x):
ndim = x.ndim
assert 0 <= 1 < ndim
assert pos_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return pos_cis.view(*shape)
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
pos_cis = unite_shape(pos_cis, xq_)
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
"""Self attention module without KV cache"""
def __init__(self, args: LMConfig):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
self.n_local_heads = args.n_heads
self.n_local_kv_heads = self.n_kv_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, x: torch.Tensor, pos_cis: torch.Tensor):
"""Forward pass without KV cache"""
bsz, seq_len, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
# 注意完全去除了KV cache相关代码
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
)
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
output = F.scaled_dot_product_attention(
xq, xk, xv,
attn_mask=None,
dropout_p=dropout_p,
is_causal=True
)
else:
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores += self.mask[:, :, :seq_len, :seq_len]
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = scores @ xv
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
output = self.resid_dropout(self.wo(output))
return output
class MemoryGate(nn.Module):
"""Product Key Memory-based gate mechanism for memory selection"""
def __init__(self, config: LMConfig):
super().__init__()
self.config = config
self.dim = config.dim
self.knowledge_num = config.knowledge_num
self.knowledge_dim = config.knowledge_dim
self.num_selected = getattr(config, 'num_selected', 16)
# 确保知识库数量是完全平方数
assert int(self.knowledge_num ** 0.5) ** 2 == self.knowledge_num, \
f"knowledge_num ({self.knowledge_num}) must be a perfect square for product key memory"
self.num_keys = int(self.knowledge_num ** 0.5)
# 查询投影将输入维度映射到knowledge_dim * 2用于两个product key
self.gate_proj = nn.Linear(self.dim, self.knowledge_dim, bias=False)
# Product Key Memory: 两个独立的键集合
self.keys = nn.Parameter(torch.randn(2, self.num_keys, self.knowledge_dim // 2))
self.dropout = nn.Dropout(config.dropout)
def forward(self, x: torch.Tensor):
"""
Args:
x: [batch_size, seq_len, dim]
Returns:
memory_indices: [batch_size, seq_len, num_selected]
memory_scores: [batch_size, seq_len, num_selected]
"""
bsz, seq_len, _ = x.shape
# 生成查询向量
queries = self.gate_proj(x) # [batch, seq_len, knowledge_dim]
# 分割为两部分用于product key
q1 = queries[:, :, :self.knowledge_dim // 2] # [batch, seq_len, knowledge_dim // 2]
q2 = queries[:, :, self.knowledge_dim // 2:] # [batch, seq_len, knowledge_dim // 2]
# 计算与两个键集合的相似度
scores_1 = torch.einsum('bsd,kd->bsk', q1, self.keys[0]) # [batch, seq_len, num_keys]
scores_2 = torch.einsum('bsd,kd->bsk', q2, self.keys[1]) # [batch, seq_len, num_keys]
# 获取top-k
topk_scores_1, topk_indices_1 = scores_1.topk(self.num_selected, dim=-1)
topk_scores_2, topk_indices_2 = scores_2.topk(self.num_selected, dim=-1)
# 组合product key的结果
combined_scores = topk_scores_1.unsqueeze(-1) + topk_scores_2.unsqueeze(-2) # [batch, seq_len, num_selected, num_selected]
combined_indices = topk_indices_1.unsqueeze(-1) * self.num_keys + topk_indices_2.unsqueeze(-2) # [batch, seq_len, num_selected, num_selected]
# 展平并选择最终的top-k
combined_scores = combined_scores.view(bsz, seq_len, -1)
combined_indices = combined_indices.view(bsz, seq_len, -1)
final_scores, final_pk_indices = combined_scores.topk(self.num_selected, dim=-1)
memory_indices = combined_indices.gather(-1, final_pk_indices)
# 归一化分数
memory_scores = F.softmax(final_scores, dim=-1)
memory_scores = self.dropout(memory_scores)
return memory_indices, memory_scores
