Minimind/run_file/experiment_1_4_6.sh
Yu Chengzhang d07c2aa2e6 Experiment 1.4.6: Token-based Memory架构实现
完成实验1.4.6的Token-based Memory架构,实现以下改进:
- 记忆库从连续特征向量存储改为离散token ID存储
- 实现双向编解码机制(embedding→特征→output→token)
- 优化EMA更新参数:ema_decay=0.9, ema_update_freq=5
- 显著降低GPU显存使用:从23GB降至13GB(-43%)
- 推理Loss从2.6382降至2.6142(改善0.9%)

技术亮点:
- 有效表示维度从128提升至4096(32x增强)
- 稀疏缓存机制避免内存爆炸
- 立即压缩策略平衡显存和性能
- 人类可解释的记忆内容

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-12 11:07:23 +08:00

394 lines
14 KiB
Bash
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/bin/bash
# ============================================================================
# MiniMind 实验脚本 - Experiment 1.4.6
# ============================================================================
#
# 🎯 实验目标:
# 基于实验1.4.5实现Token-based Memory机制memory_bank存储token IDs而非特征向量
#
# 使用方法:
# bash run_file/experiment_1_4_6.sh
# ============================================================================
# ----------------------------------------------------------------------------
# 🧑‍🔬 实验基本信息
# ----------------------------------------------------------------------------
EXPERIMENT_VERSION="1.4.6"
EXPERIMENT_DESCRIPTION="Token-based Memory机制实验 - 可解释的记忆存储"
RESEARCHER_NAME="AI Assistant"
EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')"
# ----------------------------------------------------------------------------
# 🤖 环境配置
# ----------------------------------------------------------------------------
# 调试和监控环境变量
export NCCL_DEBUG=INFO
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=1
# SwanLab 配置
export SWANLAB_PROJECT="MiniMind-Experiment-1.4.6"
# 日志配置
LOG_DIR="out/experiment_${EXPERIMENT_VERSION}"
mkdir -p "$LOG_DIR"
LOG_FILE="$LOG_DIR/experiment.log"
# ----------------------------------------------------------------------------
# 🤖 硬件配置
# ----------------------------------------------------------------------------
CUDA_VISIBLE_DEVICES="0"
NUM_PROCESSES="1"
MIXED_PRECISION="bf16"
MAIN_PROCESS_PORT="29500"
# ----------------------------------------------------------------------------
# 🤖 模型架构参数
# ----------------------------------------------------------------------------
MODEL_TYPE="model_memory" # 🔥 新的Token-based Memory模型
MODEL_SIZE="50.0"
DIM="512"
N_LAYERS="8"
N_HEADS="32"
MAX_SEQ_LEN="512"
USE_MOE="false"
# 知识库配置Token-based Memory
KNOWLEDGE_NUM="1048576" # 1024x1024 = 1048576 (restored to 1M with sparse EMA buffer)
KNOWLEDGE_LENGTH="8" # 每个记忆条目8个token
KNOWLEDGE_DIM="128" # 保留兼容性,实际未使用
DISABLE_DB="false"
# ----------------------------------------------------------------------------
# 🤖 训练超参数
# ----------------------------------------------------------------------------
EPOCHS="3"
EMBEDDING_EPOCH="2"
BATCH_SIZE="48"
ACCUMULATION_STEPS="12"
LEARNING_RATE="2e-4"
DTYPE="bfloat16"
GRAD_CLIP="1.0"
WARMUP_ITERS="0"
# 平衡损失配置
BALANCE_LOSS_COEF="0.1"
# 数据和缓存路径沿用1.4.5保证对比公平性)
DATA_PATH="/home/pci/ycz/Code/Minimind/dataset/stable/merged_pretrain.jsonl"
DATABASE_INIT_PATH="/home/pci/ycz/Code/Minimind/dataset/stable/sentence_trex_data.json"
CLUSTER_CACHE_PATH="None" # 禁用聚类缓存
VAL_DATA_PATH="dataset/stable/eval_data.json"
# 训练配置
NUM_WORKERS="1"
LOG_INTERVAL="100"
VAL_INTERVAL="100"
SAVE_INTERVAL="10000"
# 性能分析配置
USE_PROFILE="true"
PROFILE_INTERVAL="10"
MEMORY_MONITOR_INTERVAL="100"
# 高级功能
USE_FLASH_ATTN="true"
FAST_CLUSTERING="true"
# ----------------------------------------------------------------------------
# 🤖 预检查函数
# ----------------------------------------------------------------------------
check_environment() {
echo "🔍 环境检查中..."
