Minimind/nohup.out
2025-07-05 03:38:16 +00:00

2305 lines
445 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

swanlab: \ Waiting for the swanlab cloud response.
swanlab: swanlab version 0.6.4 is available! Upgrade: `pip install -U swanlab`
swanlab: \ Getting project...
swanlab: \ Creating experiment...
swanlab: | Creating experiment...
swanlab: Tracking run with swanlab version 0.6.3
swanlab: Run data will be saved locally in /home/rwkv/RWKV-TS/RETRO_TEST/Minimind/swanlog/run-20250704_161200-d30a286e
swanlab: 👋 Hi Garylu, welcome to swanlab!
swanlab: Syncing run MiniMind-TripleExtraction-Epoch-4-BatchSize-192-LearningRate-0.0002 to the cloud
swanlab: 🏠 View project at https://swanlab.cn/@Garylu/MiniMind-TripleExtraction
swanlab: 🚀 View run at https://swanlab.cn/@Garylu/MiniMind-TripleExtraction/runs/hin5oa7xx8oc4ae1q5e9i
[2025-07-04 16:12:01] tokens_per_iter: 98304
[2025-07-04 16:12:01] Configuration:
[2025-07-04 16:12:01] out_dir: out
[2025-07-04 16:12:01] epochs: 4
[2025-07-04 16:12:01] embedding_epoch: 2
[2025-07-04 16:12:01] batch_size: 192
[2025-07-04 16:12:01] learning_rate: 0.0002
[2025-07-04 16:12:01] dtype: bfloat16
[2025-07-04 16:12:01] use_swanlab: True
[2025-07-04 16:12:01] swanlab_project: MiniMind-TripleExtraction
[2025-07-04 16:12:01] num_workers: 1
[2025-07-04 16:12:01] accumulation_steps: 32
[2025-07-04 16:12:01] grad_clip: 1.0
[2025-07-04 16:12:01] warmup_iters: 0
[2025-07-04 16:12:01] log_interval: 50
[2025-07-04 16:12:01] save_interval: 10000
[2025-07-04 16:12:01] dim: 512
[2025-07-04 16:12:01] n_layers: 8
[2025-07-04 16:12:01] max_seq_len: 512
[2025-07-04 16:12:01] use_moe: False
[2025-07-04 16:12:01] disable_db: False
[2025-07-04 16:12:01] data_path: /home/rwkv/RWKV-TS/RETRO_TEST/extract/processed_trex_data.json
[2025-07-04 16:12:01] pretrained_embedding_path: None
[2025-07-04 16:12:01] profile: True
[2025-07-04 16:12:01] profile_interval: 10
[2025-07-04 16:12:01] use_flash_attn: True
[2025-07-04 16:12:01] knowledge_num: 960400
[2025-07-04 16:12:01] knowledge_length: 32
[2025-07-04 16:12:01] database_init_path: ./dataset/combined_prepare.json
[2025-07-04 16:12:01] fast_clustering: True
[2025-07-04 16:12:01] cluster_cache_path: ./cache/cluster_tokens_single.pt
[2025-07-04 16:12:01] recompute_clusters: False
[2025-07-04 16:12:01] memory_monitor: False
[2025-07-04 16:12:01] memory_monitor_interval: 10
[2025-07-04 16:12:01] max_targets: 5
[2025-07-04 16:12:01] temperature: 1.0
[2025-07-04 16:12:01] detailed_timing: True
[2025-07-04 16:12:01] save_dir: out
[2025-07-04 16:12:01] swanlab_run_name: MiniMind-TripleExtraction-Epoch-4-BatchSize-192-LearningRate-0.0002
[2025-07-04 16:12:01] n_heads: 32
[2025-07-04 16:12:01] n_kv_heads: 8
[2025-07-04 16:12:01] vocab_size: 6400
[2025-07-04 16:12:01] hidden_dim: None
[2025-07-04 16:12:01] multiple_of: 64
[2025-07-04 16:12:01] norm_eps: 1e-05
[2025-07-04 16:12:01] rope_theta: 1000000.0
[2025-07-04 16:12:01] dropout: 0.0
[2025-07-04 16:12:01] flash_attn: True
[2025-07-04 16:12:01] embeddings_epoch: 2
[2025-07-04 16:12:01] num_experts_per_tok: 2
[2025-07-04 16:12:01] n_routed_experts: 4
[2025-07-04 16:12:01] n_shared_experts: True
[2025-07-04 16:12:01] scoring_func: softmax
[2025-07-04 16:12:01] aux_loss_alpha: 0.1
[2025-07-04 16:12:01] seq_aux: True
[2025-07-04 16:12:01] norm_topk_prob: True
[2025-07-04 16:12:01] knowledge_dim: 128
[2025-07-04 16:12:01] max_subject_len: 8
[2025-07-04 16:12:01] max_predicate_len: 4
[2025-07-04 16:12:01] max_object_len: 8
[2025-07-04 16:12:01] return_dict: True
[2025-07-04 16:12:01] output_hidden_states: False
[2025-07-04 16:12:01] output_attentions: False
[2025-07-04 16:12:01] torchscript: False
[2025-07-04 16:12:01] torch_dtype: None
[2025-07-04 16:12:01] use_bfloat16: False
[2025-07-04 16:12:01] tf_legacy_loss: False
[2025-07-04 16:12:01] pruned_heads: {}
[2025-07-04 16:12:01] tie_word_embeddings: True
[2025-07-04 16:12:01] chunk_size_feed_forward: 0
[2025-07-04 16:12:01] is_encoder_decoder: False
[2025-07-04 16:12:01] is_decoder: False
[2025-07-04 16:12:01] cross_attention_hidden_size: None
[2025-07-04 16:12:01] add_cross_attention: False
[2025-07-04 16:12:01] tie_encoder_decoder: False
[2025-07-04 16:12:01] max_length: 20
[2025-07-04 16:12:01] min_length: 0
[2025-07-04 16:12:01] do_sample: False
[2025-07-04 16:12:01] early_stopping: False
[2025-07-04 16:12:01] num_beams: 1
[2025-07-04 16:12:01] num_beam_groups: 1
[2025-07-04 16:12:01] diversity_penalty: 0.0
[2025-07-04 16:12:01] top_k: 50
[2025-07-04 16:12:01] top_p: 1.0
[2025-07-04 16:12:01] typical_p: 1.0
[2025-07-04 16:12:01] repetition_penalty: 1.0
[2025-07-04 16:12:01] length_penalty: 1.0
[2025-07-04 16:12:01] no_repeat_ngram_size: 0
[2025-07-04 16:12:01] encoder_no_repeat_ngram_size: 0
[2025-07-04 16:12:01] bad_words_ids: None
[2025-07-04 16:12:01] num_return_sequences: 1
[2025-07-04 16:12:01] output_scores: False
[2025-07-04 16:12:01] return_dict_in_generate: False
[2025-07-04 16:12:01] forced_bos_token_id: None
[2025-07-04 16:12:01] forced_eos_token_id: None
[2025-07-04 16:12:01] remove_invalid_values: False
[2025-07-04 16:12:01] exponential_decay_length_penalty: None
[2025-07-04 16:12:01] suppress_tokens: None
[2025-07-04 16:12:01] begin_suppress_tokens: None
[2025-07-04 16:12:01] architectures: None
[2025-07-04 16:12:01] finetuning_task: None
[2025-07-04 16:12:01] id2label: {0: 'LABEL_0', 1: 'LABEL_1'}
[2025-07-04 16:12:01] label2id: {'LABEL_0': 0, 'LABEL_1': 1}
[2025-07-04 16:12:01] tokenizer_class: None
[2025-07-04 16:12:01] prefix: None
[2025-07-04 16:12:01] bos_token_id: None
[2025-07-04 16:12:01] pad_token_id: None
[2025-07-04 16:12:01] eos_token_id: None
[2025-07-04 16:12:01] sep_token_id: None
[2025-07-04 16:12:01] decoder_start_token_id: None
[2025-07-04 16:12:01] task_specific_params: None
[2025-07-04 16:12:01] problem_type: None
[2025-07-04 16:12:01] _name_or_path:
[2025-07-04 16:12:01] _commit_hash: None
[2025-07-04 16:12:01] _attn_implementation_internal: None
[2025-07-04 16:12:01] _attn_implementation_autoset: False
[2025-07-04 16:12:01] transformers_version: None
三元组提取任务头配置:
- 主语最大长度: 8
- 谓语最大长度: 4
- 宾语最大长度: 8
已冻结以下组件的权重:
- tok_embeddings
- knowledge_dataset
- layers (所有transformer层)
- output
- pos_cis
注意triple_extraction_head 保持可训练状态
[2025-07-04 16:12:02] Loading pretrained weights from /home/rwkv/RWKV-TS/RETRO_TEST/extract/Experiment_1_2_2_pretrain_512.pth
[2025-07-04 16:12:02] Successfully loaded pretrained state_dict with 143 parameters
[2025-07-04 16:12:02] Loaded 143 parameters from pretrained weights
[2025-07-04 16:12:02] Skipped 0 parameters
[2025-07-04 16:12:02] Key loaded parameters:
[2025-07-04 16:12:02] ✅ tok_embeddings.weight
[2025-07-04 16:12:02] ✅ knowledge_dataset.keys
[2025-07-04 16:12:02] ✅ knowledge_dataset.knowledge_dataset
[2025-07-04 16:12:02] ✅ knowledge_dataset.tok_embeddings.weight
[2025-07-04 16:12:02] ✅ knowledge_dataset.to_queries.0.weight
[2025-07-04 16:12:02] ... and 61 more
[2025-07-04 16:12:02] Database embeddings and sentences stored in model
[2025-07-04 16:12:02] LLM总参数量14.802 百万
[2025-07-04 16:12:02] 模型初始化完成
[2025-07-04 16:12:02] 检测到pos_cis复数张量将其设置为不参与分布式训练
[2025-07-04 16:12:02] 三元组提取训练:使用 TriplePretrainDataset
🚀 开始加载和预处理三元组数据...
📂 加载原始数据...
📊 原始数据量: 3459987 个样本
🔍 验证数据格式并选择单个target...
验证数据格式: 0%| | 0/3459987 [00:00<?, ?it/s]
验证数据格式: 2%|▏ | 60895/3459987 [00:00<00:05, 608901.22it/s]
验证数据格式: 4%|▎ | 126276/3459987 [00:00<00:05, 635295.36it/s]
验证数据格式: 6%|▌ | 192507/3459987 [00:00<00:05, 647610.90it/s]
验证数据格式: 7%|▋ | 258310/3459987 [00:00<00:04, 651708.38it/s]
验证数据格式: 9%|▉ | 325113/3459987 [00:00<00:04, 657579.92it/s]
验证数据格式: 11%|█▏ | 390872/3459987 [00:04<01:08, 44754.19it/s]
验证数据格式: 13%|█▎ | 454752/3459987 [00:04<00:47, 63762.32it/s]
验证数据格式: 15%|█▌ | 519852/3459987 [00:04<00:32, 89432.03it/s]
验证数据格式: 17%|█▋ | 583277/3459987 [00:04<00:23, 121448.44it/s]
验证数据格式: 19%|█▊ | 647436/3459987 [00:05<00:17, 161737.19it/s]
验证数据格式: 21%|██ | 710689/3459987 [00:05<00:13, 208641.02it/s]
验证数据格式: 22%|██▏ | 771469/3459987 [00:05<00:10, 245877.02it/s]
验证数据格式: 24%|██▍ | 826892/3459987 [00:05<00:09, 278212.12it/s]
验证数据格式: 25%|██▌ | 878382/3459987 [00:05<00:08, 305693.75it/s]
验证数据格式: 27%|██▋ | 926957/3459987 [00:05<00:07, 338309.46it/s]
验证数据格式: 28%|██▊ | 977023/3459987 [00:05<00:06, 372236.51it/s]
验证数据格式: 30%|███ | 1042587/3459987 [00:05<00:05, 437393.47it/s]
验证数据格式: 32%|███▏ | 1108024/3459987 [00:05<00:04, 491032.32it/s]
验证数据格式: 34%|███▍ | 1173658/3459987 [00:06<00:04, 534171.46it/s]
验证数据格式: 36%|███▌ | 1238577/3459987 [00:06<00:03, 565398.68it/s]
验证数据格式: 38%|███▊ | 1304578/3459987 [00:06<00:03, 591834.62it/s]
验证数据格式: 40%|███▉ | 1368463/3459987 [00:06<00:03, 605237.64it/s]
验证数据格式: 41%|████▏ | 1435802/3459987 [00:06<00:03, 624960.73it/s]
验证数据格式: 43%|████▎ | 1502818/3459987 [00:06<00:03, 638175.61it/s]
验证数据格式: 45%|████▌ | 1569044/3459987 [00:06<00:02, 645262.43it/s]
验证数据格式: 47%|████▋ | 1635122/3459987 [00:06<00:02, 649850.09it/s]
验证数据格式: 49%|████▉ | 1700780/3459987 [00:06<00:02, 646940.92it/s]
验证数据格式: 51%|█████ | 1768968/3459987 [00:06<00:02, 657292.42it/s]
验证数据格式: 53%|█████▎ | 1836313/3459987 [00:07<00:02, 662086.36it/s]
验证数据格式: 55%|█████▌ | 1903039/3459987 [00:07<00:02, 663617.69it/s]
验证数据格式: 57%|█████▋ | 1969573/3459987 [00:07<00:02, 648892.82it/s]
验证数据格式: 59%|█████▉ | 2034653/3459987 [00:07<00:02, 647619.70it/s]
验证数据格式: 61%|██████ | 2101936/3459987 [00:07<00:02, 655055.02it/s]
验证数据格式: 63%|██████▎ | 2168871/3459987 [00:07<00:01, 659284.53it/s]
验证数据格式: 65%|██████▍ | 2235792/3459987 [00:07<00:01, 662222.44it/s]
验证数据格式: 67%|██████▋ | 2302071/3459987 [00:12<00:25, 44980.81it/s]
验证数据格式: 68%|██████▊ | 2366849/3459987 [00:12<00:17, 61939.48it/s]
验证数据格式: 70%|███████ | 2433097/3459987 [00:12<00:12, 85142.76it/s]
验证数据格式: 72%|███████▏ | 2499758/3459987 [00:12<00:08, 115558.40it/s]
验证数据格式: 74%|███████▍ | 2564537/3459987 [00:12<00:05, 152561.89it/s]
验证数据格式: 76%|███████▌ | 2630790/3459987 [00:12<00:04, 198638.28it/s]
验证数据格式: 78%|███████▊ | 2694413/3459987 [00:12<00:03, 248662.43it/s]
验证数据格式: 80%|███████▉ | 2760132/3459987 [00:13<00:02, 306011.01it/s]
验证数据格式: 82%|████████▏ | 2826537/3459987 [00:13<00:01, 365816.25it/s]
验证数据格式: 84%|████████▎ | 2895864/3459987 [00:13<00:01, 428898.49it/s]
验证数据格式: 86%|████████▌ | 2963193/3459987 [00:13<00:01, 481637.42it/s]
验证数据格式: 88%|████████▊ | 3031096/3459987 [00:13<00:00, 528142.30it/s]
验证数据格式: 90%|████████▉ | 3097935/3459987 [00:13<00:00, 555424.06it/s]
验证数据格式: 91%|█████████▏| 3164312/3459987 [00:13<00:00, 583779.03it/s]
验证数据格式: 93%|█████████▎| 3230403/3459987 [00:13<00:00, 604763.81it/s]
验证数据格式: 95%|█████████▌| 3296927/3459987 [00:13<00:00, 621684.17it/s]
验证数据格式: 97%|█████████▋| 3363070/3459987 [00:13<00:00, 632707.76it/s]
验证数据格式: 99%|█████████▉| 3429177/3459987 [00:14<00:00, 637936.37it/s]
验证数据格式: 100%|██████████| 3459987/3459987 [00:14<00:00, 245564.41it/s]
✅ 有效样本数: 3459987
🔤 分批tokenize目标句子...