class CrossAttentionMemory(nn.Module):
"""Cross attention using selected memory as K and V"""
def __init__(self, config: LMConfig):
super().__init__()
self.config = config
self.n_heads = config.n_heads
self.head_dim = config.dim // config.n_heads
self.dim = config.dim
self.knowledge_dim = config.knowledge_dim
# Q从self-attention输出计算
self.wq = nn.Linear(config.dim, config.dim, bias=False)
# K,V从记忆数据计算
self.wk = nn.Linear(config.knowledge_dim, config.dim, bias=False)
self.wv = nn.Linear(config.knowledge_dim, config.dim, bias=False)
# 输出投影
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x: torch.Tensor, memory_data: torch.Tensor, memory_scores: torch.Tensor):
"""
Args:
x: [batch_size, seq_len, dim] - Query from self attention
memory_data: [batch_size, seq_len, num_selected, knowledge_dim] - Selected memory data
memory_scores: [batch_size, seq_len, num_selected] - Memory selection weights
Returns:
output: [batch_size, seq_len, dim]
"""
bsz, seq_len, _ = x.shape
num_selected = memory_data.shape[2]
# 计算Query
q = self.wq(x) # [batch, seq_len, dim]
q = q.view(bsz, seq_len, self.n_heads, self.head_dim).transpose(1, 2) # [batch, n_heads, seq_len, head_dim]
# 对选中的记忆数据计算K和V
memory_flat = memory_data.view(bsz * seq_len * num_selected, self.knowledge_dim)
k_flat = self.wk(memory_flat) # [batch * seq_len * num_selected, dim]
v_flat = self.wv(memory_flat) # [batch * seq_len * num_selected, dim]
# 重塑K和V
k = k_flat.view(bsz, seq_len, num_selected, self.n_heads, self.head_dim).permute(0, 3, 1, 2, 4) # [batch, n_heads, seq_len, num_selected, head_dim]
v = v_flat.view(bsz, seq_len, num_selected, self.n_heads, self.head_dim).permute(0, 3, 1, 2, 4) # [batch, n_heads, seq_len, num_selected, head_dim]
# 扩展Q以匹配记忆维度进行交叉注意力
q_expanded = q.unsqueeze(3) # [batch, n_heads, seq_len, 1, head_dim]
# 计算注意力分数
# q_expanded: [batch, n_heads, seq_len, 1, head_dim]
# k: [batch, n_heads, seq_len, num_selected, head_dim]
scores = torch.matmul(q_expanded, k.transpose(-2, -1)) / math.sqrt(self.head_dim) # [batch, n_heads, seq_len, 1, num_selected]
scores = scores.squeeze(3) # [batch, n_heads, seq_len, num_selected]
# 应用记忆选择权重
memory_scores_expanded = memory_scores.unsqueeze(1).expand(-1, self.n_heads, -1, -1) # [batch, n_heads, seq_len, num_selected]
scores = scores + memory_scores_expanded.log() # 在log空间相加
# Softmax归一化
attn_weights = F.softmax(scores, dim=-1) # [batch, n_heads, seq_len, num_selected]
attn_weights = self.dropout(attn_weights)
# 应用注意力权重到V
# attn_weights: [batch, n_heads, seq_len, num_selected]
# v: [batch, n_heads, seq_len, num_selected, head_dim]
output = torch.einsum('bhlk,bhlkd->bhld', attn_weights, v) # [batch, n_heads, seq_len, head_dim]
# 重塑输出
output = output.transpose(1, 2).reshape(bsz, seq_len, self.dim) # [batch, seq_len, dim]
output = self.wo(output)
return output
class MiniMindBlock(nn.Module):
"""Transformer block with memory-based cross attention instead of FFN"""
def __init__(self, layer_id: int, config: LMConfig):
super().__init__()
self.n_heads = config.n_heads
self.dim = config.dim
self.head_dim = config.dim // config.n_heads
self.attention = Attention(config)
self.layer_id = layer_id
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.memory_norm = RMSNorm(config.dim, eps=config.norm_eps)
# 记忆相关模块
self.memory_gate = MemoryGate(config)
self.cross_attention_memory = CrossAttentionMemory(config)
def forward(self, x, pos_cis, memory_bank):
"""
Args:
x: [batch_size, seq_len, dim]
pos_cis: positional encoding
memory_bank: [knowledge_num, knowledge_dim] - shared memory bank
"""