# 检查GPU可用性
if ! nvidia-smi &> /dev/null; then
echo "❌ 错误: 未检测到GPU或nvidia-smi不可用"
exit 1
fi
# 检查CUDA设备
if ! nvidia-smi -i "$CUDA_VISIBLE_DEVICES" &> /dev/null; then
echo "❌ 错误: GPU $CUDA_VISIBLE_DEVICES 不可用"
exit 1
fi
# 检查Python环境
if ! .venv/bin/python -c "import torch; print(f'PyTorch: {torch.__version__}')" 2>/dev/null; then
echo "❌ 错误: PyTorch未正确安装"
exit 1
fi
# 检查数据文件
if [[ ! -f "$DATA_PATH" ]]; then
echo "❌ 错误: 训练数据文件不存在: $DATA_PATH"
exit 1
fi
if [[ ! -f "$DATABASE_INIT_PATH" ]]; then
echo "❌ 错误: 数据库初始化文件不存在: $DATABASE_INIT_PATH"
exit 1
fi
# 🔥 检查Token-based Memory模型实现
if ! .venv/bin/python -c "from model.model_memory import *; print('Token-based Memory模型实现检查通过')" 2>/dev/null; then
echo "❌ 错误: Token-based Memory模型实现存在问题"
echo "请确保model/model_memory.py文件存在且可正常导入"
exit 1
fi
# 检查LMConfig更新
if ! .venv/bin/python -c "from model.LMConfig import LMConfig; config = LMConfig(); assert hasattr(config, 'use_token_memory'), 'Missing use_token_memory parameter'; print('LMConfig检查通过')" 2>/dev/null; then
echo "❌ 错误: LMConfig缺少use_token_memory参数"
exit 1
fi
echo "✅ 环境检查通过"
}
# ----------------------------------------------------------------------------
# 🤖 实验信息记录
# ----------------------------------------------------------------------------
log_experiment_info() {
echo "📝 记录实验信息..."
cat > "$LOG_DIR/experiment_info.txt" << EOF
========================================
MiniMind 实验信息
========================================
实验版本: $EXPERIMENT_VERSION
实验描述: $EXPERIMENT_DESCRIPTION
研究者: $RESEARCHER_NAME
开始时间: $EXPERIMENT_DATE
========================================
硬件配置:
GPU设备: $CUDA_VISIBLE_DEVICES
进程数: $NUM_PROCESSES
混合精度: $MIXED_PRECISION
========================================
模型配置:
模型类型: $MODEL_TYPE (Token-based Memory)
模型大小: $MODEL_SIZE MB
维度: $DIM
层数: $N_LAYERS
注意力头数: $N_HEADS
最大序列长度: $MAX_SEQ_LEN
知识库大小: $KNOWLEDGE_NUM (1M entries - 稀疏EMA缓冲区优化)
知识长度: $KNOWLEDGE_LENGTH (token序列)
知识维度: $KNOWLEDGE_DIM (兼容性保留)
========================================
训练配置:
训练轮次: $EPOCHS
批次大小: $BATCH_SIZE
学习率: $LEARNING_RATE
梯度累积: $ACCUMULATION_STEPS
数据类型: $DTYPE
平衡损失系数: $BALANCE_LOSS_COEF
========================================
Token Memory配置:
存储格式: Token IDs (human-interpretable)
有效特征维度: $(($KNOWLEDGE_LENGTH * $DIM)) = $KNOWLEDGE_LENGTH * $DIM (16,384维)
记忆条目总数: $KNOWLEDGE_NUM (1M entries - 稀疏EMA优化)
EMA衰减率: 0.9 (降低自0.999)
EMA更新频率: 5 (提高自1)
记忆解码: 动态tok_embeddings
记忆编码: output层+argmax
========================================
数据路径:
训练数据: $DATA_PATH
验证数据: $VAL_DATA_PATH
数据库初始化: $DATABASE_INIT_PATH
聚类缓存: $CLUSTER_CACHE_PATH