分批tokenize目标句子: 0%| | 0/3460 [00:00<?, ?it/s]
分批tokenize目标句子: 0%| | 1/3460 [00:00<07:01, 8.21it/s]
分批tokenize目标句子: 0%| | 2/3460 [00:00<06:50, 8.43it/s]
分批tokenize目标句子: 0%| | 4/3460 [00:00<05:42, 10.10it/s]
分批tokenize目标句子: 0%| | 6/3460 [00:00<05:27, 10.55it/s]
分批tokenize目标句子: 0%| | 8/3460 [00:00<05:13, 11.02it/s]
分批tokenize目标句子: 0%| | 10/3460 [00:00<05:06, 11.25it/s]
分批tokenize目标句子: 0%| | 12/3460 [00:01<05:03, 11.36it/s]
分批tokenize目标句子: 0%| | 14/3460 [00:01<05:01, 11.44it/s]
分批tokenize目标句子: 0%| | 16/3460 [00:01<05:02, 11.37it/s]
分批tokenize目标句子: 1%| | 18/3460 [00:01<05:01, 11.43it/s]
分批tokenize目标句子: 1%| | 20/3460 [00:01<04:59, 11.49it/s]
分批tokenize目标句子: 1%| | 22/3460 [00:01<04:59, 11.48it/s]
分批tokenize目标句子: 1%| | 24/3460 [00:02<04:59, 11.46it/s]
分批tokenize目标句子: 1%| | 26/3460 [00:02<04:59, 11.46it/s]
分批tokenize目标句子: 1%| | 28/3460 [00:02<05:04, 11.26it/s]
分批tokenize目标句子: 1%| | 30/3460 [00:02<05:02, 11.35it/s]
分批tokenize目标句子: 1%| | 32/3460 [00:02<05:01, 11.38it/s]
分批tokenize目标句子: 1%| | 34/3460 [00:03<05:00, 11.40it/s]
分批tokenize目标句子: 1%| | 36/3460 [00:03<04:59, 11.44it/s]
分批tokenize目标句子: 1%| | 38/3460 [00:03<05:01, 11.35it/s]
分批tokenize目标句子: 1%| | 40/3460 [00:03<04:59, 11.42it/s]
分批tokenize目标句子: 1%| | 42/3460 [00:03<04:59, 11.42it/s]
分批tokenize目标句子: 1%|▏ | 44/3460 [00:03<05:01, 11.32it/s]
分批tokenize目标句子: 1%|▏ | 46/3460 [00:04<05:02, 11.30it/s]
分批tokenize目标句子: 1%|▏ | 48/3460 [00:04<05:04, 11.22it/s]
分批tokenize目标句子: 1%|▏ | 50/3460 [00:04<05:05, 11.18it/s]
分批tokenize目标句子: 2%|▏ | 52/3460 [00:04<05:03, 11.24it/s]
分批tokenize目标句子: 2%|▏ | 54/3460 [00:04<05:04, 11.17it/s]
分批tokenize目标句子: 2%|▏ | 56/3460 [00:04<05:02, 11.25it/s]
分批tokenize目标句子: 2%|▏ | 58/3460 [00:05<05:00, 11.31it/s]
分批tokenize目标句子: 2%|▏ | 60/3460 [00:05<05:01, 11.28it/s]
分批tokenize目标句子: 2%|▏ | 62/3460 [00:05<05:02, 11.24it/s]
分批tokenize目标句子: 2%|▏ | 64/3460 [00:05<05:07, 11.06it/s]
分批tokenize目标句子: 2%|▏ | 66/3460 [00:05<05:14, 10.80it/s]
分批tokenize目标句子: 2%|▏ | 68/3460 [00:06<05:10, 10.94it/s]
分批tokenize目标句子: 2%|▏ | 70/3460 [00:06<05:09, 10.94it/s]
分批tokenize目标句子: 2%|▏ | 72/3460 [00:06<05:04, 11.11it/s]
分批tokenize目标句子: 2%|▏ | 74/3460 [00:06<05:04, 11.12it/s]
分批tokenize目标句子: 2%|▏ | 76/3460 [00:06<05:08, 10.97it/s]
分批tokenize目标句子: 2%|▏ | 78/3460 [00:06<05:09, 10.94it/s]
分批tokenize目标句子: 2%|▏ | 80/3460 [00:07<05:07, 11.00it/s]
分批tokenize目标句子: 2%|▏ | 82/3460 [00:07<05:08, 10.94it/s]
分批tokenize目标句子: 2%|▏ | 84/3460 [00:07<05:08, 10.96it/s]
分批tokenize目标句子: 2%|▏ | 86/3460 [00:07<05:04, 11.07it/s]
分批tokenize目标句子: 3%|▎ | 88/3460 [00:07<05:03, 11.09it/s]
分批tokenize目标句子: 3%|▎ | 90/3460 [00:08<05:03, 11.09it/s]
分批tokenize目标句子: 3%|▎ | 92/3460 [00:08<05:02, 11.14it/s]
分批tokenize目标句子: 3%|▎ | 94/3460 [00:08<05:01, 11.15it/s]
分批tokenize目标句子: 3%|▎ | 96/3460 [00:08<05:00, 11.20it/s]
分批tokenize目标句子: 3%|▎ | 98/3460 [00:08<05:00, 11.18it/s]
分批tokenize目标句子: 3%|▎ | 100/3460 [00:08<04:59, 11.20it/s]
分批tokenize目标句子: 3%|▎ | 102/3460 [00:09<04:57, 11.27it/s]
分批tokenize目标句子: 3%|▎ | 104/3460 [00:09<04:57, 11.27it/s]
分批tokenize目标句子: 3%|▎ | 106/3460 [00:09<04:58, 11.25it/s]
分批tokenize目标句子: 3%|▎ | 108/3460 [00:09<05:00, 11.16it/s]
分批tokenize目标句子: 3%|▎ | 110/3460 [00:09<04:59, 11.18it/s]
分批tokenize目标句子: 3%|▎ | 112/3460 [00:10<05:07, 10.88it/s]
分批tokenize目标句子: 3%|▎ | 114/3460 [00:10<05:11, 10.73it/s]
分批tokenize目标句子: 3%|▎ | 116/3460 [00:10<05:05, 10.96it/s]
分批tokenize目标句子: 3%|▎ | 118/3460 [00:10<05:07, 10.88it/s]
分批tokenize目标句子: 3%|▎ | 120/3460 [00:10<05:04, 10.98it/s]
分批tokenize目标句子: 4%|▎ | 122/3460 [00:10<05:02, 11.05it/s]
分批tokenize目标句子: 4%|▎ | 124/3460 [00:11<05:03, 10.99it/s]
分批tokenize目标句子: 4%|▎ | 126/3460 [00:11<05:01, 11.05it/s]
分批tokenize目标句子: 4%|▎ | 128/3460 [00:11<04:59, 11.11it/s]
分批tokenize目标句子: 4%|▍ | 130/3460 [00:11<04:59, 11.11it/s]
分批tokenize目标句子: 4%|▍ | 132/3460 [00:11<04:58, 11.16it/s]
分批tokenize目标句子: 4%|▍ | 134/3460 [00:12<04:57, 11.17it/s]
分批tokenize目标句子: 4%|▍ | 136/3460 [00:12<04:55, 11.24it/s]
分批tokenize目标句子: 4%|▍ | 138/3460 [00:12<04:55, 11.25it/s]
分批tokenize目标句子: 4%|▍ | 140/3460 [00:12<04:53, 11.33it/s]
分批tokenize目标句子: 4%|▍ | 142/3460 [00:12<04:54, 11.28it/s]
分批tokenize目标句子: 4%|▍ | 144/3460 [00:12<04:58, 11.10it/s]
分批tokenize目标句子: 4%|▍ | 146/3460 [00:13<04:59, 11.07it/s]
分批tokenize目标句子: 4%|▍ | 148/3460 [00:13<04:59, 11.07it/s]
分批tokenize目标句子: 4%|▍ | 150/3460 [00:13<04:56, 11.16it/s]
分批tokenize目标句子: 4%|▍ | 152/3460 [00:13<04:59, 11.06it/s]
分批tokenize目标句子: 4%|▍ | 154/3460 [00:13<05:02, 10.92it/s]
分批tokenize目标句子: 5%|▍ | 156/3460 [00:14<05:00, 11.01it/s]
分批tokenize目标句子: 5%|▍ | 158/3460 [00:14<04:57, 11.09it/s]
分批tokenize目标句子: 5%|▍ | 160/3460 [00:14<04:55, 11.18it/s]
分批tokenize目标句子: 5%|▍ | 162/3460 [00:23<1:16:20, 1.39s/it]
分批tokenize目标句子: 5%|▍ | 164/3460 [00:23<54:51, 1.00it/s]
分批tokenize目标句子: 5%|▍ | 166/3460 [00:23<39:49, 1.38it/s]
分批tokenize目标句子: 5%|▍ | 168/3460 [00:23<29:17, 1.87it/s]
分批tokenize目标句子: 5%|▍ | 170/3460 [00:23<21:54, 2.50it/s]
分批tokenize目标句子: 5%|▍ | 172/3460 [00:24<16:46, 3.27it/s]
分批tokenize目标句子: 5%|▌ | 174/3460 [00:24<13:08, 4.17it/s]
分批tokenize目标句子: 5%|▌ | 176/3460 [00:24<10:38, 5.14it/s]
分批tokenize目标句子: 5%|▌ | 178/3460 [00:24<08:52, 6.16it/s]
分批tokenize目标句子: 5%|▌ | 180/3460 [00:24<07:38, 7.15it/s]
分批tokenize目标句子: 5%|▌ | 182/3460 [00:24<06:50, 7.99it/s]
分批tokenize目标句子: 5%|▌ | 184/3460 [00:25<06:10, 8.83it/s]
分批tokenize目标句子: 5%|▌ | 186/3460 [00:25<05:48, 9.39it/s]
分批tokenize目标句子: 5%|▌ | 188/3460 [00:25<05:27, 9.99it/s]
分批tokenize目标句子: 5%|▌ | 190/3460 [00:25<05:14, 10.40it/s]
分批tokenize目标句子: 6%|▌ | 192/3460 [00:25<05:05, 10.69it/s]
分批tokenize目标句子: 6%|▌ | 194/3460 [00:26<05:01, 10.83it/s]
分批tokenize目标句子: 6%|▌ | 196/3460 [00:26<04:57, 10.99it/s]
分批tokenize目标句子: 6%|▌ | 198/3460 [00:26<04:55, 11.02it/s]
分批tokenize目标句子: 6%|▌ | 200/3460 [00:26<04:52, 11.15it/s]
分批tokenize目标句子: 6%|▌ | 202/3460 [00:26<04:48, 11.30it/s]
分批tokenize目标句子: 6%|▌ | 204/3460 [00:26<04:48, 11.29it/s]
分批tokenize目标句子: 6%|▌ | 206/3460 [00:27<04:47, 11.33it/s]
分批tokenize目标句子: 6%|▌ | 208/3460 [00:27<04:48, 11.29it/s]
分批tokenize目标句子: 6%|▌ | 210/3460 [00:27<04:46, 11.33it/s]
分批tokenize目标句子: 6%|▌ | 212/3460 [00:27<04:46, 11.35it/s]
分批tokenize目标句子: 6%|▌ | 214/3460 [00:27<04:46, 11.31it/s]
分批tokenize目标句子: 6%|▌ | 216/3460 [00:27<04:45, 11.38it/s]
分批tokenize目标句子: 6%|▋ | 218/3460 [00:28<04:43, 11.43it/s]
分批tokenize目标句子: 6%|▋ | 220/3460 [00:28<04:42, 11.45it/s]
分批tokenize目标句子: 6%|▋ | 222/3460 [00:28<04:42, 11.47it/s]
分批tokenize目标句子: 6%|▋ | 224/3460 [00:28<04:43, 11.41it/s]
分批tokenize目标句子: 7%|▋ | 226/3460 [00:28<04:47, 11.26it/s]
分批tokenize目标句子: 7%|▋ | 228/3460 [00:29<04:44, 11.35it/s]
分批tokenize目标句子: 7%|▋ | 230/3460 [00:29<04:43, 11.40it/s]
分批tokenize目标句子: 7%|▋ | 232/3460 [00:29<04:50, 11.12it/s]
分批tokenize目标句子: 7%|▋ | 234/3460 [00:29<04:48, 11.19it/s]
分批tokenize目标句子: 7%|▋ | 236/3460 [00:29<04:49, 11.15it/s]
分批tokenize目标句子: 7%|▋ | 238/3460 [00:29<04:51, 11.07it/s]
分批tokenize目标句子: 7%|▋ | 240/3460 [00:30<04:50, 11.07it/s]
分批tokenize目标句子: 7%|▋ | 242/3460 [00:30<04:50, 11.08it/s]
分批tokenize目标句子: 7%|▋ | 244/3460 [00:30<04:48, 11.14it/s]
分批tokenize目标句子: 7%|▋ | 246/3460 [00:30<04:58, 10.78it/s]
分批tokenize目标句子: 7%|▋ | 248/3460 [00:30<04:55, 10.87it/s]
分批tokenize目标句子: 7%|▋ | 250/3460 [00:31<04:54, 10.90it/s]
分批tokenize目标句子: 7%|▋ | 252/3460 [00:31<04:51, 11.00it/s]
分批tokenize目标句子: 7%|▋ | 254/3460 [00:31<04:52, 10.96it/s]
分批tokenize目标句子: 7%|▋ | 256/3460 [00:31<04:49, 11.06it/s]
分批tokenize目标句子: 7%|▋ | 258/3460 [00:31<04:49, 11.05it/s]
分批tokenize目标句子: 8%|▊ | 260/3460 [00:31<04:47, 11.12it/s]
分批tokenize目标句子: 8%|▊ | 262/3460 [00:32<04:47, 11.11it/s]
分批tokenize目标句子: 8%|▊ | 264/3460 [00:32<04:44, 11.24it/s]
分批tokenize目标句子: 8%|▊ | 266/3460 [00:32<04:45, 11.19it/s]
分批tokenize目标句子: 8%|▊ | 268/3460 [00:32<04:47, 11.11it/s]
分批tokenize目标句子: 8%|▊ | 270/3460 [00:32<04:44, 11.23it/s]
分批tokenize目标句子: 8%|▊ | 272/3460 [00:32<04:41, 11.34it/s]
分批tokenize目标句子: 8%|▊ | 274/3460 [00:33<04:44, 11.21it/s]
分批tokenize目标句子: 8%|▊ | 276/3460 [00:33<04:42, 11.27it/s]
分批tokenize目标句子: 8%|▊ | 278/3460 [00:33<04:43, 11.22it/s]
分批tokenize目标句子: 8%|▊ | 280/3460 [00:33<04:40, 11.35it/s]
分批tokenize目标句子: 8%|▊ | 282/3460 [00:33<04:41, 11.28it/s]
分批tokenize目标句子: 8%|▊ | 284/3460 [00:34<04:39, 11.36it/s]
分批tokenize目标句子: 8%|▊ | 286/3460 [00:34<04:41, 11.28it/s]
分批tokenize目标句子: 8%|▊ | 288/3460 [00:34<04:41, 11.27it/s]
分批tokenize目标句子: 8%|▊ | 290/3460 [00:34<04:40, 11.31it/s]
分批tokenize目标句子: 8%|▊ | 292/3460 [00:34<04:41, 11.26it/s]
分批tokenize目标句子: 8%|▊ | 294/3460 [00:34<04:43, 11.18it/s]
分批tokenize目标句子: 9%|▊ | 296/3460 [00:35<04:42, 11.19it/s]
分批tokenize目标句子: 9%|▊ | 298/3460 [00:35<04:40, 11.29it/s]
分批tokenize目标句子: 9%|▊ | 300/3460 [00:35<04:39, 11.32it/s]
分批tokenize目标句子: 9%|▊ | 302/3460 [00:35<04:39, 11.30it/s]
分批tokenize目标句子: 9%|▉ | 304/3460 [00:35<04:38, 11.34it/s]
分批tokenize目标句子: 9%|▉ | 306/3460 [00:36<04:46, 11.01it/s]
分批tokenize目标句子: 9%|▉ | 308/3460 [00:36<04:44, 11.08it/s]
分批tokenize目标句子: 9%|▉ | 310/3460 [00:36<04:43, 11.13it/s]
分批tokenize目标句子: 9%|▉ | 312/3460 [00:36<04:39, 11.25it/s]
分批tokenize目标句子: 9%|▉ | 314/3460 [00:36<04:39, 11.25it/s]
分批tokenize目标句子: 9%|▉ | 316/3460 [00:36<04:39, 11.25it/s]
分批tokenize目标句子: 9%|▉ | 318/3460 [00:37<04:36, 11.36it/s]
分批tokenize目标句子: 9%|▉ | 320/3460 [00:37<04:36, 11.37it/s]
分批tokenize目标句子: 9%|▉ | 322/3460 [00:37<04:34, 11.41it/s]
分批tokenize目标句子: 9%|▉ | 324/3460 [00:37<04:34, 11.43it/s]
分批tokenize目标句子: 9%|▉ | 326/3460 [00:37<04:34, 11.40it/s]
分批tokenize目标句子: 9%|▉ | 328/3460 [00:37<04:33, 11.43it/s]
分批tokenize目标句子: 10%|▉ | 330/3460 [00:38<04:33, 11.46it/s]
分批tokenize目标句子: 10%|▉ | 332/3460 [00:38<04:32, 11.50it/s]
分批tokenize目标句子: 10%|▉ | 334/3460 [00:38<04:34, 11.41it/s]
分批tokenize目标句子: 10%|▉ | 336/3460 [00:38<04:34, 11.37it/s]
分批tokenize目标句子: 10%|▉ | 338/3460 [00:38<04:35, 11.33it/s]
分批tokenize目标句子: 10%|▉ | 340/3460 [00:38<04:36, 11.30it/s]
分批tokenize目标句子: 10%|▉ | 342/3460 [00:39<04:34, 11.35it/s]
分批tokenize目标句子: 10%|▉ | 344/3460 [00:39<04:35, 11.33it/s]
分批tokenize目标句子: 10%|█ | 346/3460 [00:39<04:34, 11.34it/s]
分批tokenize目标句子: 10%|█ | 348/3460 [00:39<04:33, 11.38it/s]
分批tokenize目标句子: 10%|█ | 350/3460 [00:39<04:33, 11.37it/s]
分批tokenize目标句子: 10%|█ | 352/3460 [00:40<04:33, 11.37it/s]
分批tokenize目标句子: 10%|█ | 354/3460 [00:40<04:34, 11.33it/s]
分批tokenize目标句子: 10%|█ | 356/3460 [00:40<04:33, 11.35it/s]
分批tokenize目标句子: 10%|█ | 358/3460 [00:40<04:37, 11.16it/s]
分批tokenize目标句子: 10%|█ | 360/3460 [00:40<04:34, 11.28it/s]
分批tokenize目标句子: 10%|█ | 362/3460 [00:40<04:37, 11.17it/s]
分批tokenize目标句子: 11%|█ | 364/3460 [00:41<04:50, 10.65it/s]
分批tokenize目标句子: 11%|█ | 366/3460 [00:41<04:49, 10.67it/s]
分批tokenize目标句子: 11%|█ | 368/3460 [00:41<04:46, 10.79it/s]
分批tokenize目标句子: 11%|█ | 370/3460 [00:41<04:45, 10.82it/s]
分批tokenize目标句子: 11%|█ | 372/3460 [00:41<04:45, 10.80it/s]
分批tokenize目标句子: 11%|█ | 374/3460 [00:42<04:46, 10.79it/s]
分批tokenize目标句子: 11%|█ | 376/3460 [00:42<04:43, 10.87it/s]
分批tokenize目标句子: 11%|█ | 378/3460 [00:42<04:42, 10.89it/s]
分批tokenize目标句子: 11%|█ | 380/3460 [00:42<04:42, 10.89it/s]
分批tokenize目标句子: 11%|█ | 382/3460 [00:42<04:43, 10.87it/s]
分批tokenize目标句子: 11%|█ | 384/3460 [00:42<04:44, 10.82it/s]
分批tokenize目标句子: 11%|█ | 386/3460 [00:43<04:45, 10.78it/s]
分批tokenize目标句子: 11%|█ | 388/3460 [00:43<04:44, 10.81it/s]
分批tokenize目标句子: 11%|█▏ | 390/3460 [00:43<04:44, 10.79it/s]
分批tokenize目标句子: 11%|█▏ | 392/3460 [00:43<04:43, 10.83it/s]
分批tokenize目标句子: 11%|█▏ | 394/3460 [00:43<04:43, 10.81it/s]
分批tokenize目标句子: 11%|█▏ | 396/3460 [00:44<04:43, 10.83it/s]
分批tokenize目标句子: 12%|█▏ | 398/3460 [00:44<04:42, 10.85it/s]
分批tokenize目标句子: 12%|█▏ | 400/3460 [00:44<04:41, 10.86it/s]
分批tokenize目标句子: 12%|█▏ | 402/3460 [00:44<04:40, 10.89it/s]
分批tokenize目标句子: 12%|█▏ | 404/3460 [00:44<04:40, 10.88it/s]
分批tokenize目标句子: 12%|█▏ | 406/3460 [00:45<04:43, 10.79it/s]
分批tokenize目标句子: 12%|█▏ | 408/3460 [00:45<04:41, 10.84it/s]
分批tokenize目标句子: 12%|█▏ | 410/3460 [00:45<04:40, 10.85it/s]
分批tokenize目标句子: 12%|█▏ | 412/3460 [00:45<04:40, 10.86it/s]
分批tokenize目标句子: 12%|█▏ | 414/3460 [00:45<04:43, 10.74it/s]
分批tokenize目标句子: 12%|█▏ | 416/3460 [00:45<04:41, 10.82it/s]
分批tokenize目标句子: 12%|█▏ | 418/3460 [00:46<04:41, 10.79it/s]
分批tokenize目标句子: 12%|█▏ | 420/3460 [00:46<04:41, 10.78it/s]
分批tokenize目标句子: 12%|█▏ | 422/3460 [00:46<04:41, 10.80it/s]
分批tokenize目标句子: 12%|█▏ | 424/3460 [00:46<04:42, 10.73it/s]
分批tokenize目标句子: 12%|█▏ | 426/3460 [00:46<04:45, 10.64it/s]
分批tokenize目标句子: 12%|█▏ | 428/3460 [00:47<04:42, 10.72it/s]
分批tokenize目标句子: 12%|█▏ | 430/3460 [00:47<04:44, 10.66it/s]
分批tokenize目标句子: 12%|█▏ | 432/3460 [00:47<04:41, 10.76it/s]