# Self attention
h_attn = self.attention(self.attention_norm(x), pos_cis)
h = x + h_attn
# 使用h_attn作为门控和交叉注意力的输入核心self attention的输出
h_for_memory = self.memory_norm(h_attn)
# 门控选择记忆
memory_indices, memory_scores = self.memory_gate(h_for_memory)
# 根据索引获取记忆数据
bsz, seq_len, num_selected = memory_indices.shape
memory_indices_flat = memory_indices.view(-1)
selected_memory = memory_bank[memory_indices_flat] # [batch * seq_len * num_selected, knowledge_dim]
selected_memory = selected_memory.view(bsz, seq_len, num_selected, -1) # [batch, seq_len, num_selected, knowledge_dim]
# 交叉注意力Q来自h_attnK和V来自选中的记忆
memory_output = self.cross_attention_memory(h_for_memory, selected_memory, memory_scores)
# 残差连接
out = h + memory_output
return out
class MiniMindLM(PreTrainedModel):
config_class = LMConfig
def __init__(self, params: LMConfig = None):
self.params = params or LMConfig()
super().__init__(self.params)
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.tok_embeddings.weight = self.output.weight
self.register_buffer("pos_cis",
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
persistent=False)
# 初始化共享记忆库
self.memory_bank = nn.Parameter(
torch.randn(params.knowledge_num, params.knowledge_dim),
requires_grad=True
)
self.OUT = CausalLMOutputWithPast()
def forward(self,
input_ids: Optional[torch.Tensor] = None,
**args):
"""Forward pass without KV cache support"""
start_pos = args.get('start_pos', 0)
h = self.dropout(self.tok_embeddings(input_ids))
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
for layer in self.layers:
h = layer(h, pos_cis, self.memory_bank)
logits = self.output(self.norm(h))
# 统一不使用 aux_loss
aux_loss = 0
self.OUT.__setitem__('last_hidden_state', h)
self.OUT.__setitem__('logits', logits)
self.OUT.__setitem__('aux_loss', aux_loss)
self.OUT.__setitem__('past_key_values', None) # 不支持KV cache
return self.OUT
@torch.inference_mode()
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,
stream=False, rp=1., pad_token_id=0, num_return_sequences=1, **args):
"""Generate without KV cache"""
# 流式生成
if stream:
return self._stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args)
# 直接生成
generated = []
for i in range(input_ids.size(0)):
non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0)
for _ in range(num_return_sequences):
out = self._stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, **args)
tokens_list = [tokens[:, -1:] for tokens in out]
gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad
full_sequence = torch.cat([non_pad, gen], dim=-1)
generated.append(full_sequence)
max_length = max(seq.size(1) for seq in generated)
generated = [
torch.cat(
[seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)],
dim=-1)
for seq in generated
]
output = torch.cat(generated, dim=0)
res = output.view(input_ids.size(0) * num_return_sequences, -1)
return res
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args):
"""Stream generation without KV cache - regenerates full sequence each time"""
start = input_ids.shape[1]
while input_ids.shape[1] < start + max_new_tokens:
# 每次都重新计算整个序列因为没有KV cache
out = self(input_ids, **args)
logits = out.logits[:, -1, :]
# 重复惩罚
logits[:, list(set(input_ids.tolist()[0]))] /= rp
logits /= (temperature + 1e-9)
# Top-p采样
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
sorted_probs = F.softmax(sorted_logits, dim=-1)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = False
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = -float('Inf')
input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
yield input_ids[:, start:]
if input_ids_next.item() == eos_token_id:
break