========================================
EOF
}
# ----------------------------------------------------------------------------
# 🤖 主执行函数
# ----------------------------------------------------------------------------
run_experiment() {
echo "🚀 开始执行实验 $EXPERIMENT_VERSION"
echo "📄 实验描述: $EXPERIMENT_DESCRIPTION"
echo "⏰ 开始时间: $EXPERIMENT_DATE"
# 构建训练命令
local train_cmd="CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES .venv/bin/python train_pretrain_accelerate.py"
# 添加训练参数
train_cmd+=" --out_dir \"$LOG_DIR\""
train_cmd+=" --epochs $EPOCHS"
train_cmd+=" --embedding_epoch $EMBEDDING_EPOCH"
train_cmd+=" --batch_size $BATCH_SIZE"
train_cmd+=" --learning_rate $LEARNING_RATE"
train_cmd+=" --dtype $DTYPE"
train_cmd+=" --num_workers $NUM_WORKERS"
train_cmd+=" --accumulation_steps $ACCUMULATION_STEPS"
train_cmd+=" --grad_clip $GRAD_CLIP"
train_cmd+=" --warmup_iters $WARMUP_ITERS"
train_cmd+=" --log_interval $LOG_INTERVAL"
train_cmd+=" --val_interval $VAL_INTERVAL"
train_cmd+=" --save_interval $SAVE_INTERVAL"
train_cmd+=" --dim $DIM"
train_cmd+=" --n_layers $N_LAYERS"
train_cmd+=" --n_heads $N_HEADS"
train_cmd+=" --max_seq_len $MAX_SEQ_LEN"
train_cmd+=" --data_path \"$DATA_PATH\""
train_cmd+=" --val_data_path \"$VAL_DATA_PATH\""
train_cmd+=" --knowledge_num $KNOWLEDGE_NUM"
train_cmd+=" --knowledge_length $KNOWLEDGE_LENGTH"
train_cmd+=" --database_init_path \"$DATABASE_INIT_PATH\""
train_cmd+=" --memory_monitor_interval $MEMORY_MONITOR_INTERVAL"
train_cmd+=" --model_type \"$MODEL_TYPE\""
train_cmd+=" --model_size $MODEL_SIZE"
train_cmd+=" --balance_loss_coef $BALANCE_LOSS_COEF"
# 可选参数
if [[ "$USE_PROFILE" == "true" ]]; then
train_cmd+=" --profile"
train_cmd+=" --profile_interval $PROFILE_INTERVAL"
fi
if [[ "$USE_FLASH_ATTN" == "true" ]]; then
train_cmd+=" --use_flash_attn"
fi
if [[ "$FAST_CLUSTERING" == "true" ]]; then
train_cmd+=" --fast_clustering"
fi
if [[ "$CLUSTER_CACHE_PATH" != "None" ]]; then
train_cmd+=" --cluster_cache_path \"$CLUSTER_CACHE_PATH\""
fi
# SwanLab配置
train_cmd+=" --use_swanlab"
train_cmd+=" --swanlab_project \"$SWANLAB_PROJECT\""
train_cmd+=" --swanlab_online True"
echo "📋 执行命令:"
echo "$train_cmd"
echo
# 记录命令到日志文件
echo "执行命令: $train_cmd" >> "$LOG_FILE"
echo "开始时间: $(date)" >> "$LOG_FILE"
# 使用nohup执行训练后台运行输出写入日志文件
echo "🔄 使用nohup后台运行训练输出将写入日志文件: $LOG_FILE"
# 创建训练脚本
train_script="/tmp/train_${EXPERIMENT_VERSION}.sh"
cat > "$train_script" << EOF
#!/bin/bash
cd /home/pci/ycz/Code/pretrain-worktree
source /home/pci/ycz/Code/pretrain-worktree/.venv/bin/activate
$train_cmd
echo "结束时间: \$(date)"
echo "退出代码: \$?"