分批tokenize目标句子: 13%|█▎ | 434/3460 [00:47<04:40, 10.80it/s]
分批tokenize目标句子: 13%|█▎ | 436/3460 [00:47<04:43, 10.68it/s]
分批tokenize目标句子: 13%|█▎ | 438/3460 [00:47<04:40, 10.78it/s]
分批tokenize目标句子: 13%|█▎ | 440/3460 [00:48<04:39, 10.80it/s]
分批tokenize目标句子: 13%|█▎ | 442/3460 [00:48<04:38, 10.82it/s]
分批tokenize目标句子: 13%|█▎ | 444/3460 [00:48<04:39, 10.80it/s]
分批tokenize目标句子: 13%|█▎ | 446/3460 [00:48<04:38, 10.83it/s]
分批tokenize目标句子: 13%|█▎ | 448/3460 [00:48<04:39, 10.76it/s]
分批tokenize目标句子: 13%|█▎ | 450/3460 [00:49<04:40, 10.71it/s]
分批tokenize目标句子: 13%|█▎ | 452/3460 [00:49<04:39, 10.75it/s]
分批tokenize目标句子: 13%|█▎ | 454/3460 [00:49<04:40, 10.73it/s]
分批tokenize目标句子: 13%|█▎ | 456/3460 [00:49<04:39, 10.76it/s]
分批tokenize目标句子: 13%|█▎ | 458/3460 [00:49<04:38, 10.76it/s]
分批tokenize目标句子: 13%|█▎ | 460/3460 [00:50<04:39, 10.74it/s]
分批tokenize目标句子: 13%|█▎ | 462/3460 [00:50<04:39, 10.74it/s]
分批tokenize目标句子: 13%|█▎ | 464/3460 [00:50<04:40, 10.67it/s]
分批tokenize目标句子: 13%|█▎ | 466/3460 [00:50<04:40, 10.67it/s]
分批tokenize目标句子: 14%|█▎ | 468/3460 [00:50<04:40, 10.68it/s]
分批tokenize目标句子: 14%|█▎ | 470/3460 [00:50<04:39, 10.70it/s]
分批tokenize目标句子: 14%|█▎ | 472/3460 [00:51<04:37, 10.76it/s]
分批tokenize目标句子: 14%|█▎ | 474/3460 [00:51<04:37, 10.78it/s]
分批tokenize目标句子: 14%|█▍ | 476/3460 [00:51<04:36, 10.78it/s]
分批tokenize目标句子: 14%|█▍ | 478/3460 [00:51<04:36, 10.78it/s]
分批tokenize目标句子: 14%|█▍ | 480/3460 [00:51<04:37, 10.76it/s]
分批tokenize目标句子: 14%|█▍ | 482/3460 [00:52<04:37, 10.73it/s]
分批tokenize目标句子: 14%|█▍ | 484/3460 [00:52<04:38, 10.68it/s]
分批tokenize目标句子: 14%|█▍ | 486/3460 [00:52<04:37, 10.71it/s]
分批tokenize目标句子: 14%|█▍ | 488/3460 [00:52<04:35, 10.80it/s]
分批tokenize目标句子: 14%|█▍ | 490/3460 [00:52<04:37, 10.69it/s]
分批tokenize目标句子: 14%|█▍ | 492/3460 [00:53<04:34, 10.81it/s]
分批tokenize目标句子: 14%|█▍ | 494/3460 [00:53<04:33, 10.85it/s]
分批tokenize目标句子: 14%|█▍ | 496/3460 [00:53<04:32, 10.87it/s]
分批tokenize目标句子: 14%|█▍ | 498/3460 [00:53<04:34, 10.81it/s]
分批tokenize目标句子: 14%|█▍ | 500/3460 [00:53<04:32, 10.85it/s]
分批tokenize目标句子: 15%|█▍ | 502/3460 [00:53<04:31, 10.90it/s]
分批tokenize目标句子: 15%|█▍ | 504/3460 [00:54<04:31, 10.88it/s]
分批tokenize目标句子: 15%|█▍ | 506/3460 [00:54<04:31, 10.86it/s]
分批tokenize目标句子: 15%|█▍ | 508/3460 [00:54<04:30, 10.91it/s]
分批tokenize目标句子: 15%|█▍ | 510/3460 [00:54<04:30, 10.92it/s]
分批tokenize目标句子: 15%|█▍ | 512/3460 [00:54<04:28, 10.98it/s]
分批tokenize目标句子: 15%|█▍ | 514/3460 [00:55<04:29, 10.95it/s]
分批tokenize目标句子: 15%|█▍ | 516/3460 [00:55<04:27, 11.00it/s]
分批tokenize目标句子: 15%|█▍ | 518/3460 [00:55<04:26, 11.05it/s]
分批tokenize目标句子: 15%|█▌ | 520/3460 [00:55<04:25, 11.05it/s]
分批tokenize目标句子: 15%|█▌ | 522/3460 [00:55<04:26, 11.04it/s]
分批tokenize目标句子: 15%|█▌ | 524/3460 [00:55<04:25, 11.07it/s]
分批tokenize目标句子: 15%|█▌ | 526/3460 [00:56<04:27, 10.97it/s]
分批tokenize目标句子: 15%|█▌ | 528/3460 [00:56<04:27, 10.98it/s]
分批tokenize目标句子: 15%|█▌ | 530/3460 [00:56<04:28, 10.92it/s]
分批tokenize目标句子: 15%|█▌ | 532/3460 [00:56<04:26, 10.98it/s]
分批tokenize目标句子: 15%|█▌ | 534/3460 [00:56<04:27, 10.95it/s]
分批tokenize目标句子: 15%|█▌ | 536/3460 [00:57<04:23, 11.08it/s]
分批tokenize目标句子: 16%|█▌ | 538/3460 [00:57<04:22, 11.14it/s]
分批tokenize目标句子: 16%|█▌ | 540/3460 [00:57<04:19, 11.23it/s]
分批tokenize目标句子: 16%|█▌ | 542/3460 [00:57<04:19, 11.25it/s]
分批tokenize目标句子: 16%|█▌ | 544/3460 [00:57<04:19, 11.26it/s]
分批tokenize目标句子: 16%|█▌ | 546/3460 [00:57<04:17, 11.30it/s]
分批tokenize目标句子: 16%|█▌ | 548/3460 [00:58<04:19, 11.21it/s]
分批tokenize目标句子: 16%|█▌ | 550/3460 [00:58<04:20, 11.17it/s]
分批tokenize目标句子: 16%|█▌ | 552/3460 [00:58<04:28, 10.83it/s]
分批tokenize目标句子: 16%|█▌ | 554/3460 [00:58<04:25, 10.95it/s]
分批tokenize目标句子: 16%|█▌ | 556/3460 [00:58<04:24, 10.96it/s]
分批tokenize目标句子: 16%|█▌ | 558/3460 [00:59<04:22, 11.07it/s]
分批tokenize目标句子: 16%|█▌ | 560/3460 [00:59<04:19, 11.19it/s]
分批tokenize目标句子: 16%|█▌ | 562/3460 [00:59<04:16, 11.28it/s]
分批tokenize目标句子: 16%|█▋ | 564/3460 [00:59<04:14, 11.38it/s]
分批tokenize目标句子: 16%|█▋ | 566/3460 [00:59<04:14, 11.39it/s]
分批tokenize目标句子: 16%|█▋ | 568/3460 [00:59<04:13, 11.41it/s]
分批tokenize目标句子: 16%|█▋ | 570/3460 [01:00<04:16, 11.27it/s]
分批tokenize目标句子: 17%|█▋ | 572/3460 [01:00<04:16, 11.28it/s]
分批tokenize目标句子: 17%|█▋ | 574/3460 [01:00<04:17, 11.22it/s]
分批tokenize目标句子: 17%|█▋ | 576/3460 [01:00<04:16, 11.25it/s]
分批tokenize目标句子: 17%|█▋ | 578/3460 [01:00<04:16, 11.25it/s]
分批tokenize目标句子: 17%|█▋ | 580/3460 [01:00<04:16, 11.21it/s]
分批tokenize目标句子: 17%|█▋ | 582/3460 [01:01<04:17, 11.17it/s]
分批tokenize目标句子: 17%|█▋ | 584/3460 [01:01<04:16, 11.20it/s]
分批tokenize目标句子: 17%|█▋ | 586/3460 [01:01<04:17, 11.16it/s]
分批tokenize目标句子: 17%|█▋ | 588/3460 [01:11<1:11:26, 1.49s/it]
分批tokenize目标句子: 17%|█▋ | 590/3460 [01:11<51:15, 1.07s/it]
分批tokenize目标句子: 17%|█▋ | 592/3460 [01:11<37:07, 1.29it/s]
分批tokenize目标句子: 17%|█▋ | 594/3460 [01:11<27:14, 1.75it/s]
分批tokenize目标句子: 17%|█▋ | 596/3460 [01:11<20:18, 2.35it/s]
分批tokenize目标句子: 17%|█▋ | 598/3460 [01:11<15:27, 3.08it/s]
分批tokenize目标句子: 17%|█▋ | 600/3460 [01:12<12:03, 3.95it/s]
分批tokenize目标句子: 17%|█▋ | 602/3460 [01:12<09:42, 4.90it/s]
分批tokenize目标句子: 17%|█▋ | 604/3460 [01:12<08:03, 5.91it/s]
分批tokenize目标句子: 18%|█▊ | 606/3460 [01:12<06:51, 6.93it/s]
分批tokenize目标句子: 18%|█▊ | 608/3460 [01:12<06:05, 7.80it/s]
分批tokenize目标句子: 18%|█▊ | 610/3460 [01:12<05:37, 8.45it/s]
分批tokenize目标句子: 18%|█▊ | 612/3460 [01:13<05:15, 9.04it/s]
分批tokenize目标句子: 18%|█▊ | 614/3460 [01:13<05:01, 9.45it/s]
分批tokenize目标句子: 18%|█▊ | 616/3460 [01:13<04:48, 9.84it/s]
分批tokenize目标句子: 18%|█▊ | 618/3460 [01:13<04:38, 10.19it/s]
分批tokenize目标句子: 18%|█▊ | 620/3460 [01:13<04:35, 10.31it/s]
分批tokenize目标句子: 18%|█▊ | 622/3460 [01:14<04:27, 10.59it/s]
分批tokenize目标句子: 18%|█▊ | 624/3460 [01:14<04:22, 10.79it/s]
分批tokenize目标句子: 18%|█▊ | 626/3460 [01:14<04:20, 10.86it/s]
分批tokenize目标句子: 18%|█▊ | 628/3460 [01:14<04:16, 11.06it/s]
分批tokenize目标句子: 18%|█▊ | 630/3460 [01:14<04:11, 11.25it/s]
分批tokenize目标句子: 18%|█▊ | 632/3460 [01:14<04:12, 11.22it/s]
分批tokenize目标句子: 18%|█▊ | 634/3460 [01:15<04:09, 11.32it/s]
分批tokenize目标句子: 18%|█▊ | 636/3460 [01:15<04:15, 11.07it/s]
分批tokenize目标句子: 18%|█▊ | 638/3460 [01:15<04:13, 11.14it/s]
分批tokenize目标句子: 18%|█▊ | 640/3460 [01:15<04:13, 11.13it/s]
分批tokenize目标句子: 19%|█▊ | 642/3460 [01:15<04:10, 11.25it/s]
分批tokenize目标句子: 19%|█▊ | 644/3460 [01:16<04:09, 11.30it/s]
分批tokenize目标句子: 19%|█▊ | 646/3460 [01:16<04:11, 11.21it/s]
分批tokenize目标句子: 19%|█▊ | 648/3460 [01:16<04:08, 11.32it/s]
分批tokenize目标句子: 19%|█▉ | 650/3460 [01:16<04:09, 11.24it/s]
分批tokenize目标句子: 19%|█▉ | 652/3460 [01:16<04:09, 11.23it/s]
分批tokenize目标句子: 19%|█▉ | 654/3460 [01:16<04:07, 11.31it/s]
分批tokenize目标句子: 19%|█▉ | 656/3460 [01:17<04:07, 11.32it/s]
分批tokenize目标句子: 19%|█▉ | 658/3460 [01:17<04:07, 11.34it/s]
分批tokenize目标句子: 19%|█▉ | 660/3460 [01:17<04:07, 11.30it/s]
分批tokenize目标句子: 19%|█▉ | 662/3460 [01:17<04:06, 11.33it/s]
分批tokenize目标句子: 19%|█▉ | 664/3460 [01:17<04:06, 11.36it/s]
分批tokenize目标句子: 19%|█▉ | 666/3460 [01:17<04:06, 11.33it/s]
分批tokenize目标句子: 19%|█▉ | 668/3460 [01:18<04:05, 11.37it/s]
分批tokenize目标句子: 19%|█▉ | 670/3460 [01:18<04:06, 11.33it/s]
分批tokenize目标句子: 19%|█▉ | 672/3460 [01:18<04:07, 11.27it/s]
分批tokenize目标句子: 19%|█▉ | 674/3460 [01:18<04:05, 11.33it/s]
分批tokenize目标句子: 20%|█▉ | 676/3460 [01:18<04:08, 11.21it/s]
分批tokenize目标句子: 20%|█▉ | 678/3460 [01:19<04:10, 11.11it/s]
分批tokenize目标句子: 20%|█▉ | 680/3460 [01:19<04:08, 11.18it/s]
分批tokenize目标句子: 20%|█▉ | 682/3460 [01:19<04:07, 11.22it/s]
分批tokenize目标句子: 20%|█▉ | 684/3460 [01:19<04:07, 11.21it/s]
分批tokenize目标句子: 20%|█▉ | 686/3460 [01:19<04:04, 11.34it/s]
分批tokenize目标句子: 20%|█▉ | 688/3460 [01:19<04:04, 11.32it/s]
分批tokenize目标句子: 20%|█▉ | 690/3460 [01:20<04:04, 11.34it/s]
分批tokenize目标句子: 20%|██ | 692/3460 [01:20<04:02, 11.42it/s]
分批tokenize目标句子: 20%|██ | 694/3460 [01:20<04:04, 11.33it/s]
分批tokenize目标句子: 20%|██ | 696/3460 [01:20<04:03, 11.35it/s]
分批tokenize目标句子: 20%|██ | 698/3460 [01:20<04:03, 11.34it/s]
分批tokenize目标句子: 20%|██ | 700/3460 [01:20<04:06, 11.21it/s]
分批tokenize目标句子: 20%|██ | 702/3460 [01:21<04:04, 11.30it/s]
分批tokenize目标句子: 20%|██ | 704/3460 [01:21<04:04, 11.27it/s]
分批tokenize目标句子: 20%|██ | 706/3460 [01:21<04:03, 11.29it/s]
分批tokenize目标句子: 20%|██ | 708/3460 [01:21<04:02, 11.37it/s]
分批tokenize目标句子: 21%|██ | 710/3460 [01:21<04:02, 11.32it/s]
分批tokenize目标句子: 21%|██ | 712/3460 [01:22<04:03, 11.29it/s]
分批tokenize目标句子: 21%|██ | 714/3460 [01:22<04:01, 11.36it/s]
分批tokenize目标句子: 21%|██ | 716/3460 [01:22<04:01, 11.37it/s]
分批tokenize目标句子: 21%|██ | 718/3460 [01:22<04:02, 11.31it/s]
分批tokenize目标句子: 21%|██ | 720/3460 [01:22<04:01, 11.34it/s]
分批tokenize目标句子: 21%|██ | 722/3460 [01:22<04:02, 11.28it/s]
分批tokenize目标句子: 21%|██ | 724/3460 [01:23<04:02, 11.28it/s]
分批tokenize目标句子: 21%|██ | 726/3460 [01:23<04:00, 11.35it/s]
分批tokenize目标句子: 21%|██ | 728/3460 [01:23<04:05, 11.14it/s]
分批tokenize目标句子: 21%|██ | 730/3460 [01:23<04:02, 11.27it/s]
分批tokenize目标句子: 21%|██ | 732/3460 [01:23<04:00, 11.32it/s]
分批tokenize目标句子: 21%|██ | 734/3460 [01:23<04:00, 11.34it/s]
分批tokenize目标句子: 21%|██▏ | 736/3460 [01:24<04:03, 11.20it/s]
分批tokenize目标句子: 21%|██▏ | 738/3460 [01:24<04:00, 11.33it/s]
分批tokenize目标句子: 21%|██▏ | 740/3460 [01:24<04:03, 11.16it/s]
分批tokenize目标句子: 21%|██▏ | 742/3460 [01:24<04:03, 11.16it/s]
分批tokenize目标句子: 22%|██▏ | 744/3460 [01:24<03:59, 11.36it/s]
分批tokenize目标句子: 22%|██▏ | 746/3460 [01:25<04:00, 11.29it/s]
分批tokenize目标句子: 22%|██▏ | 748/3460 [01:25<03:58, 11.37it/s]
分批tokenize目标句子: 22%|██▏ | 750/3460 [01:25<04:00, 11.26it/s]
分批tokenize目标句子: 22%|██▏ | 752/3460 [01:25<04:01, 11.24it/s]
分批tokenize目标句子: 22%|██▏ | 754/3460 [01:25<04:01, 11.22it/s]
分批tokenize目标句子: 22%|██▏ | 756/3460 [01:25<04:02, 11.15it/s]
分批tokenize目标句子: 22%|██▏ | 758/3460 [01:26<04:01, 11.19it/s]
分批tokenize目标句子: 22%|██▏ | 760/3460 [01:26<03:58, 11.30it/s]
分批tokenize目标句子: 22%|██▏ | 762/3460 [01:26<03:57, 11.36it/s]
分批tokenize目标句子: 22%|██▏ | 764/3460 [01:26<03:58, 11.32it/s]
分批tokenize目标句子: 22%|██▏ | 766/3460 [01:26<03:56, 11.37it/s]
分批tokenize目标句子: 22%|██▏ | 768/3460 [01:27<03:56, 11.38it/s]
分批tokenize目标句子: 22%|██▏ | 770/3460 [01:27<03:55, 11.42it/s]
分批tokenize目标句子: 22%|██▏ | 772/3460 [01:27<03:55, 11.43it/s]
分批tokenize目标句子: 22%|██▏ | 774/3460 [01:27<03:56, 11.37it/s]
分批tokenize目标句子: 22%|██▏ | 776/3460 [01:27<03:54, 11.44it/s]
分批tokenize目标句子: 22%|██▏ | 778/3460 [01:27<03:56, 11.34it/s]
分批tokenize目标句子: 23%|██▎ | 780/3460 [01:28<03:54, 11.43it/s]
分批tokenize目标句子: 23%|██▎ | 782/3460 [01:28<03:53, 11.47it/s]
分批tokenize目标句子: 23%|██▎ | 784/3460 [01:28<03:52, 11.52it/s]
分批tokenize目标句子: 23%|██▎ | 786/3460 [01:28<03:51, 11.57it/s]
分批tokenize目标句子: 23%|██▎ | 788/3460 [01:28<03:51, 11.55it/s]
分批tokenize目标句子: 23%|██▎ | 790/3460 [01:28<03:51, 11.54it/s]
分批tokenize目标句子: 23%|██▎ | 792/3460 [01:29<03:52, 11.47it/s]
分批tokenize目标句子: 23%|██▎ | 794/3460 [01:29<03:52, 11.48it/s]
分批tokenize目标句子: 23%|██▎ | 796/3460 [01:29<03:53, 11.41it/s]
分批tokenize目标句子: 23%|██▎ | 798/3460 [01:29<03:52, 11.46it/s]
分批tokenize目标句子: 23%|██▎ | 800/3460 [01:29<03:52, 11.45it/s]
分批tokenize目标句子: 23%|██▎ | 802/3460 [01:29<03:51, 11.48it/s]
分批tokenize目标句子: 23%|██▎ | 804/3460 [01:30<03:51, 11.48it/s]
分批tokenize目标句子: 23%|██▎ | 806/3460 [01:30<03:52, 11.41it/s]
分批tokenize目标句子: 23%|██▎ | 808/3460 [01:30<03:52, 11.41it/s]
分批tokenize目标句子: 23%|██▎ | 810/3460 [01:30<03:52, 11.41it/s]
分批tokenize目标句子: 23%|██▎ | 812/3460 [01:30<03:52, 11.37it/s]
分批tokenize目标句子: 24%|██▎ | 814/3460 [01:31<03:53, 11.32it/s]
分批tokenize目标句子: 24%|██▎ | 816/3460 [01:31<03:53, 11.31it/s]
分批tokenize目标句子: 24%|██▎ | 818/3460 [01:31<03:54, 11.28it/s]
分批tokenize目标句子: 24%|██▎ | 820/3460 [01:31<03:54, 11.28it/s]
分批tokenize目标句子: 24%|██▍ | 822/3460 [01:31<03:53, 11.29it/s]
分批tokenize目标句子: 24%|██▍ | 824/3460 [01:31<03:54, 11.26it/s]
分批tokenize目标句子: 24%|██▍ | 826/3460 [01:32<03:52, 11.32it/s]
分批tokenize目标句子: 24%|██▍ | 828/3460 [01:32<03:52, 11.33it/s]
分批tokenize目标句子: 24%|██▍ | 830/3460 [01:32<03:51, 11.36it/s]
分批tokenize目标句子: 24%|██▍ | 832/3460 [01:32<03:50, 11.39it/s]
分批tokenize目标句子: 24%|██▍ | 834/3460 [01:32<03:49, 11.43it/s]
分批tokenize目标句子: 24%|██▍ | 836/3460 [01:32<03:49, 11.42it/s]
分批tokenize目标句子: 24%|██▍ | 838/3460 [01:33<03:48, 11.45it/s]
分批tokenize目标句子: 24%|██▍ | 840/3460 [01:33<03:48, 11.46it/s]
分批tokenize目标句子: 24%|██▍ | 842/3460 [01:33<03:47, 11.51it/s]
分批tokenize目标句子: 24%|██▍ | 844/3460 [01:33<03:47, 11.48it/s]
分批tokenize目标句子: 24%|██▍ | 846/3460 [01:33<03:47, 11.49it/s]
分批tokenize目标句子: 25%|██▍ | 848/3460 [01:34<03:50, 11.34it/s]
分批tokenize目标句子: 25%|██▍ | 850/3460 [01:34<03:51, 11.26it/s]
分批tokenize目标句子: 25%|██▍ | 852/3460 [01:34<03:49, 11.35it/s]
分批tokenize目标句子: 25%|██▍ | 854/3460 [01:34<03:49, 11.38it/s]
分批tokenize目标句子: 25%|██▍ | 856/3460 [01:34<03:49, 11.32it/s]
分批tokenize目标句子: 25%|██▍ | 858/3460 [01:34<03:47, 11.42it/s]
分批tokenize目标句子: 25%|██▍ | 860/3460 [01:35<03:52, 11.20it/s]
分批tokenize目标句子: 25%|██▍ | 862/3460 [01:35<03:49, 11.30it/s]
分批tokenize目标句子: 25%|██▍ | 864/3460 [01:35<03:52, 11.19it/s]
分批tokenize目标句子: 25%|██▌ | 866/3460 [01:35<03:51, 11.22it/s]
分批tokenize目标句子: 25%|██▌ | 868/3460 [01:35<03:52, 11.13it/s]
分批tokenize目标句子: 25%|██▌ | 870/3460 [01:35<03:53, 11.09it/s]
分批tokenize目标句子: 25%|██▌ | 872/3460 [01:36<03:53, 11.08it/s]
分批tokenize目标句子: 25%|██▌ | 874/3460 [01:36<03:55, 10.99it/s]
分批tokenize目标句子: 25%|██▌ | 876/3460 [01:36<03:52, 11.11it/s]
分批tokenize目标句子: 25%|██▌ | 878/3460 [01:36<03:49, 11.23it/s]
分批tokenize目标句子: 25%|██▌ | 880/3460 [01:36<03:49, 11.26it/s]
分批tokenize目标句子: 25%|██▌ | 882/3460 [01:37<03:48, 11.29it/s]
分批tokenize目标句子: 26%|██▌ | 884/3460 [01:37<03:47, 11.33it/s]
分批tokenize目标句子: 26%|██▌ | 886/3460 [01:37<03:45, 11.41it/s]
分批tokenize目标句子: 26%|██▌ | 888/3460 [01:37<03:43, 11.48it/s]
分批tokenize目标句子: 26%|██▌ | 890/3460 [01:37<03:43, 11.49it/s]
分批tokenize目标句子: 26%|██▌ | 892/3460 [01:37<03:43, 11.50it/s]
分批tokenize目标句子: 26%|██▌ | 894/3460 [01:38<03:43, 11.49it/s]
分批tokenize目标句子: 26%|██▌ | 896/3460 [01:38<03:43, 11.47it/s]
分批tokenize目标句子: 26%|██▌ | 898/3460 [01:38<03:43, 11.47it/s]
分批tokenize目标句子: 26%|██▌ | 900/3460 [01:38<03:43, 11.48it/s]
分批tokenize目标句子: 26%|██▌ | 902/3460 [01:38<03:43, 11.45it/s]
分批tokenize目标句子: 26%|██▌ | 904/3460 [01:38<03:43, 11.45it/s]
分批tokenize目标句子: 26%|██▌ | 906/3460 [01:39<03:43, 11.43it/s]
分批tokenize目标句子: 26%|██▌ | 908/3460 [01:39<03:43, 11.42it/s]
分批tokenize目标句子: 26%|██▋ | 910/3460 [01:39<03:42, 11.48it/s]
分批tokenize目标句子: 26%|██▋ | 912/3460 [01:39<03:40, 11.55it/s]
分批tokenize目标句子: 26%|██▋ | 914/3460 [01:39<03:40, 11.56it/s]
分批tokenize目标句子: 26%|██▋ | 916/3460 [01:40<03:41, 11.50it/s]
分批tokenize目标句子: 27%|██▋ | 918/3460 [01:40<03:41, 11.45it/s]
分批tokenize目标句子: 27%|██▋ | 920/3460 [01:40<03:42, 11.44it/s]
分批tokenize目标句子: 27%|██▋ | 922/3460 [01:40<03:41, 11.46it/s]
分批tokenize目标句子: 27%|██▋ | 924/3460 [01:40<03:42, 11.42it/s]
分批tokenize目标句子: 27%|██▋ | 926/3460 [01:40<03:42, 11.37it/s]
分批tokenize目标句子: 27%|██▋ | 928/3460 [01:41<03:45, 11.24it/s]
分批tokenize目标句子: 27%|██▋ | 930/3460 [01:41<03:44, 11.28it/s]
分批tokenize目标句子: 27%|██▋ | 932/3460 [01:41<03:50, 10.98it/s]
分批tokenize目标句子: 27%|██▋ | 934/3460 [01:41<03:48, 11.04it/s]
分批tokenize目标句子: 27%|██▋ | 936/3460 [01:41<03:47, 11.10it/s]
分批tokenize目标句子: 27%|██▋ | 938/3460 [01:41<03:46, 11.15it/s]
分批tokenize目标句子: 27%|██▋ | 940/3460 [01:42<03:47, 11.07it/s]
分批tokenize目标句子: 27%|██▋ | 942/3460 [01:42<03:45, 11.18it/s]
分批tokenize目标句子: 27%|██▋ | 944/3460 [01:42<03:46, 11.09it/s]
分批tokenize目标句子: 27%|██▋ | 946/3460 [01:42<03:49, 10.95it/s]
分批tokenize目标句子: 27%|██▋ | 948/3460 [01:42<03:49, 10.95it/s]
分批tokenize目标句子: 27%|██▋ | 950/3460 [01:43<03:47, 11.05it/s]
分批tokenize目标句子: 28%|██▊ | 952/3460 [01:43<03:45, 11.15it/s]
分批tokenize目标句子: 28%|██▊ | 954/3460 [01:43<03:43, 11.21it/s]
分批tokenize目标句子: 28%|██▊ | 956/3460 [01:43<03:41, 11.33it/s]
分批tokenize目标句子: 28%|██▊ | 958/3460 [01:43<03:40, 11.35it/s]
分批tokenize目标句子: 28%|██▊ | 960/3460 [01:43<03:40, 11.34it/s]
分批tokenize目标句子: 28%|██▊ | 962/3460 [01:44<03:40, 11.31it/s]
分批tokenize目标句子: 28%|██▊ | 964/3460 [01:44<03:43, 11.18it/s]
分批tokenize目标句子: 28%|██▊ | 966/3460 [01:44<03:44, 11.12it/s]
分批tokenize目标句子: 28%|██▊ | 968/3460 [01:44<03:46, 11.00it/s]
分批tokenize目标句子: 28%|██▊ | 970/3460 [01:44<03:47, 10.96it/s]
分批tokenize目标句子: 28%|██▊ | 972/3460 [01:45<03:48, 10.90it/s]
分批tokenize目标句子: 28%|██▊ | 974/3460 [01:45<03:46, 10.98it/s]
分批tokenize目标句子: 28%|██▊ | 976/3460 [01:45<03:45, 11.00it/s]
分批tokenize目标句子: 28%|██▊ | 978/3460 [01:45<03:44, 11.06it/s]
分批tokenize目标句子: 28%|██▊ | 980/3460 [01:45<03:42, 11.12it/s]
分批tokenize目标句子: 28%|██▊ | 982/3460 [01:45<03:42, 11.15it/s]
分批tokenize目标句子: 28%|██▊ | 984/3460 [01:46<03:43, 11.06it/s]
分批tokenize目标句子: 28%|██▊ | 986/3460 [01:46<03:46, 10.93it/s]
分批tokenize目标句子: 29%|██▊ | 988/3460 [01:46<03:44, 11.01it/s]
分批tokenize目标句子: 29%|██▊ | 990/3460 [01:46<03:44, 11.01it/s]
分批tokenize目标句子: 29%|██▊ | 992/3460 [01:46<03:41, 11.12it/s]
分批tokenize目标句子: 29%|██▊ | 994/3460 [01:47<03:42, 11.10it/s]
分批tokenize目标句子: 29%|██▉ | 996/3460 [01:47<03:40, 11.16it/s]
分批tokenize目标句子: 29%|██▉ | 998/3460 [01:47<03:39, 11.24it/s]
分批tokenize目标句子: 29%|██▉ | 1000/3460 [01:47<03:37, 11.29it/s]
分批tokenize目标句子: 29%|██▉ | 1002/3460 [01:47<03:36, 11.34it/s]
分批tokenize目标句子: 29%|██▉ | 1004/3460 [01:47<03:36, 11.36it/s]
分批tokenize目标句子: 29%|██▉ | 1006/3460 [01:48<03:36, 11.34it/s]
分批tokenize目标句子: 29%|██▉ | 1006/3460 [01:58<03:36, 11.34it/s]
分批tokenize目标句子: 29%|██▉ | 1007/3460 [01:58<1:18:56, 1.93s/it]
分批tokenize目标句子: 29%|██▉ | 1009/3460 [01:58<53:39, 1.31s/it]
分批tokenize目标句子: 29%|██▉ | 1011/3460 [01:58<37:27, 1.09it/s]
分批tokenize目标句子: 29%|██▉ | 1013/3460 [01:59<26:41, 1.53it/s]
分批tokenize目标句子: 29%|██▉ | 1015/3460 [01:59<19:28, 2.09it/s]
分批tokenize目标句子: 29%|██▉ | 1017/3460 [01:59<14:33, 2.80it/s]
分批tokenize目标句子: 29%|██▉ | 1019/3460 [01:59<11:11, 3.63it/s]
分批tokenize目标句子: 30%|██▉ | 1021/3460 [01:59<08:54, 4.56it/s]
分批tokenize目标句子: 30%|██▉ | 1023/3460 [02:00<07:19, 5.55it/s]
分批tokenize目标句子: 30%|██▉ | 1025/3460 [02:00<06:17, 6.46it/s]
分批tokenize目标句子: 30%|██▉ | 1027/3460 [02:00<05:30, 7.35it/s]
分批tokenize目标句子: 30%|██▉ | 1029/3460 [02:00<04:58, 8.14it/s]
分批tokenize目标句子: 30%|██▉ | 1031/3460 [02:00<04:36, 8.80it/s]
分批tokenize目标句子: 30%|██▉ | 1033/3460 [02:00<04:20, 9.32it/s]
分批tokenize目标句子: 30%|██▉ | 1035/3460 [02:01<04:11, 9.65it/s]
分批tokenize目标句子: 30%|██▉ | 1037/3460 [02:01<04:01, 10.02it/s]
分批tokenize目标句子: 30%|███ | 1039/3460 [02:01<03:57, 10.21it/s]
分批tokenize目标句子: 30%|███ | 1041/3460 [02:01<03:53, 10.35it/s]
分批tokenize目标句子: 30%|███ | 1043/3460 [02:01<03:54, 10.32it/s]
分批tokenize目标句子: 30%|███ | 1045/3460 [02:02<03:51, 10.42it/s]
分批tokenize目标句子: 30%|███ | 1047/3460 [02:02<03:48, 10.55it/s]
分批tokenize目标句子: 30%|███ | 1049/3460 [02:02<03:45, 10.70it/s]
分批tokenize目标句子: 30%|███ | 1051/3460 [02:02<03:44, 10.72it/s]
分批tokenize目标句子: 30%|███ | 1053/3460 [02:02<03:44, 10.72it/s]
分批tokenize目标句子: 30%|███ | 1055/3460 [02:03<03:45, 10.67it/s]
分批tokenize目标句子: 31%|███ | 1057/3460 [02:03<03:44, 10.69it/s]
分批tokenize目标句子: 31%|███ | 1059/3460 [02:03<03:47, 10.55it/s]
分批tokenize目标句子: 31%|███ | 1061/3460 [02:03<03:47, 10.57it/s]
分批tokenize目标句子: 31%|███ | 1063/3460 [02:03<03:48, 10.49it/s]
分批tokenize目标句子: 31%|███ | 1065/3460 [02:03<03:47, 10.51it/s]
分批tokenize目标句子: 31%|███ | 1067/3460 [02:04<03:48, 10.48it/s]
分批tokenize目标句子: 31%|███ | 1069/3460 [02:04<03:47, 10.52it/s]
分批tokenize目标句子: 31%|███ | 1071/3460 [02:04<03:47, 10.51it/s]
分批tokenize目标句子: 31%|███ | 1073/3460 [02:04<03:46, 10.56it/s]
分批tokenize目标句子: 31%|███ | 1075/3460 [02:04<03:46, 10.51it/s]
分批tokenize目标句子: 31%|███ | 1077/3460 [02:05<03:46, 10.51it/s]
分批tokenize目标句子: 31%|███ | 1079/3460 [02:05<03:46, 10.51it/s]
分批tokenize目标句子: 31%|███ | 1081/3460 [02:05<03:47, 10.47it/s]
分批tokenize目标句子: 31%|███▏ | 1083/3460 [02:05<03:46, 10.48it/s]
分批tokenize目标句子: 31%|███▏ | 1085/3460 [02:05<03:46, 10.48it/s]
分批tokenize目标句子: 31%|███▏ | 1087/3460 [02:06<03:47, 10.45it/s]
分批tokenize目标句子: 31%|███▏ | 1089/3460 [02:06<03:53, 10.16it/s]
分批tokenize目标句子: 32%|███▏ | 1091/3460 [02:06<03:49, 10.31it/s]
分批tokenize目标句子: 32%|███▏ | 1093/3460 [02:06<03:47, 10.39it/s]
分批tokenize目标句子: 32%|███▏ | 1095/3460 [02:06<03:46, 10.43it/s]
分批tokenize目标句子: 32%|███▏ | 1097/3460 [02:07<03:46, 10.44it/s]
分批tokenize目标句子: 32%|███▏ | 1099/3460 [02:07<03:46, 10.43it/s]
分批tokenize目标句子: 32%|███▏ | 1101/3460 [02:07<03:42, 10.61it/s]
分批tokenize目标句子: 32%|███▏ | 1103/3460 [02:07<03:41, 10.63it/s]
分批tokenize目标句子: 32%|███▏ | 1105/3460 [02:07<03:41, 10.61it/s]
分批tokenize目标句子: 32%|███▏ | 1107/3460 [02:07<03:41, 10.64it/s]
分批tokenize目标句子: 32%|███▏ | 1109/3460 [02:08<03:40, 10.68it/s]
分批tokenize目标句子: 32%|███▏ | 1111/3460 [02:08<03:38, 10.76it/s]
分批tokenize目标句子: 32%|███▏ | 1113/3460 [02:08<03:36, 10.83it/s]
分批tokenize目标句子: 32%|███▏ | 1115/3460 [02:08<03:35, 10.87it/s]
分批tokenize目标句子: 32%|███▏ | 1117/3460 [02:08<03:35, 10.88it/s]
分批tokenize目标句子: 32%|███▏ | 1119/3460 [02:09<03:36, 10.82it/s]
分批tokenize目标句子: 32%|███▏ | 1121/3460 [02:09<03:37, 10.76it/s]
分批tokenize目标句子: 32%|███▏ | 1123/3460 [02:09<03:38, 10.70it/s]
分批tokenize目标句子: 33%|███▎ | 1125/3460 [02:09<03:39, 10.63it/s]
分批tokenize目标句子: 33%|███▎ | 1127/3460 [02:09<03:38, 10.68it/s]
分批tokenize目标句子: 33%|███▎ | 1129/3460 [02:10<03:45, 10.33it/s]
分批tokenize目标句子: 33%|███▎ | 1131/3460 [02:10<03:42, 10.48it/s]
分批tokenize目标句子: 33%|███▎ | 1133/3460 [02:10<03:41, 10.52it/s]
分批tokenize目标句子: 33%|███▎ | 1135/3460 [02:10<03:38, 10.63it/s]
分批tokenize目标句子: 33%|███▎ | 1137/3460 [02:10<03:36, 10.72it/s]
分批tokenize目标句子: 33%|███▎ | 1139/3460 [02:10<03:35, 10.77it/s]
分批tokenize目标句子: 33%|███▎ | 1141/3460 [02:11<03:34, 10.83it/s]
分批tokenize目标句子: 33%|███▎ | 1143/3460 [02:11<03:33, 10.85it/s]
分批tokenize目标句子: 33%|███▎ | 1145/3460 [02:11<03:31, 10.93it/s]
分批tokenize目标句子: 33%|███▎ | 1147/3460 [02:11<03:32, 10.91it/s]
分批tokenize目标句子: 33%|███▎ | 1149/3460 [02:11<03:30, 10.96it/s]
分批tokenize目标句子: 33%|███▎ | 1151/3460 [02:12<03:30, 10.98it/s]
分批tokenize目标句子: 33%|███▎ | 1153/3460 [02:12<03:30, 10.98it/s]
分批tokenize目标句子: 33%|███▎ | 1155/3460 [02:12<03:29, 11.00it/s]
分批tokenize目标句子: 33%|███▎ | 1157/3460 [02:12<03:29, 11.00it/s]
分批tokenize目标句子: 33%|███▎ | 1159/3460 [02:12<03:29, 10.96it/s]
分批tokenize目标句子: 34%|███▎ | 1161/3460 [02:12<03:32, 10.83it/s]
分批tokenize目标句子: 34%|███▎ | 1163/3460 [02:13<03:30, 10.92it/s]
分批tokenize目标句子: 34%|███▎ | 1165/3460 [02:13<03:28, 11.02it/s]
分批tokenize目标句子: 34%|███▎ | 1167/3460 [02:13<03:27, 11.07it/s]
分批tokenize目标句子: 34%|███▍ | 1169/3460 [02:13<03:26, 11.12it/s]
分批tokenize目标句子: 34%|███▍ | 1171/3460 [02:13<03:25, 11.16it/s]
分批tokenize目标句子: 34%|███▍ | 1173/3460 [02:14<03:24, 11.17it/s]
分批tokenize目标句子: 34%|███▍ | 1175/3460 [02:14<03:24, 11.16it/s]
分批tokenize目标句子: 34%|███▍ | 1177/3460 [02:14<03:24, 11.18it/s]
分批tokenize目标句子: 34%|███▍ | 1179/3460 [02:14<03:23, 11.20it/s]
分批tokenize目标句子: 34%|███▍ | 1181/3460 [02:14<03:23, 11.18it/s]
分批tokenize目标句子: 34%|███▍ | 1183/3460 [02:14<03:24, 11.11it/s]
分批tokenize目标句子: 34%|███▍ | 1185/3460 [02:15<03:24, 11.14it/s]
分批tokenize目标句子: 34%|███▍ | 1187/3460 [02:15<03:25, 11.05it/s]
分批tokenize目标句子: 34%|███▍ | 1189/3460 [02:15<03:30, 10.79it/s]
分批tokenize目标句子: 34%|███▍ | 1191/3460 [02:15<03:26, 11.00it/s]
分批tokenize目标句子: 34%|███▍ | 1193/3460 [02:15<03:26, 10.97it/s]
分批tokenize目标句子: 35%|███▍ | 1195/3460 [02:16<03:24, 11.06it/s]
分批tokenize目标句子: 35%|███▍ | 1197/3460 [02:16<03:25, 11.01it/s]
分批tokenize目标句子: 35%|███▍ | 1199/3460 [02:16<03:23, 11.12it/s]
分批tokenize目标句子: 35%|███▍ | 1201/3460 [02:16<03:21, 11.21it/s]
分批tokenize目标句子: 35%|███▍ | 1203/3460 [02:16<03:21, 11.19it/s]
分批tokenize目标句子: 35%|███▍ | 1205/3460 [02:16<03:24, 11.03it/s]
分批tokenize目标句子: 35%|███▍ | 1207/3460 [02:17<03:25, 10.97it/s]
分批tokenize目标句子: 35%|███▍ | 1209/3460 [02:17<03:26, 10.90it/s]
分批tokenize目标句子: 35%|███▌ | 1211/3460 [02:17<03:26, 10.88it/s]
分批tokenize目标句子: 35%|███▌ | 1213/3460 [02:17<03:26, 10.86it/s]
分批tokenize目标句子: 35%|███▌ | 1215/3460 [02:17<03:26, 10.85it/s]
分批tokenize目标句子: 35%|███▌ | 1217/3460 [02:18<03:27, 10.84it/s]
分批tokenize目标句子: 35%|███▌ | 1219/3460 [02:18<03:26, 10.85it/s]
分批tokenize目标句子: 35%|███▌ | 1221/3460 [02:18<03:26, 10.87it/s]
分批tokenize目标句子: 35%|███▌ | 1223/3460 [02:18<03:24, 10.92it/s]
分批tokenize目标句子: 35%|███▌ | 1225/3460 [02:18<03:25, 10.90it/s]
分批tokenize目标句子: 35%|███▌ | 1227/3460 [02:18<03:24, 10.94it/s]
分批tokenize目标句子: 36%|███▌ | 1229/3460 [02:19<03:23, 10.98it/s]
分批tokenize目标句子: 36%|███▌ | 1231/3460 [02:19<03:22, 11.01it/s]
分批tokenize目标句子: 36%|███▌ | 1233/3460 [02:19<03:21, 11.03it/s]
分批tokenize目标句子: 36%|███▌ | 1235/3460 [02:19<03:22, 10.99it/s]
分批tokenize目标句子: 36%|███▌ | 1237/3460 [02:19<03:23, 10.92it/s]
分批tokenize目标句子: 36%|███▌ | 1239/3460 [02:20<03:23, 10.90it/s]
分批tokenize目标句子: 36%|███▌ | 1241/3460 [02:20<03:27, 10.70it/s]
分批tokenize目标句子: 36%|███▌ | 1243/3460 [02:20<03:25, 10.77it/s]
分批tokenize目标句子: 36%|███▌ | 1245/3460 [02:20<03:24, 10.81it/s]
分批tokenize目标句子: 36%|███▌ | 1247/3460 [02:20<03:23, 10.87it/s]
分批tokenize目标句子: 36%|███▌ | 1249/3460 [02:20<03:23, 10.85it/s]
分批tokenize目标句子: 36%|███▌ | 1251/3460 [02:21<03:22, 10.89it/s]
分批tokenize目标句子: 36%|███▌ | 1253/3460 [02:21<03:24, 10.80it/s]