EOF
chmod +x "$train_script"
# 使用nohup后台运行
nohup bash "$train_script" >> "$LOG_FILE" 2>&1 &
local train_pid=$!
echo "🔥 训练进程已启动PID: $train_pid"
echo "训练PID: $train_pid" >> "$LOG_FILE"
echo "训练脚本: $train_script" >> "$LOG_FILE"
# 等待几秒确保进程启动
sleep 5
# 检查进程是否还在运行
if kill -0 $train_pid 2>/dev/null; then
echo "✅ 训练进程正在后台运行"
echo "📋 实时查看日志: tail -f $LOG_FILE"
echo "📋 检查进程状态: ps -p $train_pid"
echo "🛑 停止训练: kill $train_pid"
echo "📈 SwanLab: https://swanlab.cn/project/$SWANLAB_PROJECT"
echo ""
echo "🧠 Token-based Memory机制正在测试中..."
echo " 🔥 记忆存储: Token IDs (人类可理解)"
echo " 🔥 表示能力: $(($KNOWLEDGE_LENGTH * $DIM))维 (16,384维 vs 原128维)"
echo " 🔥 记忆规模: $KNOWLEDGE_NUM条目 (完整1M条目稀疏EMA缓冲区优化)"
echo " 🔥 EMA衰减率: 0.95 (降低自0.999,允许更大更新)"
echo " 🔥 更新频率: 每3步 (提高自1步更频繁更新)"
echo " 🔥 解码机制: tok_embeddings动态解码"
echo " 🔥 编码机制: output层+argmax获得最优token"
echo ""
echo "📊 与实验1.4.5对比:"
echo " - 可解释性: 抽象向量 → 具体token序列"
echo " - 表示能力: 128维 → 16,384维 (128x提升)"
echo " - 内存优化: 64GB预分配 → 稀疏动态分配 (1M条目保持不变)"
echo " - 更新策略: 保守EMA → 激进EMA"
echo ""
echo "训练正在后台运行,可以安全关闭终端。"
echo ""
echo "🎯 预期改进:"
echo " - 推理Loss < 2.64 (优于1.4.5)"
echo " - 生成质量和连贯性提升"
echo " - Memory内容可人工检查和理解"
echo ""
echo "⏱️ 预计训练时间: 15-20小时"
echo "📊 预计GPU占用: ~23GB"
echo ""
else
echo "❌ 训练进程启动失败"
echo "📋 查看日志: $LOG_FILE"
exit 1
fi
}
# ----------------------------------------------------------------------------
# 🤖 清理函数
# ----------------------------------------------------------------------------
cleanup() {
echo "🧹 清理临时文件..."
# 删除临时验证文件
rm -f /tmp/temp_val.jsonl
}
# ----------------------------------------------------------------------------
# 🤖 信号处理
# ----------------------------------------------------------------------------
trap cleanup EXIT
trap 'echo "❌ 实验被中断"; cleanup; exit 130' INT TERM
# ----------------------------------------------------------------------------
# 🤖 主程序入口
# ----------------------------------------------------------------------------
main() {
echo "============================================================================"
echo "🧠 MiniMind 预训练实验 1.4.6"
echo "🎯 Token-based Memory机制 - 人类可理解的记忆存储"
echo "============================================================================"
echo ""
echo "🔥 核心创新:"
echo " ► Memory Bank: Token IDs (可解释) vs 特征向量 (抽象)"
echo " ► 表示能力: 16,384维 vs 128维 (128x提升)"
echo " ► EMA策略: 激进更新 vs 保守更新"
echo " ► 解码方式: 动态embedding vs 直接索引"
echo ""
echo "🎯 实验假设:"
echo " ✓ Token-based记忆提供更好的可解释性"
echo " ✓ 更大表示能力改善模型性能"
echo " ✓ 优化EMA参数解决过拟合问题"
echo ""
echo "============================================================================"
# 执行检查和初始化
check_environment
log_experiment_info
# 运行实验
run_experiment
echo "============================================================================"
echo "✅ 实验 $EXPERIMENT_VERSION 启动完成"
echo "📅 启动时间: $(date)"
echo "============================================================================"
}
# 执行主程序
main "$@"