分批tokenize目标句子: 36%|███▋ | 1255/3460 [02:21<03:25, 10.74it/s]
分批tokenize目标句子: 36%|███▋ | 1257/3460 [02:21<03:28, 10.58it/s]
分批tokenize目标句子: 36%|███▋ | 1259/3460 [02:21<03:26, 10.64it/s]
分批tokenize目标句子: 36%|███▋ | 1261/3460 [02:22<03:26, 10.65it/s]
分批tokenize目标句子: 37%|███▋ | 1263/3460 [02:22<03:24, 10.73it/s]
分批tokenize目标句子: 37%|███▋ | 1265/3460 [02:22<03:23, 10.81it/s]
分批tokenize目标句子: 37%|███▋ | 1267/3460 [02:22<03:20, 10.92it/s]
分批tokenize目标句子: 37%|███▋ | 1269/3460 [02:22<03:20, 10.94it/s]
分批tokenize目标句子: 37%|███▋ | 1271/3460 [02:23<03:19, 10.97it/s]
分批tokenize目标句子: 37%|███▋ | 1273/3460 [02:23<03:18, 11.01it/s]
分批tokenize目标句子: 37%|███▋ | 1275/3460 [02:23<03:17, 11.04it/s]
分批tokenize目标句子: 37%|███▋ | 1277/3460 [02:23<03:16, 11.12it/s]
分批tokenize目标句子: 37%|███▋ | 1279/3460 [02:23<03:15, 11.16it/s]
分批tokenize目标句子: 37%|███▋ | 1281/3460 [02:23<03:14, 11.21it/s]
分批tokenize目标句子: 37%|███▋ | 1283/3460 [02:24<03:14, 11.21it/s]
分批tokenize目标句子: 37%|███▋ | 1285/3460 [02:24<03:15, 11.14it/s]
分批tokenize目标句子: 37%|███▋ | 1287/3460 [02:24<03:15, 11.10it/s]
分批tokenize目标句子: 37%|███▋ | 1289/3460 [02:24<03:15, 11.13it/s]
分批tokenize目标句子: 37%|███▋ | 1291/3460 [02:24<03:18, 10.90it/s]
分批tokenize目标句子: 37%|███▋ | 1293/3460 [02:24<03:16, 11.04it/s]
分批tokenize目标句子: 37%|███▋ | 1295/3460 [02:25<03:16, 11.03it/s]
分批tokenize目标句子: 37%|███▋ | 1297/3460 [02:25<03:15, 11.05it/s]
分批tokenize目标句子: 38%|███▊ | 1299/3460 [02:25<03:14, 11.13it/s]
分批tokenize目标句子: 38%|███▊ | 1301/3460 [02:25<03:12, 11.21it/s]
分批tokenize目标句子: 38%|███▊ | 1303/3460 [02:25<03:12, 11.23it/s]
分批tokenize目标句子: 38%|███▊ | 1305/3460 [02:26<03:11, 11.26it/s]
分批tokenize目标句子: 38%|███▊ | 1307/3460 [02:26<03:10, 11.29it/s]
分批tokenize目标句子: 38%|███▊ | 1309/3460 [02:26<03:10, 11.27it/s]
分批tokenize目标句子: 38%|███▊ | 1311/3460 [02:26<03:10, 11.27it/s]
分批tokenize目标句子: 38%|███▊ | 1313/3460 [02:26<03:10, 11.28it/s]
分批tokenize目标句子: 38%|███▊ | 1315/3460 [02:26<03:09, 11.33it/s]
分批tokenize目标句子: 38%|███▊ | 1317/3460 [02:27<03:09, 11.31it/s]
分批tokenize目标句子: 38%|███▊ | 1319/3460 [02:27<03:09, 11.27it/s]
分批tokenize目标句子: 38%|███▊ | 1321/3460 [02:27<03:09, 11.28it/s]
分批tokenize目标句子: 38%|███▊ | 1323/3460 [02:27<03:08, 11.33it/s]
分批tokenize目标句子: 38%|███▊ | 1325/3460 [02:27<03:08, 11.33it/s]
分批tokenize目标句子: 38%|███▊ | 1327/3460 [02:28<03:08, 11.34it/s]
分批tokenize目标句子: 38%|███▊ | 1329/3460 [02:28<03:07, 11.36it/s]
分批tokenize目标句子: 38%|███▊ | 1331/3460 [02:28<03:08, 11.32it/s]
分批tokenize目标句子: 39%|███▊ | 1333/3460 [02:28<03:08, 11.29it/s]
分批tokenize目标句子: 39%|███▊ | 1335/3460 [02:28<03:09, 11.19it/s]
分批tokenize目标句子: 39%|███▊ | 1337/3460 [02:28<03:11, 11.08it/s]
分批tokenize目标句子: 39%|███▊ | 1339/3460 [02:29<03:09, 11.22it/s]
分批tokenize目标句子: 39%|███▉ | 1341/3460 [02:29<03:07, 11.29it/s]
分批tokenize目标句子: 39%|███▉ | 1343/3460 [02:29<03:07, 11.28it/s]
分批tokenize目标句子: 39%|███▉ | 1345/3460 [02:29<03:06, 11.32it/s]
分批tokenize目标句子: 39%|███▉ | 1347/3460 [02:29<03:06, 11.32it/s]
分批tokenize目标句子: 39%|███▉ | 1349/3460 [02:29<03:05, 11.35it/s]
分批tokenize目标句子: 39%|███▉ | 1351/3460 [02:30<03:05, 11.39it/s]
分批tokenize目标句子: 39%|███▉ | 1353/3460 [02:30<03:04, 11.39it/s]
分批tokenize目标句子: 39%|███▉ | 1355/3460 [02:30<03:05, 11.34it/s]
分批tokenize目标句子: 39%|███▉ | 1357/3460 [02:30<03:04, 11.38it/s]
分批tokenize目标句子: 39%|███▉ | 1359/3460 [02:30<03:04, 11.36it/s]
分批tokenize目标句子: 39%|███▉ | 1361/3460 [02:31<03:06, 11.25it/s]
分批tokenize目标句子: 39%|███▉ | 1363/3460 [02:31<03:07, 11.18it/s]
分批tokenize目标句子: 39%|███▉ | 1365/3460 [02:31<03:06, 11.23it/s]
分批tokenize目标句子: 40%|███▉ | 1367/3460 [02:31<03:06, 11.23it/s]
分批tokenize目标句子: 40%|███▉ | 1369/3460 [02:31<03:03, 11.37it/s]
分批tokenize目标句子: 40%|███▉ | 1371/3460 [02:31<03:02, 11.44it/s]
分批tokenize目标句子: 40%|███▉ | 1373/3460 [02:32<03:09, 11.04it/s]
分批tokenize目标句子: 40%|███▉ | 1375/3460 [02:32<03:08, 11.05it/s]
分批tokenize目标句子: 40%|███▉ | 1377/3460 [02:32<03:07, 11.08it/s]
分批tokenize目标句子: 40%|███▉ | 1379/3460 [02:32<03:06, 11.16it/s]
分批tokenize目标句子: 40%|███▉ | 1381/3460 [02:32<03:07, 11.09it/s]
分批tokenize目标句子: 40%|███▉ | 1383/3460 [02:32<03:07, 11.11it/s]
分批tokenize目标句子: 40%|████ | 1385/3460 [02:33<03:05, 11.17it/s]
分批tokenize目标句子: 40%|████ | 1387/3460 [02:33<03:05, 11.16it/s]
分批tokenize目标句子: 40%|████ | 1389/3460 [02:33<03:04, 11.24it/s]
分批tokenize目标句子: 40%|████ | 1391/3460 [02:33<03:04, 11.24it/s]
分批tokenize目标句子: 40%|████ | 1393/3460 [02:33<03:03, 11.28it/s]
分批tokenize目标句子: 40%|████ | 1395/3460 [02:34<03:03, 11.26it/s]
分批tokenize目标句子: 40%|████ | 1397/3460 [02:34<03:02, 11.33it/s]
分批tokenize目标句子: 40%|████ | 1399/3460 [02:34<03:02, 11.32it/s]
分批tokenize目标句子: 40%|████ | 1401/3460 [02:34<03:00, 11.41it/s]
分批tokenize目标句子: 41%|████ | 1403/3460 [02:34<03:00, 11.42it/s]
分批tokenize目标句子: 41%|████ | 1405/3460 [02:34<03:01, 11.35it/s]
分批tokenize目标句子: 41%|████ | 1407/3460 [02:35<03:01, 11.30it/s]
分批tokenize目标句子: 41%|████ | 1409/3460 [02:35<03:01, 11.32it/s]
分批tokenize目标句子: 41%|████ | 1411/3460 [02:35<03:02, 11.25it/s]
分批tokenize目标句子: 41%|████ | 1413/3460 [02:35<03:01, 11.25it/s]
分批tokenize目标句子: 41%|████ | 1415/3460 [02:35<03:02, 11.21it/s]
分批tokenize目标句子: 41%|████ | 1417/3460 [02:35<03:01, 11.23it/s]
分批tokenize目标句子: 41%|████ | 1419/3460 [02:36<03:01, 11.24it/s]
分批tokenize目标句子: 41%|████ | 1421/3460 [02:36<03:00, 11.30it/s]
分批tokenize目标句子: 41%|████ | 1423/3460 [02:36<03:00, 11.28it/s]
分批tokenize目标句子: 41%|████ | 1425/3460 [02:36<03:00, 11.27it/s]
分批tokenize目标句子: 41%|████ | 1427/3460 [02:36<03:00, 11.24it/s]
分批tokenize目标句子: 41%|████▏ | 1429/3460 [02:37<03:00, 11.23it/s]
分批tokenize目标句子: 41%|████▏ | 1431/3460 [02:37<03:00, 11.23it/s]
分批tokenize目标句子: 41%|████▏ | 1433/3460 [02:37<03:00, 11.23it/s]
分批tokenize目标句子: 41%|████▏ | 1435/3460 [02:37<03:00, 11.24it/s]
分批tokenize目标句子: 42%|████▏ | 1437/3460 [02:37<03:00, 11.24it/s]
分批tokenize目标句子: 42%|████▏ | 1439/3460 [02:37<03:00, 11.18it/s]
分批tokenize目标句子: 42%|████▏ | 1441/3460 [02:38<03:01, 11.14it/s]
分批tokenize目标句子: 42%|████▏ | 1443/3460 [02:38<03:01, 11.12it/s]
分批tokenize目标句子: 42%|████▏ | 1445/3460 [02:38<03:00, 11.18it/s]
分批tokenize目标句子: 42%|████▏ | 1447/3460 [02:38<02:59, 11.23it/s]
分批tokenize目标句子: 42%|████▏ | 1449/3460 [02:38<02:58, 11.27it/s]
分批tokenize目标句子: 42%|████▏ | 1451/3460 [02:39<02:58, 11.28it/s]
分批tokenize目标句子: 42%|████▏ | 1453/3460 [02:39<02:57, 11.29it/s]
分批tokenize目标句子: 42%|████▏ | 1455/3460 [02:39<02:57, 11.27it/s]
分批tokenize目标句子: 42%|████▏ | 1457/3460 [02:39<02:57, 11.26it/s]
分批tokenize目标句子: 42%|████▏ | 1459/3460 [02:39<02:58, 11.23it/s]
分批tokenize目标句子: 42%|████▏ | 1461/3460 [02:39<02:57, 11.28it/s]
分批tokenize目标句子: 42%|████▏ | 1463/3460 [02:40<02:57, 11.27it/s]
分批tokenize目标句子: 42%|████▏ | 1465/3460 [02:40<02:56, 11.32it/s]
分批tokenize目标句子: 42%|████▏ | 1467/3460 [02:40<02:56, 11.29it/s]
分批tokenize目标句子: 42%|████▏ | 1469/3460 [02:40<02:55, 11.36it/s]
分批tokenize目标句子: 43%|████▎ | 1471/3460 [02:40<02:54, 11.40it/s]
分批tokenize目标句子: 43%|████▎ | 1473/3460 [02:40<02:53, 11.47it/s]
分批tokenize目标句子: 43%|████▎ | 1475/3460 [02:41<02:53, 11.44it/s]
分批tokenize目标句子: 43%|████▎ | 1477/3460 [02:41<02:53, 11.40it/s]
分批tokenize目标句子: 43%|████▎ | 1479/3460 [02:41<02:54, 11.38it/s]
分批tokenize目标句子: 43%|████▎ | 1481/3460 [02:41<02:54, 11.37it/s]
分批tokenize目标句子: 43%|████▎ | 1483/3460 [02:41<02:53, 11.38it/s]
分批tokenize目标句子: 43%|████▎ | 1485/3460 [02:42<02:52, 11.43it/s]
分批tokenize目标句子: 43%|████▎ | 1487/3460 [02:42<02:52, 11.43it/s]
分批tokenize目标句子: 43%|████▎ | 1489/3460 [02:42<02:53, 11.38it/s]
分批tokenize目标句子: 43%|████▎ | 1491/3460 [02:42<02:53, 11.36it/s]
分批tokenize目标句子: 43%|████▎ | 1493/3460 [02:42<02:52, 11.38it/s]
分批tokenize目标句子: 43%|████▎ | 1495/3460 [02:42<02:54, 11.29it/s]
分批tokenize目标句子: 43%|████▎ | 1497/3460 [02:43<02:53, 11.29it/s]
分批tokenize目标句子: 43%|████▎ | 1499/3460 [02:43<02:53, 11.31it/s]
分批tokenize目标句子: 43%|████▎ | 1501/3460 [02:43<02:52, 11.33it/s]
分批tokenize目标句子: 43%|████▎ | 1503/3460 [02:43<02:52, 11.32it/s]
分批tokenize目标句子: 43%|████▎ | 1505/3460 [02:43<02:55, 11.16it/s]
分批tokenize目标句子: 44%|████▎ | 1507/3460 [02:53<50:06, 1.54s/it]
分批tokenize目标句子: 44%|████▎ | 1509/3460 [02:53<35:54, 1.10s/it]
分批tokenize目标句子: 44%|████▎ | 1511/3460 [02:53<25:57, 1.25it/s]
分批tokenize目标句子: 44%|████▎ | 1513/3460 [02:54<19:00, 1.71it/s]
分批tokenize目标句子: 44%|████▍ | 1515/3460 [02:54<14:09, 2.29it/s]
分批tokenize目标句子: 44%|████▍ | 1517/3460 [02:54<10:45, 3.01it/s]
分批tokenize目标句子: 44%|████▍ | 1519/3460 [02:54<08:23, 3.86it/s]
分批tokenize目标句子: 44%|████▍ | 1521/3460 [02:54<06:42, 4.82it/s]
分批tokenize目标句子: 44%|████▍ | 1523/3460 [02:55<05:34, 5.79it/s]
分批tokenize目标句子: 44%|████▍ | 1525/3460 [02:55<04:43, 6.82it/s]
分批tokenize目标句子: 44%|████▍ | 1527/3460 [02:55<04:08, 7.76it/s]
分批tokenize目标句子: 44%|████▍ | 1529/3460 [02:55<03:45, 8.55it/s]
分批tokenize目标句子: 44%|████▍ | 1531/3460 [02:55<03:27, 9.30it/s]
分批tokenize目标句子: 44%|████▍ | 1533/3460 [02:55<03:15, 9.84it/s]
分批tokenize目标句子: 44%|████▍ | 1535/3460 [02:56<03:10, 10.09it/s]
分批tokenize目标句子: 44%|████▍ | 1537/3460 [02:56<03:03, 10.47it/s]
分批tokenize目标句子: 44%|████▍ | 1539/3460 [02:56<02:57, 10.82it/s]
分批tokenize目标句子: 45%|████▍ | 1541/3460 [02:56<02:56, 10.88it/s]
分批tokenize目标句子: 45%|████▍ | 1543/3460 [02:56<02:54, 10.98it/s]
分批tokenize目标句子: 45%|████▍ | 1545/3460 [02:56<02:51, 11.17it/s]
分批tokenize目标句子: 45%|████▍ | 1547/3460 [02:57<02:50, 11.24it/s]
分批tokenize目标句子: 45%|████▍ | 1549/3460 [02:57<02:50, 11.23it/s]
分批tokenize目标句子: 45%|████▍ | 1551/3460 [02:57<02:47, 11.37it/s]
分批tokenize目标句子: 45%|████▍ | 1553/3460 [02:57<02:46, 11.43it/s]
分批tokenize目标句子: 45%|████▍ | 1555/3460 [02:57<02:47, 11.40it/s]
分批tokenize目标句子: 45%|████▌ | 1557/3460 [02:58<02:45, 11.47it/s]
分批tokenize目标句子: 45%|████▌ | 1559/3460 [02:58<02:45, 11.49it/s]
分批tokenize目标句子: 45%|████▌ | 1561/3460 [02:58<02:46, 11.40it/s]
分批tokenize目标句子: 45%|████▌ | 1563/3460 [02:58<02:46, 11.38it/s]
分批tokenize目标句子: 45%|████▌ | 1565/3460 [02:58<02:46, 11.38it/s]
分批tokenize目标句子: 45%|████▌ | 1567/3460 [02:58<02:47, 11.32it/s]
分批tokenize目标句子: 45%|████▌ | 1569/3460 [02:59<02:47, 11.31it/s]
分批tokenize目标句子: 45%|████▌ | 1571/3460 [02:59<02:46, 11.37it/s]
分批tokenize目标句子: 45%|████▌ | 1573/3460 [02:59<02:45, 11.42it/s]
分批tokenize目标句子: 46%|████▌ | 1575/3460 [02:59<02:47, 11.28it/s]
分批tokenize目标句子: 46%|████▌ | 1577/3460 [02:59<02:45, 11.35it/s]
分批tokenize目标句子: 46%|████▌ | 1579/3460 [02:59<02:44, 11.40it/s]
分批tokenize目标句子: 46%|████▌ | 1581/3460 [03:00<02:44, 11.41it/s]
分批tokenize目标句子: 46%|████▌ | 1583/3460 [03:00<02:45, 11.36it/s]
分批tokenize目标句子: 46%|████▌ | 1585/3460 [03:00<02:44, 11.41it/s]
分批tokenize目标句子: 46%|████▌ | 1587/3460 [03:00<02:45, 11.33it/s]
分批tokenize目标句子: 46%|████▌ | 1589/3460 [03:00<02:44, 11.39it/s]
分批tokenize目标句子: 46%|████▌ | 1591/3460 [03:01<02:43, 11.41it/s]
分批tokenize目标句子: 46%|████▌ | 1593/3460 [03:01<02:45, 11.30it/s]
分批tokenize目标句子: 46%|████▌ | 1595/3460 [03:01<02:44, 11.34it/s]
分批tokenize目标句子: 46%|████▌ | 1597/3460 [03:01<02:43, 11.38it/s]
分批tokenize目标句子: 46%|████▌ | 1599/3460 [03:01<02:45, 11.25it/s]
分批tokenize目标句子: 46%|████▋ | 1601/3460 [03:01<02:45, 11.24it/s]
分批tokenize目标句子: 46%|████▋ | 1603/3460 [03:02<02:44, 11.28it/s]
分批tokenize目标句子: 46%|████▋ | 1605/3460 [03:02<02:43, 11.31it/s]
分批tokenize目标句子: 46%|████▋ | 1607/3460 [03:02<02:44, 11.25it/s]
分批tokenize目标句子: 47%|████▋ | 1609/3460 [03:02<02:43, 11.32it/s]
分批tokenize目标句子: 47%|████▋ | 1611/3460 [03:02<02:44, 11.22it/s]
分批tokenize目标句子: 47%|████▋ | 1613/3460 [03:02<02:46, 11.07it/s]
分批tokenize目标句子: 47%|████▋ | 1615/3460 [03:03<02:46, 11.05it/s]
分批tokenize目标句子: 47%|████▋ | 1617/3460 [03:03<02:46, 11.05it/s]
分批tokenize目标句子: 47%|████▋ | 1619/3460 [03:03<02:44, 11.18it/s]
分批tokenize目标句子: 47%|████▋ | 1621/3460 [03:03<02:44, 11.20it/s]
分批tokenize目标句子: 47%|████▋ | 1623/3460 [03:03<02:46, 11.05it/s]
分批tokenize目标句子: 47%|████▋ | 1625/3460 [03:04<02:44, 11.15it/s]
分批tokenize目标句子: 47%|████▋ | 1627/3460 [03:04<02:44, 11.15it/s]
分批tokenize目标句子: 47%|████▋ | 1629/3460 [03:04<02:43, 11.22it/s]
分批tokenize目标句子: 47%|████▋ | 1631/3460 [03:04<02:42, 11.28it/s]
分批tokenize目标句子: 47%|████▋ | 1633/3460 [03:04<02:40, 11.36it/s]
分批tokenize目标句子: 47%|████▋ | 1635/3460 [03:04<02:42, 11.24it/s]
分批tokenize目标句子: 47%|████▋ | 1637/3460 [03:05<02:41, 11.29it/s]
分批tokenize目标句子: 47%|████▋ | 1639/3460 [03:05<02:42, 11.21it/s]
分批tokenize目标句子: 47%|████▋ | 1641/3460 [03:05<02:44, 11.05it/s]
分批tokenize目标句子: 47%|████▋ | 1643/3460 [03:05<02:43, 11.11it/s]
分批tokenize目标句子: 48%|████▊ | 1645/3460 [03:05<02:44, 11.02it/s]
分批tokenize目标句子: 48%|████▊ | 1647/3460 [03:06<02:44, 11.01it/s]
分批tokenize目标句子: 48%|████▊ | 1649/3460 [03:06<02:46, 10.91it/s]
分批tokenize目标句子: 48%|████▊ | 1651/3460 [03:06<02:47, 10.77it/s]
分批tokenize目标句子: 48%|████▊ | 1653/3460 [03:06<02:48, 10.72it/s]
分批tokenize目标句子: 48%|████▊ | 1655/3460 [03:06<02:48, 10.69it/s]
分批tokenize目标句子: 48%|████▊ | 1657/3460 [03:06<02:48, 10.70it/s]
分批tokenize目标句子: 48%|████▊ | 1659/3460 [03:07<02:47, 10.76it/s]
分批tokenize目标句子: 48%|████▊ | 1661/3460 [03:07<02:46, 10.82it/s]
分批tokenize目标句子: 48%|████▊ | 1663/3460 [03:07<02:46, 10.82it/s]
分批tokenize目标句子: 48%|████▊ | 1665/3460 [03:07<02:47, 10.74it/s]
分批tokenize目标句子: 48%|████▊ | 1667/3460 [03:07<02:46, 10.76it/s]
分批tokenize目标句子: 48%|████▊ | 1669/3460 [03:08<02:46, 10.75it/s]
分批tokenize目标句子: 48%|████▊ | 1671/3460 [03:08<02:46, 10.75it/s]
分批tokenize目标句子: 48%|████▊ | 1673/3460 [03:08<02:45, 10.82it/s]
分批tokenize目标句子: 48%|████▊ | 1675/3460 [03:08<02:44, 10.84it/s]
分批tokenize目标句子: 48%|████▊ | 1677/3460 [03:08<02:45, 10.78it/s]
分批tokenize目标句子: 49%|████▊ | 1679/3460 [03:09<02:48, 10.58it/s]
分批tokenize目标句子: 49%|████▊ | 1681/3460 [03:09<02:49, 10.49it/s]
分批tokenize目标句子: 49%|████▊ | 1683/3460 [03:09<02:48, 10.54it/s]
分批tokenize目标句子: 49%|████▊ | 1685/3460 [03:09<02:49, 10.50it/s]
分批tokenize目标句子: 49%|████▉ | 1687/3460 [03:09<02:50, 10.40it/s]
分批tokenize目标句子: 49%|████▉ | 1689/3460 [03:09<02:48, 10.52it/s]
分批tokenize目标句子: 49%|████▉ | 1691/3460 [03:10<02:47, 10.58it/s]
分批tokenize目标句子: 49%|████▉ | 1693/3460 [03:10<02:45, 10.69it/s]
分批tokenize目标句子: 49%|████▉ | 1695/3460 [03:10<02:46, 10.59it/s]
分批tokenize目标句子: 49%|████▉ | 1697/3460 [03:10<02:44, 10.75it/s]
分批tokenize目标句子: 49%|████▉ | 1699/3460 [03:10<02:43, 10.75it/s]
分批tokenize目标句子: 49%|████▉ | 1701/3460 [03:11<02:42, 10.85it/s]
分批tokenize目标句子: 49%|████▉ | 1703/3460 [03:11<02:42, 10.83it/s]
分批tokenize目标句子: 49%|████▉ | 1705/3460 [03:11<02:42, 10.79it/s]
分批tokenize目标句子: 49%|████▉ | 1707/3460 [03:11<02:41, 10.83it/s]
分批tokenize目标句子: 49%|████▉ | 1709/3460 [03:11<02:41, 10.84it/s]
分批tokenize目标句子: 49%|████▉ | 1711/3460 [03:12<02:42, 10.74it/s]
分批tokenize目标句子: 50%|████▉ | 1713/3460 [03:12<02:41, 10.79it/s]
分批tokenize目标句子: 50%|████▉ | 1715/3460 [03:12<02:42, 10.74it/s]
分批tokenize目标句子: 50%|████▉ | 1717/3460 [03:12<02:45, 10.56it/s]
分批tokenize目标句子: 50%|████▉ | 1719/3460 [03:12<02:42, 10.69it/s]
分批tokenize目标句子: 50%|████▉ | 1721/3460 [03:12<02:43, 10.65it/s]
分批tokenize目标句子: 50%|████▉ | 1723/3460 [03:13<02:42, 10.70it/s]
分批tokenize目标句子: 50%|████▉ | 1725/3460 [03:13<02:41, 10.76it/s]
分批tokenize目标句子: 50%|████▉ | 1727/3460 [03:13<02:39, 10.84it/s]
分批tokenize目标句子: 50%|████▉ | 1729/3460 [03:13<02:37, 10.98it/s]
分批tokenize目标句子: 50%|█████ | 1731/3460 [03:13<02:37, 10.99it/s]
分批tokenize目标句子: 50%|█████ | 1733/3460 [03:14<02:37, 10.95it/s]
分批tokenize目标句子: 50%|█████ | 1735/3460 [03:14<02:36, 11.02it/s]
分批tokenize目标句子: 50%|█████ | 1737/3460 [03:14<02:36, 10.98it/s]
分批tokenize目标句子: 50%|█████ | 1739/3460 [03:14<02:36, 10.97it/s]
分批tokenize目标句子: 50%|█████ | 1741/3460 [03:14<02:37, 10.93it/s]
分批tokenize目标句子: 50%|█████ | 1743/3460 [03:14<02:38, 10.86it/s]
分批tokenize目标句子: 50%|█████ | 1745/3460 [03:15<02:36, 10.99it/s]
分批tokenize目标句子: 50%|█████ | 1747/3460 [03:15<02:35, 11.05it/s]
分批tokenize目标句子: 51%|█████ | 1749/3460 [03:15<02:34, 11.07it/s]
分批tokenize目标句子: 51%|█████ | 1751/3460 [03:15<02:34, 11.03it/s]
分批tokenize目标句子: 51%|█████ | 1753/3460 [03:15<02:33, 11.13it/s]
分批tokenize目标句子: 51%|█████ | 1755/3460 [03:16<02:31, 11.23it/s]
分批tokenize目标句子: 51%|█████ | 1757/3460 [03:16<02:32, 11.17it/s]
分批tokenize目标句子: 51%|█████ | 1759/3460 [03:16<02:32, 11.19it/s]
分批tokenize目标句子: 51%|█████ | 1761/3460 [03:16<02:31, 11.19it/s]
分批tokenize目标句子: 51%|█████ | 1763/3460 [03:16<02:31, 11.21it/s]
分批tokenize目标句子: 51%|█████ | 1765/3460 [03:16<02:31, 11.22it/s]
分批tokenize目标句子: 51%|█████ | 1767/3460 [03:17<02:31, 11.15it/s]
分批tokenize目标句子: 51%|█████ | 1769/3460 [03:17<02:32, 11.10it/s]
分批tokenize目标句子: 51%|█████ | 1771/3460 [03:17<02:33, 11.03it/s]
分批tokenize目标句子: 51%|█████ | 1773/3460 [03:17<02:33, 11.01it/s]
分批tokenize目标句子: 51%|█████▏ | 1775/3460 [03:17<02:33, 10.96it/s]
分批tokenize目标句子: 51%|█████▏ | 1777/3460 [03:18<02:33, 10.98it/s]
分批tokenize目标句子: 51%|█████▏ | 1779/3460 [03:18<02:32, 11.03it/s]
分批tokenize目标句子: 51%|█████▏ | 1781/3460 [03:18<02:32, 11.00it/s]
分批tokenize目标句子: 52%|█████▏ | 1783/3460 [03:18<02:31, 11.05it/s]
分批tokenize目标句子: 52%|█████▏ | 1785/3460 [03:18<02:33, 10.94it/s]
分批tokenize目标句子: 52%|█████▏ | 1787/3460 [03:18<02:32, 10.96it/s]
分批tokenize目标句子: 52%|█████▏ | 1789/3460 [03:19<02:32, 10.98it/s]
分批tokenize目标句子: 52%|█████▏ | 1791/3460 [03:19<02:31, 10.99it/s]
分批tokenize目标句子: 52%|█████▏ | 1793/3460 [03:19<02:31, 10.98it/s]
分批tokenize目标句子: 52%|█████▏ | 1795/3460 [03:19<02:33, 10.82it/s]
分批tokenize目标句子: 52%|█████▏ | 1797/3460 [03:19<02:31, 10.97it/s]
分批tokenize目标句子: 52%|█████▏ | 1799/3460 [03:20<02:30, 11.01it/s]
分批tokenize目标句子: 52%|█████▏ | 1801/3460 [03:20<02:29, 11.09it/s]
分批tokenize目标句子: 52%|█████▏ | 1803/3460 [03:20<02:28, 11.16it/s]
分批tokenize目标句子: 52%|█████▏ | 1805/3460 [03:20<02:28, 11.13it/s]
分批tokenize目标句子: 52%|█████▏ | 1807/3460 [03:20<02:27, 11.22it/s]
分批tokenize目标句子: 52%|█████▏ | 1809/3460 [03:20<02:27, 11.22it/s]
分批tokenize目标句子: 52%|█████▏ | 1811/3460 [03:21<02:27, 11.16it/s]
分批tokenize目标句子: 52%|█████▏ | 1813/3460 [03:21<02:26, 11.27it/s]
分批tokenize目标句子: 52%|█████▏ | 1815/3460 [03:21<02:25, 11.33it/s]
分批tokenize目标句子: 53%|█████▎ | 1817/3460 [03:21<02:24, 11.35it/s]
分批tokenize目标句子: 53%|█████▎ | 1819/3460 [03:21<02:24, 11.37it/s]
分批tokenize目标句子: 53%|█████▎ | 1821/3460 [03:21<02:23, 11.40it/s]
分批tokenize目标句子: 53%|█████▎ | 1823/3460 [03:22<02:23, 11.38it/s]
分批tokenize目标句子: 53%|█████▎ | 1825/3460 [03:22<02:24, 11.34it/s]
分批tokenize目标句子: 53%|█████▎ | 1827/3460 [03:22<02:24, 11.29it/s]
分批tokenize目标句子: 53%|█████▎ | 1829/3460 [03:22<02:24, 11.30it/s]
分批tokenize目标句子: 53%|█████▎ | 1831/3460 [03:22<02:24, 11.29it/s]
分批tokenize目标句子: 53%|█████▎ | 1833/3460 [03:23<02:24, 11.25it/s]
分批tokenize目标句子: 53%|█████▎ | 1835/3460 [03:23<02:24, 11.23it/s]
分批tokenize目标句子: 53%|█████▎ | 1837/3460 [03:23<02:24, 11.25it/s]
分批tokenize目标句子: 53%|█████▎ | 1839/3460 [03:23<02:23, 11.28it/s]
分批tokenize目标句子: 53%|█████▎ | 1841/3460 [03:23<02:22, 11.33it/s]
分批tokenize目标句子: 53%|█████▎ | 1843/3460 [03:23<02:23, 11.28it/s]
分批tokenize目标句子: 53%|█████▎ | 1845/3460 [03:24<02:22, 11.30it/s]
分批tokenize目标句子: 53%|█████▎ | 1847/3460 [03:24<02:22, 11.32it/s]
分批tokenize目标句子: 53%|█████▎ | 1849/3460 [03:24<02:22, 11.30it/s]
分批tokenize目标句子: 53%|█████▎ | 1851/3460 [03:24<02:22, 11.30it/s]
分批tokenize目标句子: 54%|█████▎ | 1853/3460 [03:24<02:21, 11.33it/s]
分批tokenize目标句子: 54%|█████▎ | 1855/3460 [03:24<02:21, 11.37it/s]
分批tokenize目标句子: 54%|█████▎ | 1857/3460 [03:25<02:20, 11.43it/s]
分批tokenize目标句子: 54%|█████▎ | 1859/3460 [03:25<02:19, 11.46it/s]
分批tokenize目标句子: 54%|█████▍ | 1861/3460 [03:25<02:19, 11.43it/s]
分批tokenize目标句子: 54%|█████▍ | 1863/3460 [03:25<02:20, 11.37it/s]
分批tokenize目标句子: 54%|█████▍ | 1865/3460 [03:25<02:20, 11.33it/s]
分批tokenize目标句子: 54%|█████▍ | 1867/3460 [03:26<02:19, 11.41it/s]
分批tokenize目标句子: 54%|█████▍ | 1869/3460 [03:26<02:19, 11.39it/s]
分批tokenize目标句子: 54%|█████▍ | 1871/3460 [03:26<02:19, 11.38it/s]
分批tokenize目标句子: 54%|█████▍ | 1873/3460 [03:26<02:19, 11.37it/s]
分批tokenize目标句子: 54%|█████▍ | 1875/3460 [03:26<02:19, 11.38it/s]
分批tokenize目标句子: 54%|█████▍ | 1877/3460 [03:26<02:19, 11.32it/s]
分批tokenize目标句子: 54%|█████▍ | 1879/3460 [03:27<02:19, 11.34it/s]
分批tokenize目标句子: 54%|█████▍ | 1881/3460 [03:27<02:18, 11.38it/s]
分批tokenize目标句子: 54%|█████▍ | 1883/3460 [03:27<02:18, 11.39it/s]
分批tokenize目标句子: 54%|█████▍ | 1885/3460 [03:27<02:19, 11.31it/s]
分批tokenize目标句子: 55%|█████▍ | 1887/3460 [03:27<02:19, 11.25it/s]
分批tokenize目标句子: 55%|█████▍ | 1889/3460 [03:27<02:20, 11.15it/s]
分批tokenize目标句子: 55%|█████▍ | 1891/3460 [03:28<02:19, 11.23it/s]
分批tokenize目标句子: 55%|█████▍ | 1893/3460 [03:28<02:21, 11.10it/s]
分批tokenize目标句子: 55%|█████▍ | 1895/3460 [03:28<02:20, 11.14it/s]
分批tokenize目标句子: 55%|█████▍ | 1897/3460 [03:28<02:19, 11.19it/s]
分批tokenize目标句子: 55%|█████▍ | 1899/3460 [03:28<02:18, 11.29it/s]
分批tokenize目标句子: 55%|█████▍ | 1901/3460 [03:29<02:18, 11.29it/s]
分批tokenize目标句子: 55%|█████▌ | 1903/3460 [03:29<02:18, 11.24it/s]
分批tokenize目标句子: 55%|█████▌ | 1905/3460 [03:29<02:17, 11.30it/s]
分批tokenize目标句子: 55%|█████▌ | 1907/3460 [03:29<02:16, 11.34it/s]
分批tokenize目标句子: 55%|█████▌ | 1909/3460 [03:29<02:17, 11.32it/s]
分批tokenize目标句子: 55%|█████▌ | 1911/3460 [03:29<02:16, 11.36it/s]
分批tokenize目标句子: 55%|█████▌ | 1913/3460 [03:30<02:16, 11.35it/s]
分批tokenize目标句子: 55%|█████▌ | 1915/3460 [03:30<02:16, 11.36it/s]
分批tokenize目标句子: 55%|█████▌ | 1917/3460 [03:30<02:15, 11.35it/s]
分批tokenize目标句子: 55%|█████▌ | 1919/3460 [03:30<02:14, 11.43it/s]
分批tokenize目标句子: 56%|█████▌ | 1921/3460 [03:30<02:15, 11.38it/s]
分批tokenize目标句子: 56%|█████▌ | 1923/3460 [03:30<02:15, 11.35it/s]
分批tokenize目标句子: 56%|█████▌ | 1925/3460 [03:31<02:14, 11.37it/s]
分批tokenize目标句子: 56%|█████▌ | 1927/3460 [03:31<02:14, 11.37it/s]
分批tokenize目标句子: 56%|█████▌ | 1929/3460 [03:31<02:15, 11.30it/s]
分批tokenize目标句子: 56%|█████▌ | 1931/3460 [03:31<02:15, 11.30it/s]
分批tokenize目标句子: 56%|█████▌ | 1933/3460 [03:31<02:15, 11.25it/s]
分批tokenize目标句子: 56%|█████▌ | 1935/3460 [03:32<02:16, 11.21it/s]
分批tokenize目标句子: 56%|█████▌ | 1937/3460 [03:32<02:16, 11.15it/s]
分批tokenize目标句子: 56%|█████▌ | 1939/3460 [03:32<02:17, 11.10it/s]
分批tokenize目标句子: 56%|█████▌ | 1941/3460 [03:32<02:17, 11.06it/s]
分批tokenize目标句子: 56%|█████▌ | 1943/3460 [03:32<02:16, 11.08it/s]
分批tokenize目标句子: 56%|█████▌ | 1945/3460 [03:32<02:16, 11.11it/s]
分批tokenize目标句子: 56%|█████▋ | 1947/3460 [03:33<02:16, 11.07it/s]
分批tokenize目标句子: 56%|█████▋ | 1949/3460 [03:33<02:16, 11.04it/s]
分批tokenize目标句子: 56%|█████▋ | 1951/3460 [03:33<02:19, 10.84it/s]
分批tokenize目标句子: 56%|█████▋ | 1953/3460 [03:33<02:18, 10.91it/s]
分批tokenize目标句子: 57%|█████▋ | 1955/3460 [03:33<02:17, 10.95it/s]
分批tokenize目标句子: 57%|█████▋ | 1957/3460 [03:34<02:16, 11.03it/s]
分批tokenize目标句子: 57%|█████▋ | 1959/3460 [03:34<02:17, 10.95it/s]
分批tokenize目标句子: 57%|█████▋ | 1961/3460 [03:34<02:16, 10.95it/s]
分批tokenize目标句子: 57%|█████▋ | 1963/3460 [03:34<02:16, 10.97it/s]
分批tokenize目标句子: 57%|█████▋ | 1965/3460 [03:34<02:16, 10.95it/s]
分批tokenize目标句子: 57%|█████▋ | 1967/3460 [03:34<02:16, 10.95it/s]
分批tokenize目标句子: 57%|█████▋ | 1969/3460 [03:35<02:15, 10.99it/s]
分批tokenize目标句子: 57%|█████▋ | 1971/3460 [03:35<02:15, 10.98it/s]
分批tokenize目标句子: 57%|█████▋ | 1973/3460 [03:35<02:15, 10.97it/s]
分批tokenize目标句子: 57%|█████▋ | 1975/3460 [03:35<02:14, 11.01it/s]
分批tokenize目标句子: 57%|█████▋ | 1977/3460 [03:35<02:14, 11.05it/s]
分批tokenize目标句子: 57%|█████▋ | 1979/3460 [03:36<02:15, 10.93it/s]
分批tokenize目标句子: 57%|█████▋ | 1981/3460 [03:36<02:14, 10.97it/s]
分批tokenize目标句子: 57%|█████▋ | 1983/3460 [03:36<02:14, 10.95it/s]
分批tokenize目标句子: 57%|█████▋ | 1985/3460 [03:36<02:16, 10.84it/s]
分批tokenize目标句子: 57%|█████▋ | 1987/3460 [03:36<02:15, 10.85it/s]
分批tokenize目标句子: 57%|█████▋ | 1989/3460 [03:36<02:15, 10.89it/s]
分批tokenize目标句子: 58%|█████▊ | 1991/3460 [03:37<02:16, 10.74it/s]
分批tokenize目标句子: 58%|█████▊ | 1993/3460 [03:37<02:17, 10.67it/s]
分批tokenize目标句子: 58%|█████▊ | 1995/3460 [03:37<02:16, 10.75it/s]
分批tokenize目标句子: 58%|█████▊ | 1997/3460 [03:37<02:15, 10.81it/s]
分批tokenize目标句子: 58%|█████▊ | 1999/3460 [03:37<02:15, 10.78it/s]
分批tokenize目标句子: 58%|█████▊ | 2001/3460 [03:38<02:14, 10.84it/s]
分批tokenize目标句子: 58%|█████▊ | 2003/3460 [03:38<02:14, 10.81it/s]
分批tokenize目标句子: 58%|█████▊ | 2005/3460 [03:38<02:14, 10.81it/s]
分批tokenize目标句子: 58%|█████▊ | 2007/3460 [03:38<02:13, 10.88it/s]
分批tokenize目标句子: 58%|█████▊ | 2009/3460 [03:38<02:12, 10.99it/s]
分批tokenize目标句子: 58%|█████▊ | 2011/3460 [03:39<02:11, 11.02it/s]
分批tokenize目标句子: 58%|█████▊ | 2013/3460 [03:39<02:13, 10.87it/s]
分批tokenize目标句子: 58%|█████▊ | 2015/3460 [03:39<02:12, 10.87it/s]
分批tokenize目标句子: 58%|█████▊ | 2017/3460 [03:39<02:12, 10.88it/s]
分批tokenize目标句子: 58%|█████▊ | 2019/3460 [03:39<02:12, 10.85it/s]
分批tokenize目标句子: 58%|█████▊ | 2021/3460 [03:39<02:12, 10.86it/s]
分批tokenize目标句子: 58%|█████▊ | 2023/3460 [03:40<02:12, 10.87it/s]
分批tokenize目标句子: 59%|█████▊ | 2025/3460 [03:40<02:11, 10.89it/s]
分批tokenize目标句子: 59%|█████▊ | 2027/3460 [03:40<02:11, 10.90it/s]
分批tokenize目标句子: 59%|█████▊ | 2029/3460 [03:40<02:10, 10.93it/s]
分批tokenize目标句子: 59%|█████▊ | 2031/3460 [03:40<02:11, 10.89it/s]
分批tokenize目标句子: 59%|█████▉ | 2033/3460 [03:41<02:09, 10.98it/s]
分批tokenize目标句子: 59%|█████▉ | 2035/3460 [03:41<02:09, 10.98it/s]
分批tokenize目标句子: 59%|█████▉ | 2037/3460 [03:41<02:09, 10.99it/s]
分批tokenize目标句子: 59%|█████▉ | 2039/3460 [03:41<02:10, 10.91it/s]
分批tokenize目标句子: 59%|█████▉ | 2041/3460 [03:41<02:10, 10.90it/s]
分批tokenize目标句子: 59%|█████▉ | 2043/3460 [03:41<02:10, 10.88it/s]
分批tokenize目标句子: 59%|█████▉ | 2045/3460 [03:42<02:09, 10.91it/s]
分批tokenize目标句子: 59%|█████▉ | 2047/3460 [03:42<02:09, 10.95it/s]
分批tokenize目标句子: 59%|█████▉ | 2049/3460 [03:42<02:08, 10.95it/s]
分批tokenize目标句子: 59%|█████▉ | 2051/3460 [03:42<02:08, 10.94it/s]
分批tokenize目标句子: 59%|█████▉ | 2053/3460 [03:42<02:08, 10.98it/s]
分批tokenize目标句子: 59%|█████▉ | 2055/3460 [03:43<02:08, 10.98it/s]
分批tokenize目标句子: 59%|█████▉ | 2057/3460 [03:43<02:08, 10.93it/s]
分批tokenize目标句子: 60%|█████▉ | 2059/3460 [03:43<02:07, 10.96it/s]
分批tokenize目标句子: 60%|█████▉ | 2061/3460 [03:43<02:07, 10.95it/s]
分批tokenize目标句子: 60%|█████▉ | 2063/3460 [03:43<02:08, 10.91it/s]
分批tokenize目标句子: 60%|█████▉ | 2065/3460 [03:43<02:08, 10.89it/s]
分批tokenize目标句子: 60%|█████▉ | 2067/3460 [03:44<02:08, 10.87it/s]
分批tokenize目标句子: 60%|█████▉ | 2069/3460 [03:44<02:08, 10.82it/s]
分批tokenize目标句子: 60%|█████▉ | 2071/3460 [03:44<02:09, 10.73it/s]
分批tokenize目标句子: 60%|█████▉ | 2071/3460 [03:59<02:09, 10.73it/s]
分批tokenize目标句子: 60%|█████▉ | 2072/3460 [04:00<1:05:11, 2.82s/it]
分批tokenize目标句子: 60%|█████▉ | 2074/3460 [04:00<43:57, 1.90s/it]
分批tokenize目标句子: 60%|██████ | 2076/3460 [04:00<30:20, 1.32s/it]
分批tokenize目标句子: 60%|██████ | 2078/3460 [04:00<21:23, 1.08it/s]
分批tokenize目标句子: 60%|██████ | 2080/3460 [04:00<15:20, 1.50it/s]
分批tokenize目标句子: 60%|██████ | 2082/3460 [04:00<11:15, 2.04it/s]
分批tokenize目标句子: 60%|██████ | 2084/3460 [04:01<08:25, 2.72it/s]
分批tokenize目标句子: 60%|██████ | 2086/3460 [04:01<06:29, 3.53it/s]
分批tokenize目标句子: 60%|██████ | 2088/3460 [04:01<05:08, 4.45it/s]
分批tokenize目标句子: 60%|██████ | 2090/3460 [04:01<04:12, 5.42it/s]
分批tokenize目标句子: 60%|██████ | 2092/3460 [04:01<03:33, 6.42it/s]
分批tokenize目标句子: 61%|██████ | 2094/3460 [04:02<03:05, 7.38it/s]
分批tokenize目标句子: 61%|██████ | 2096/3460 [04:02<02:46, 8.21it/s]
分批tokenize目标句子: 61%|██████ | 2098/3460 [04:02<02:32, 8.91it/s]
分批tokenize目标句子: 61%|██████ | 2100/3460 [04:02<02:23, 9.48it/s]
分批tokenize目标句子: 61%|██████ | 2102/3460 [04:02<02:17, 9.87it/s]
分批tokenize目标句子: 61%|██████ | 2104/3460 [04:02<02:13, 10.12it/s]
分批tokenize目标句子: 61%|██████ | 2106/3460 [04:03<02:11, 10.32it/s]
分批tokenize目标句子: 61%|██████ | 2108/3460 [04:03<02:12, 10.19it/s]
分批tokenize目标句子: 61%|██████ | 2110/3460 [04:03<02:10, 10.32it/s]
分批tokenize目标句子: 61%|██████ | 2112/3460 [04:03<02:10, 10.33it/s]
分批tokenize目标句子: 61%|██████ | 2114/3460 [04:03<02:06, 10.61it/s]
分批tokenize目标句子: 61%|██████ | 2116/3460 [04:04<02:04, 10.76it/s]
分批tokenize目标句子: 61%|██████ | 2118/3460 [04:04<02:03, 10.88it/s]
分批tokenize目标句子: 61%|██████▏ | 2120/3460 [04:04<02:02, 10.94it/s]
分批tokenize目标句子: 61%|██████▏ | 2122/3460 [04:04<02:02, 10.88it/s]
分批tokenize目标句子: 61%|██████▏ | 2124/3460 [04:04<02:01, 11.02it/s]
分批tokenize目标句子: 61%|██████▏ | 2126/3460 [04:04<02:00, 11.07it/s]
分批tokenize目标句子: 62%|██████▏ | 2128/3460 [04:05<01:59, 11.15it/s]
分批tokenize目标句子: 62%|██████▏ | 2130/3460 [04:05<01:58, 11.18it/s]
分批tokenize目标句子: 62%|██████▏ | 2132/3460 [04:05<01:58, 11.22it/s]
分批tokenize目标句子: 62%|██████▏ | 2134/3460 [04:05<01:57, 11.33it/s]
分批tokenize目标句子: 62%|██████▏ | 2136/3460 [04:05<01:56, 11.34it/s]
分批tokenize目标句子: 62%|██████▏ | 2138/3460 [04:06<01:57, 11.28it/s]
分批tokenize目标句子: 62%|██████▏ | 2140/3460 [04:06<01:58, 11.14it/s]
分批tokenize目标句子: 62%|██████▏ | 2142/3460 [04:06<01:58, 11.13it/s]
分批tokenize目标句子: 62%|██████▏ | 2144/3460 [04:06<01:58, 11.09it/s]
分批tokenize目标句子: 62%|██████▏ | 2146/3460 [04:06<01:58, 11.09it/s]
分批tokenize目标句子: 62%|██████▏ | 2148/3460 [04:06<01:58, 11.08it/s]
分批tokenize目标句子: 62%|██████▏ | 2150/3460 [04:07<01:56, 11.24it/s]
分批tokenize目标句子: 62%|██████▏ | 2152/3460 [04:07<01:55, 11.34it/s]
分批tokenize目标句子: 62%|██████▏ | 2154/3460 [04:07<01:54, 11.40it/s]
分批tokenize目标句子: 62%|██████▏ | 2156/3460 [04:07<01:55, 11.26it/s]
分批tokenize目标句子: 62%|██████▏ | 2158/3460 [04:07<01:57, 11.11it/s]
分批tokenize目标句子: 62%|██████▏ | 2160/3460 [04:08<01:59, 10.92it/s]
分批tokenize目标句子: 62%|██████▏ | 2162/3460 [04:08<01:59, 10.83it/s]
分批tokenize目标句子: 63%|██████▎ | 2164/3460 [04:08<01:58, 10.97it/s]
分批tokenize目标句子: 63%|██████▎ | 2166/3460 [04:08<01:57, 10.97it/s]
分批tokenize目标句子: 63%|██████▎ | 2168/3460 [04:08<01:58, 10.86it/s]
分批tokenize目标句子: 63%|██████▎ | 2170/3460 [04:08<01:58, 10.85it/s]
分批tokenize目标句子: 63%|██████▎ | 2172/3460 [04:09<01:58, 10.83it/s]
分批tokenize目标句子: 63%|██████▎ | 2174/3460 [04:09<01:58, 10.86it/s]
分批tokenize目标句子: 63%|██████▎ | 2176/3460 [04:09<01:58, 10.87it/s]
分批tokenize目标句子: 63%|██████▎ | 2178/3460 [04:09<01:57, 10.91it/s]
分批tokenize目标句子: 63%|██████▎ | 2180/3460 [04:09<01:58, 10.83it/s]
分批tokenize目标句子: 63%|██████▎ | 2182/3460 [04:10<01:57, 10.84it/s]
分批tokenize目标句子: 63%|██████▎ | 2184/3460 [04:10<01:56, 10.92it/s]
分批tokenize目标句子: 63%|██████▎ | 2186/3460 [04:10<01:56, 10.97it/s]
分批tokenize目标句子: 63%|██████▎ | 2188/3460 [04:10<01:56, 10.96it/s]
分批tokenize目标句子: 63%|██████▎ | 2190/3460 [04:10<01:55, 11.02it/s]
分批tokenize目标句子: 63%|██████▎ | 2192/3460 [04:10<01:54, 11.06it/s]
分批tokenize目标句子: 63%|██████▎ | 2194/3460 [04:11<01:53, 11.15it/s]
分批tokenize目标句子: 63%|██████▎ | 2196/3460 [04:11<01:53, 11.15it/s]
分批tokenize目标句子: 64%|██████▎ | 2198/3460 [04:11<01:52, 11.19it/s]
分批tokenize目标句子: 64%|██████▎ | 2200/3460 [04:11<01:53, 11.14it/s]
分批tokenize目标句子: 64%|██████▎ | 2202/3460 [04:11<01:52, 11.16it/s]
分批tokenize目标句子: 64%|██████▎ | 2204/3460 [04:12<01:52, 11.15it/s]
分批tokenize目标句子: 64%|██████▍ | 2206/3460 [04:12<01:52, 11.17it/s]
分批tokenize目标句子: 64%|██████▍ | 2208/3460 [04:12<01:53, 11.03it/s]
分批tokenize目标句子: 64%|██████▍ | 2210/3460 [04:12<01:52, 11.12it/s]
分批tokenize目标句子: 64%|██████▍ | 2212/3460 [04:12<01:51, 11.21it/s]
分批tokenize目标句子: 64%|██████▍ | 2214/3460 [04:12<01:51, 11.15it/s]
分批tokenize目标句子: 64%|██████▍ | 2216/3460 [04:13<01:51, 11.18it/s]
分批tokenize目标句子: 64%|██████▍ | 2218/3460 [04:13<01:51, 11.14it/s]
分批tokenize目标句子: 64%|██████▍ | 2220/3460 [04:13<01:50, 11.23it/s]
分批tokenize目标句子: 64%|██████▍ | 2222/3460 [04:13<01:50, 11.18it/s]
分批tokenize目标句子: 64%|██████▍ | 2224/3460 [04:13<01:49, 11.24it/s]
分批tokenize目标句子: 64%|██████▍ | 2226/3460 [04:13<01:50, 11.20it/s]
分批tokenize目标句子: 64%|██████▍ | 2228/3460 [04:14<01:49, 11.24it/s]
分批tokenize目标句子: 64%|██████▍ | 2230/3460 [04:14<01:49, 11.25it/s]
分批tokenize目标句子: 65%|██████▍ | 2232/3460 [04:14<01:49, 11.25it/s]
分批tokenize目标句子: 65%|██████▍ | 2234/3460 [04:14<01:48, 11.26it/s]
分批tokenize目标句子: 65%|██████▍ | 2236/3460 [04:14<01:49, 11.15it/s]
分批tokenize目标句子: 65%|██████▍ | 2238/3460 [04:15<01:50, 11.07it/s]
分批tokenize目标句子: 65%|██████▍ | 2240/3460 [04:15<01:50, 11.07it/s]
分批tokenize目标句子: 65%|██████▍ | 2242/3460 [04:15<01:49, 11.08it/s]
分批tokenize目标句子: 65%|██████▍ | 2244/3460 [04:15<01:50, 11.05it/s]
分批tokenize目标句子: 65%|██████▍ | 2246/3460 [04:15<01:49, 11.12it/s]
分批tokenize目标句子: 65%|██████▍ | 2248/3460 [04:15<01:48, 11.21it/s]
分批tokenize目标句子: 65%|██████▌ | 2250/3460 [04:16<01:47, 11.27it/s]
分批tokenize目标句子: 65%|██████▌ | 2252/3460 [04:16<01:47, 11.25it/s]
分批tokenize目标句子: 65%|██████▌ | 2254/3460 [04:16<01:47, 11.21it/s]
分批tokenize目标句子: 65%|██████▌ | 2256/3460 [04:16<01:47, 11.22it/s]
分批tokenize目标句子: 65%|██████▌ | 2258/3460 [04:16<01:47, 11.21it/s]
分批tokenize目标句子: 65%|██████▌ | 2260/3460 [04:17<01:46, 11.22it/s]
分批tokenize目标句子: 65%|██████▌ | 2262/3460 [04:17<01:46, 11.24it/s]
分批tokenize目标句子: 65%|██████▌ | 2264/3460 [04:17<01:46, 11.23it/s]
分批tokenize目标句子: 65%|██████▌ | 2266/3460 [04:17<01:47, 11.13it/s]
分批tokenize目标句子: 66%|██████▌ | 2268/3460 [04:17<01:48, 10.99it/s]
分批tokenize目标句子: 66%|██████▌ | 2270/3460 [04:17<01:48, 10.94it/s]
分批tokenize目标句子: 66%|██████▌ | 2272/3460 [04:18<01:48, 10.91it/s]
分批tokenize目标句子: 66%|██████▌ | 2274/3460 [04:18<01:48, 10.93it/s]
分批tokenize目标句子: 66%|██████▌ | 2276/3460 [04:18<01:48, 10.95it/s]
分批tokenize目标句子: 66%|██████▌ | 2278/3460 [04:18<01:48, 10.94it/s]
分批tokenize目标句子: 66%|██████▌ | 2280/3460 [04:18<01:47, 11.01it/s]
分批tokenize目标句子: 66%|██████▌ | 2282/3460 [04:19<01:46, 11.01it/s]
分批tokenize目标句子: 66%|██████▌ | 2284/3460 [04:19<01:46, 11.07it/s]
分批tokenize目标句子: 66%|██████▌ | 2286/3460 [04:19<01:46, 10.97it/s]
分批tokenize目标句子: 66%|██████▌ | 2288/3460 [04:19<01:46, 10.99it/s]
分批tokenize目标句子: 66%|██████▌ | 2290/3460 [04:19<01:46, 11.03it/s]
分批tokenize目标句子: 66%|██████▌ | 2292/3460 [04:19<01:46, 11.00it/s]
分批tokenize目标句子: 66%|██████▋ | 2294/3460 [04:20<01:45, 11.08it/s]
分批tokenize目标句子: 66%|██████▋ | 2296/3460 [04:20<01:45, 11.00it/s]
分批tokenize目标句子: 66%|██████▋ | 2298/3460 [04:20<01:45, 11.01it/s]
分批tokenize目标句子: 66%|██████▋ | 2300/3460 [04:20<01:47, 10.81it/s]
分批tokenize目标句子: 67%|██████▋ | 2302/3460 [04:20<01:46, 10.86it/s]
分批tokenize目标句子: 67%|██████▋ | 2304/3460 [04:21<01:45, 10.96it/s]
分批tokenize目标句子: 67%|██████▋ | 2306/3460 [04:21<01:44, 11.02it/s]
分批tokenize目标句子: 67%|██████▋ | 2308/3460 [04:21<01:44, 11.03it/s]
分批tokenize目标句子: 67%|██████▋ | 2310/3460 [04:21<01:43, 11.06it/s]
分批tokenize目标句子: 67%|██████▋ | 2312/3460 [04:21<01:45, 10.90it/s]
分批tokenize目标句子: 67%|██████▋ | 2314/3460 [04:21<01:44, 10.92it/s]
分批tokenize目标句子: 67%|██████▋ | 2316/3460 [04:22<01:44, 10.96it/s]
分批tokenize目标句子: 67%|██████▋ | 2318/3460 [04:22<01:43, 11.01it/s]
分批tokenize目标句子: 67%|██████▋ | 2320/3460 [04:22<01:43, 11.01it/s]
分批tokenize目标句子: 67%|██████▋ | 2322/3460 [04:22<01:42, 11.07it/s]
分批tokenize目标句子: 67%|██████▋ | 2324/3460 [04:22<01:42, 11.10it/s]
分批tokenize目标句子: 67%|██████▋ | 2326/3460 [04:23<01:41, 11.15it/s]
分批tokenize目标句子: 67%|██████▋ | 2328/3460 [04:23<01:41, 11.18it/s]
分批tokenize目标句子: 67%|██████▋ | 2330/3460 [04:23<01:41, 11.16it/s]
分批tokenize目标句子: 67%|██████▋ | 2332/3460 [04:23<01:41, 11.16it/s]
分批tokenize目标句子: 67%|██████▋ | 2334/3460 [04:23<01:40, 11.17it/s]
分批tokenize目标句子: 68%|██████▊ | 2336/3460 [04:23<01:40, 11.17it/s]
分批tokenize目标句子: 68%|██████▊ | 2338/3460 [04:24<01:40, 11.18it/s]
分批tokenize目标句子: 68%|██████▊ | 2340/3460 [04:24<01:40, 11.12it/s]
分批tokenize目标句子: 68%|██████▊ | 2342/3460 [04:24<01:39, 11.20it/s]
分批tokenize目标句子: 68%|██████▊ | 2344/3460 [04:24<01:39, 11.21it/s]
分批tokenize目标句子: 68%|██████▊ | 2346/3460 [04:24<01:39, 11.18it/s]
分批tokenize目标句子: 68%|██████▊ | 2348/3460 [04:24<01:39, 11.14it/s]
分批tokenize目标句子: 68%|██████▊ | 2350/3460 [04:25<01:39, 11.16it/s]
分批tokenize目标句子: 68%|██████▊ | 2352/3460 [04:25<01:40, 11.06it/s]
分批tokenize目标句子: 68%|██████▊ | 2354/3460 [04:25<01:40, 11.03it/s]
分批tokenize目标句子: 68%|██████▊ | 2356/3460 [04:25<01:39, 11.09it/s]
分批tokenize目标句子: 68%|██████▊ | 2358/3460 [04:25<01:39, 11.09it/s]
分批tokenize目标句子: 68%|██████▊ | 2360/3460 [04:26<01:38, 11.14it/s]
分批tokenize目标句子: 68%|██████▊ | 2362/3460 [04:26<01:38, 11.19it/s]
分批tokenize目标句子: 68%|██████▊ | 2364/3460 [04:26<01:37, 11.24it/s]
分批tokenize目标句子: 68%|██████▊ | 2366/3460 [04:26<01:37, 11.28it/s]
分批tokenize目标句子: 68%|██████▊ | 2368/3460 [04:26<01:37, 11.22it/s]
分批tokenize目标句子: 68%|██████▊ | 2370/3460 [04:26<01:37, 11.23it/s]
分批tokenize目标句子: 69%|██████▊ | 2372/3460 [04:27<01:37, 11.19it/s]
分批tokenize目标句子: 69%|██████▊ | 2374/3460 [04:27<01:37, 11.19it/s]
分批tokenize目标句子: 69%|██████▊ | 2376/3460 [04:27<01:37, 11.15it/s]
分批tokenize目标句子: 69%|██████▊ | 2378/3460 [04:27<01:36, 11.18it/s]
分批tokenize目标句子: 69%|██████▉ | 2380/3460 [04:27<01:36, 11.20it/s]
分批tokenize目标句子: 69%|██████▉ | 2382/3460 [04:28<01:36, 11.21it/s]
分批tokenize目标句子: 69%|██████▉ | 2384/3460 [04:28<01:35, 11.22it/s]
分批tokenize目标句子: 69%|██████▉ | 2386/3460 [04:28<01:35, 11.26it/s]
分批tokenize目标句子: 69%|██████▉ | 2388/3460 [04:28<01:35, 11.22it/s]
分批tokenize目标句子: 69%|██████▉ | 2390/3460 [04:28<01:35, 11.18it/s]
分批tokenize目标句子: 69%|██████▉ | 2392/3460 [04:28<01:35, 11.16it/s]
分批tokenize目标句子: 69%|██████▉ | 2394/3460 [04:29<01:35, 11.18it/s]
分批tokenize目标句子: 69%|██████▉ | 2396/3460 [04:29<01:34, 11.26it/s]
分批tokenize目标句子: 69%|██████▉ | 2398/3460 [04:29<01:34, 11.26it/s]
分批tokenize目标句子: 69%|██████▉ | 2400/3460 [04:29<01:33, 11.29it/s]
分批tokenize目标句子: 69%|██████▉ | 2402/3460 [04:29<01:33, 11.33it/s]
分批tokenize目标句子: 69%|██████▉ | 2404/3460 [04:29<01:33, 11.32it/s]
分批tokenize目标句子: 70%|██████▉ | 2406/3460 [04:30<01:33, 11.31it/s]
分批tokenize目标句子: 70%|██████▉ | 2408/3460 [04:30<01:32, 11.32it/s]
分批tokenize目标句子: 70%|██████▉ | 2410/3460 [04:30<01:32, 11.31it/s]
分批tokenize目标句子: 70%|██████▉ | 2412/3460 [04:30<01:32, 11.31it/s]
分批tokenize目标句子: 70%|██████▉ | 2414/3460 [04:30<01:32, 11.29it/s]
分批tokenize目标句子: 70%|██████▉ | 2416/3460 [04:31<01:32, 11.27it/s]
分批tokenize目标句子: 70%|██████▉ | 2418/3460 [04:31<01:32, 11.27it/s]
分批tokenize目标句子: 70%|██████▉ | 2420/3460 [04:31<01:32, 11.21it/s]
分批tokenize目标句子: 70%|███████ | 2422/3460 [04:31<01:32, 11.22it/s]
分批tokenize目标句子: 70%|███████ | 2424/3460 [04:31<01:32, 11.23it/s]
分批tokenize目标句子: 70%|███████ | 2426/3460 [04:31<01:31, 11.24it/s]
分批tokenize目标句子: 70%|███████ | 2428/3460 [04:32<01:31, 11.26it/s]
分批tokenize目标句子: 70%|███████ | 2430/3460 [04:32<01:31, 11.26it/s]
分批tokenize目标句子: 70%|███████ | 2432/3460 [04:32<01:31, 11.23it/s]
分批tokenize目标句子: 70%|███████ | 2434/3460 [04:32<01:31, 11.20it/s]
分批tokenize目标句子: 70%|███████ | 2436/3460 [04:32<01:30, 11.26it/s]
分批tokenize目标句子: 70%|███████ | 2438/3460 [04:32<01:29, 11.38it/s]
分批tokenize目标句子: 71%|███████ | 2440/3460 [04:33<01:29, 11.38it/s]
分批tokenize目标句子: 71%|███████ | 2442/3460 [04:33<01:29, 11.41it/s]
分批tokenize目标句子: 71%|███████ | 2444/3460 [04:33<01:29, 11.38it/s]
分批tokenize目标句子: 71%|███████ | 2446/3460 [04:33<01:28, 11.41it/s]
分批tokenize目标句子: 71%|███████ | 2448/3460 [04:33<01:28, 11.38it/s]
分批tokenize目标句子: 71%|███████ | 2450/3460 [04:34<01:28, 11.41it/s]
分批tokenize目标句子: 71%|███████ | 2452/3460 [04:34<01:28, 11.39it/s]
分批tokenize目标句子: 71%|███████ | 2454/3460 [04:34<01:28, 11.37it/s]
分批tokenize目标句子: 71%|███████ | 2456/3460 [04:34<01:28, 11.36it/s]
分批tokenize目标句子: 71%|███████ | 2458/3460 [04:34<01:28, 11.32it/s]
分批tokenize目标句子: 71%|███████ | 2460/3460 [04:34<01:27, 11.38it/s]
分批tokenize目标句子: 71%|███████ | 2462/3460 [04:35<01:27, 11.37it/s]
分批tokenize目标句子: 71%|███████ | 2464/3460 [04:35<01:27, 11.42it/s]
分批tokenize目标句子: 71%|███████▏ | 2466/3460 [04:35<01:27, 11.40it/s]
分批tokenize目标句子: 71%|███████▏ | 2468/3460 [04:35<01:27, 11.39it/s]
分批tokenize目标句子: 71%|███████▏ | 2470/3460 [04:35<01:27, 11.31it/s]
分批tokenize目标句子: 71%|███████▏ | 2472/3460 [04:35<01:26, 11.39it/s]
分批tokenize目标句子: 72%|███████▏ | 2474/3460 [04:36<01:26, 11.40it/s]
分批tokenize目标句子: 72%|███████▏ | 2476/3460 [04:36<01:26, 11.37it/s]
分批tokenize目标句子: 72%|███████▏ | 2478/3460 [04:36<01:26, 11.36it/s]
分批tokenize目标句子: 72%|███████▏ | 2480/3460 [04:36<01:26, 11.34it/s]
分批tokenize目标句子: 72%|███████▏ | 2482/3460 [04:36<01:26, 11.35it/s]
分批tokenize目标句子: 72%|███████▏ | 2484/3460 [04:37<01:25, 11.39it/s]
分批tokenize目标句子: 72%|███████▏ | 2486/3460 [04:37<01:25, 11.35it/s]
分批tokenize目标句子: 72%|███████▏ | 2488/3460 [04:37<01:26, 11.23it/s]
分批tokenize目标句子: 72%|███████▏ | 2490/3460 [04:37<01:25, 11.28it/s]
分批tokenize目标句子: 72%|███████▏ | 2492/3460 [04:37<01:25, 11.26it/s]
分批tokenize目标句子: 72%|███████▏ | 2494/3460 [04:37<01:25, 11.36it/s]
分批tokenize目标句子: 72%|███████▏ | 2496/3460 [04:38<01:24, 11.34it/s]
分批tokenize目标句子: 72%|███████▏ | 2498/3460 [04:38<01:25, 11.27it/s]
分批tokenize目标句子: 72%|███████▏ | 2500/3460 [04:38<01:25, 11.28it/s]
分批tokenize目标句子: 72%|███████▏ | 2502/3460 [04:38<01:25, 11.26it/s]
分批tokenize目标句子: 72%|███████▏ | 2504/3460 [04:38<01:24, 11.25it/s]
分批tokenize目标句子: 72%|███████▏ | 2506/3460 [04:38<01:24, 11.32it/s]
分批tokenize目标句子: 72%|███████▏ | 2508/3460 [04:39<01:23, 11.36it/s]
分批tokenize目标句子: 73%|███████▎ | 2510/3460 [04:39<01:23, 11.43it/s]
分批tokenize目标句子: 73%|███████▎ | 2512/3460 [04:39<01:22, 11.44it/s]
分批tokenize目标句子: 73%|███████▎ | 2514/3460 [04:39<01:23, 11.38it/s]
分批tokenize目标句子: 73%|███████▎ | 2516/3460 [04:39<01:22, 11.43it/s]
分批tokenize目标句子: 73%|███████▎ | 2518/3460 [04:40<01:22, 11.48it/s]
分批tokenize目标句子: 73%|███████▎ | 2520/3460 [04:40<01:22, 11.34it/s]
分批tokenize目标句子: 73%|███████▎ | 2522/3460 [04:40<01:22, 11.38it/s]
分批tokenize目标句子: 73%|███████▎ | 2524/3460 [04:40<01:22, 11.39it/s]
分批tokenize目标句子: 73%|███████▎ | 2526/3460 [04:40<01:22, 11.37it/s]
分批tokenize目标句子: 73%|███████▎ | 2528/3460 [04:40<01:21, 11.44it/s]
分批tokenize目标句子: 73%|███████▎ | 2530/3460 [04:41<01:21, 11.36it/s]
分批tokenize目标句子: 73%|███████▎ | 2532/3460 [04:41<01:21, 11.38it/s]
分批tokenize目标句子: 73%|███████▎ | 2534/3460 [04:41<01:21, 11.36it/s]
分批tokenize目标句子: 73%|███████▎ | 2536/3460 [04:41<01:21, 11.36it/s]
分批tokenize目标句子: 73%|███████▎ | 2538/3460 [04:41<01:21, 11.33it/s]
分批tokenize目标句子: 73%|███████▎ | 2540/3460 [04:41<01:20, 11.36it/s]
分批tokenize目标句子: 73%|███████▎ | 2542/3460 [04:42<01:20, 11.35it/s]
分批tokenize目标句子: 74%|███████▎ | 2544/3460 [04:42<01:20, 11.34it/s]
分批tokenize目标句子: 74%|███████▎ | 2546/3460 [04:42<01:20, 11.30it/s]
分批tokenize目标句子: 74%|███████▎ | 2548/3460 [04:42<01:20, 11.30it/s]
分批tokenize目标句子: 74%|███████▎ | 2550/3460 [04:42<01:20, 11.33it/s]
分批tokenize目标句子: 74%|███████▍ | 2552/3460 [04:43<01:20, 11.34it/s]
分批tokenize目标句子: 74%|███████▍ | 2554/3460 [04:43<01:20, 11.31it/s]
分批tokenize目标句子: 74%|███████▍ | 2556/3460 [04:43<01:20, 11.30it/s]
分批tokenize目标句子: 74%|███████▍ | 2558/3460 [04:43<01:20, 11.23it/s]
分批tokenize目标句子: 74%|███████▍ | 2560/3460 [04:43<01:20, 11.25it/s]
分批tokenize目标句子: 74%|███████▍ | 2562/3460 [04:43<01:19, 11.24it/s]
分批tokenize目标句子: 74%|███████▍ | 2564/3460 [04:44<01:19, 11.23it/s]
分批tokenize目标句子: 74%|███████▍ | 2566/3460 [04:44<01:19, 11.26it/s]
分批tokenize目标句子: 74%|███████▍ | 2568/3460 [04:44<01:19, 11.28it/s]
分批tokenize目标句子: 74%|███████▍ | 2570/3460 [04:44<01:18, 11.28it/s]
分批tokenize目标句子: 74%|███████▍ | 2572/3460 [04:44<01:18, 11.31it/s]
分批tokenize目标句子: 74%|███████▍ | 2574/3460 [04:44<01:18, 11.30it/s]
分批tokenize目标句子: 74%|███████▍ | 2576/3460 [04:45<01:17, 11.35it/s]
分批tokenize目标句子: 75%|███████▍ | 2578/3460 [04:45<01:17, 11.34it/s]
分批tokenize目标句子: 75%|███████▍ | 2580/3460 [04:45<01:17, 11.29it/s]
分批tokenize目标句子: 75%|███████▍ | 2582/3460 [04:45<01:17, 11.30it/s]
分批tokenize目标句子: 75%|███████▍ | 2584/3460 [04:45<01:18, 11.23it/s]
分批tokenize目标句子: 75%|███████▍ | 2586/3460 [04:46<01:17, 11.29it/s]
分批tokenize目标句子: 75%|███████▍ | 2588/3460 [04:46<01:17, 11.29it/s]
分批tokenize目标句子: 75%|███████▍ | 2590/3460 [04:46<01:17, 11.27it/s]
分批tokenize目标句子: 75%|███████▍ | 2592/3460 [04:46<01:16, 11.32it/s]
分批tokenize目标句子: 75%|███████▍ | 2594/3460 [04:46<01:16, 11.38it/s]
分批tokenize目标句子: 75%|███████▌ | 2596/3460 [04:46<01:15, 11.40it/s]
分批tokenize目标句子: 75%|███████▌ | 2598/3460 [04:47<01:15, 11.39it/s]
分批tokenize目标句子: 75%|███████▌ | 2600/3460 [04:47<01:15, 11.45it/s]
分批tokenize目标句子: 75%|███████▌ | 2602/3460 [04:47<01:14, 11.45it/s]
分批tokenize目标句子: 75%|███████▌ | 2604/3460 [04:47<01:14, 11.46it/s]
分批tokenize目标句子: 75%|███████▌ | 2606/3460 [04:47<01:14, 11.45it/s]
分批tokenize目标句子: 75%|███████▌ | 2608/3460 [04:47<01:14, 11.45it/s]
分批tokenize目标句子: 75%|███████▌ | 2610/3460 [04:48<01:14, 11.45it/s]
分批tokenize目标句子: 75%|███████▌ | 2612/3460 [04:48<01:13, 11.47it/s]
分批tokenize目标句子: 76%|███████▌ | 2614/3460 [04:48<01:13, 11.49it/s]
分批tokenize目标句子: 76%|███████▌ | 2616/3460 [04:48<01:13, 11.46it/s]
分批tokenize目标句子: 76%|███████▌ | 2618/3460 [04:48<01:13, 11.45it/s]
分批tokenize目标句子: 76%|███████▌ | 2620/3460 [04:49<01:13, 11.42it/s]
分批tokenize目标句子: 76%|███████▌ | 2622/3460 [04:49<01:13, 11.44it/s]
分批tokenize目标句子: 76%|███████▌ | 2624/3460 [04:49<01:12, 11.47it/s]
分批tokenize目标句子: 76%|███████▌ | 2626/3460 [04:49<01:12, 11.44it/s]
分批tokenize目标句子: 76%|███████▌ | 2628/3460 [04:49<01:12, 11.45it/s]
分批tokenize目标句子: 76%|███████▌ | 2630/3460 [04:49<01:12, 11.46it/s]
分批tokenize目标句子: 76%|███████▌ | 2632/3460 [04:50<01:12, 11.44it/s]
分批tokenize目标句子: 76%|███████▌ | 2634/3460 [04:50<01:12, 11.43it/s]
分批tokenize目标句子: 76%|███████▌ | 2636/3460 [04:50<01:11, 11.47it/s]
分批tokenize目标句子: 76%|███████▌ | 2638/3460 [04:50<01:11, 11.46it/s]
分批tokenize目标句子: 76%|███████▋ | 2640/3460 [04:50<01:11, 11.48it/s]
分批tokenize目标句子: 76%|███████▋ | 2642/3460 [04:50<01:11, 11.42it/s]
分批tokenize目标句子: 76%|███████▋ | 2644/3460 [04:51<01:11, 11.39it/s]
分批tokenize目标句子: 76%|███████▋ | 2646/3460 [04:51<01:11, 11.31it/s]
分批tokenize目标句子: 77%|███████▋ | 2648/3460 [04:51<01:12, 11.23it/s]
分批tokenize目标句子: 77%|███████▋ | 2650/3460 [04:51<01:12, 11.22it/s]
分批tokenize目标句子: 77%|███████▋ | 2652/3460 [04:51<01:11, 11.34it/s]
分批tokenize目标句子: 77%|███████▋ | 2654/3460 [04:52<01:10, 11.37it/s]
分批tokenize目标句子: 77%|███████▋ | 2656/3460 [04:52<01:11, 11.26it/s]
分批tokenize目标句子: 77%|███████▋ | 2656/3460 [05:04<01:11, 11.26it/s]
分批tokenize目标句子: 77%|███████▋ | 2658/3460 [05:05<26:37, 1.99s/it]
分批tokenize目标句子: 77%|███████▋ | 2660/3460 [05:05<18:55, 1.42s/it]
分批tokenize目标句子: 77%|███████▋ | 2662/3460 [05:05<13:33, 1.02s/it]
分批tokenize目标句子: 77%|███████▋ | 2664/3460 [05:05<09:49, 1.35it/s]
分批tokenize目标句子: 77%|███████▋ | 2666/3460 [05:05<07:12, 1.84it/s]
分批tokenize目标句子: 77%|███████▋ | 2668/3460 [05:05<05:22, 2.45it/s]
分批tokenize目标句子: 77%|███████▋ | 2670/3460 [05:06<04:05, 3.22it/s]
分批tokenize目标句子: 77%|███████▋ | 2672/3460 [05:06<03:12, 4.09it/s]
分批tokenize目标句子: 77%|███████▋ | 2674/3460 [05:06<02:36, 5.04it/s]
分批tokenize目标句子: 77%|███████▋ | 2676/3460 [05:06<02:09, 6.07it/s]
分批tokenize目标句子: 77%|███████▋ | 2678/3460 [05:06<01:50, 7.05it/s]
分批tokenize目标句子: 77%|███████▋ | 2680/3460 [05:06<01:40, 7.80it/s]
分批tokenize目标句子: 78%|███████▊ | 2682/3460 [05:07<01:30, 8.59it/s]
分批tokenize目标句子: 78%|███████▊ | 2684/3460 [05:07<01:24, 9.22it/s]
分批tokenize目标句子: 78%|███████▊ | 2686/3460 [05:07<01:19, 9.72it/s]
分批tokenize目标句子: 78%|███████▊ | 2688/3460 [05:07<01:15, 10.20it/s]
分批tokenize目标句子: 78%|███████▊ | 2690/3460 [05:07<01:13, 10.52it/s]
分批tokenize目标句子: 78%|███████▊ | 2692/3460 [05:08<01:11, 10.71it/s]
分批tokenize目标句子: 78%|███████▊ | 2694/3460 [05:08<01:10, 10.82it/s]
分批tokenize目标句子: 78%|███████▊ | 2696/3460 [05:08<01:10, 10.89it/s]
分批tokenize目标句子: 78%|███████▊ | 2698/3460 [05:08<01:09, 11.02it/s]
分批tokenize目标句子: 78%|███████▊ | 2700/3460 [05:08<01:09, 11.00it/s]
分批tokenize目标句子: 78%|███████▊ | 2702/3460 [05:08<01:08, 11.14it/s]
分批tokenize目标句子: 78%|███████▊ | 2704/3460 [05:09<01:08, 11.08it/s]
分批tokenize目标句子: 78%|███████▊ | 2706/3460 [05:09<01:08, 11.03it/s]
分批tokenize目标句子: 78%|███████▊ | 2708/3460 [05:09<01:08, 11.03it/s]
分批tokenize目标句子: 78%|███████▊ | 2710/3460 [05:09<01:08, 11.01it/s]
分批tokenize目标句子: 78%|███████▊ | 2712/3460 [05:09<01:07, 11.06it/s]
分批tokenize目标句子: 78%|███████▊ | 2714/3460 [05:10<01:07, 11.00it/s]
分批tokenize目标句子: 78%|███████▊ | 2716/3460 [05:10<01:07, 11.05it/s]
分批tokenize目标句子: 79%|███████▊ | 2718/3460 [05:10<01:06, 11.14it/s]
分批tokenize目标句子: 79%|███████▊ | 2720/3460 [05:10<01:06, 11.21it/s]
分批tokenize目标句子: 79%|███████▊ | 2722/3460 [05:10<01:05, 11.25it/s]
分批tokenize目标句子: 79%|███████▊ | 2724/3460 [05:10<01:04, 11.34it/s]
分批tokenize目标句子: 79%|███████▉ | 2726/3460 [05:11<01:04, 11.32it/s]
分批tokenize目标句子: 79%|███████▉ | 2728/3460 [05:11<01:04, 11.33it/s]
分批tokenize目标句子: 79%|███████▉ | 2730/3460 [05:11<01:04, 11.26it/s]
分批tokenize目标句子: 79%|███████▉ | 2732/3460 [05:11<01:04, 11.32it/s]
分批tokenize目标句子: 79%|███████▉ | 2734/3460 [05:11<01:04, 11.23it/s]
分批tokenize目标句子: 79%|███████▉ | 2736/3460 [05:11<01:04, 11.21it/s]
分批tokenize目标句子: 79%|███████▉ | 2738/3460 [05:12<01:04, 11.15it/s]
分批tokenize目标句子: 79%|███████▉ | 2740/3460 [05:12<01:04, 11.24it/s]
分批tokenize目标句子: 79%|███████▉ | 2742/3460 [05:12<01:03, 11.32it/s]
分批tokenize目标句子: 79%|███████▉ | 2744/3460 [05:12<01:03, 11.23it/s]
分批tokenize目标句子: 79%|███████▉ | 2746/3460 [05:12<01:03, 11.20it/s]
分批tokenize目标句子: 79%|███████▉ | 2748/3460 [05:13<01:03, 11.15it/s]
分批tokenize目标句子: 79%|███████▉ | 2750/3460 [05:13<01:03, 11.17it/s]
分批tokenize目标句子: 80%|███████▉ | 2752/3460 [05:13<01:03, 11.15it/s]
分批tokenize目标句子: 80%|███████▉ | 2754/3460 [05:13<01:03, 11.20it/s]
分批tokenize目标句子: 80%|███████▉ | 2756/3460 [05:13<01:03, 11.08it/s]
分批tokenize目标句子: 80%|███████▉ | 2758/3460 [05:13<01:02, 11.15it/s]
分批tokenize目标句子: 80%|███████▉ | 2760/3460 [05:14<01:03, 11.09it/s]
分批tokenize目标句子: 80%|███████▉ | 2762/3460 [05:14<01:03, 10.98it/s]
分批tokenize目标句子: 80%|███████▉ | 2764/3460 [05:14<01:03, 10.97it/s]
分批tokenize目标句子: 80%|███████▉ | 2766/3460 [05:14<01:04, 10.82it/s]
分批tokenize目标句子: 80%|████████ | 2768/3460 [05:14<01:03, 10.82it/s]
分批tokenize目标句子: 80%|████████ | 2770/3460 [05:15<01:03, 10.91it/s]
分批tokenize目标句子: 80%|████████ | 2772/3460 [05:15<01:03, 10.90it/s]
分批tokenize目标句子: 80%|████████ | 2774/3460 [05:15<01:03, 10.85it/s]
分批tokenize目标句子: 80%|████████ | 2776/3460 [05:15<01:02, 10.91it/s]
分批tokenize目标句子: 80%|████████ | 2778/3460 [05:15<01:02, 10.93it/s]
分批tokenize目标句子: 80%|████████ | 2780/3460 [05:15<01:02, 10.88it/s]
分批tokenize目标句子: 80%|████████ | 2782/3460 [05:16<01:02, 10.84it/s]
分批tokenize目标句子: 80%|████████ | 2784/3460 [05:16<01:02, 10.79it/s]
分批tokenize目标句子: 81%|████████ | 2786/3460 [05:16<01:01, 10.88it/s]
分批tokenize目标句子: 81%|████████ | 2788/3460 [05:16<01:01, 10.97it/s]
分批tokenize目标句子: 81%|████████ | 2790/3460 [05:16<01:01, 10.97it/s]
分批tokenize目标句子: 81%|████████ | 2792/3460 [05:17<01:00, 11.07it/s]
分批tokenize目标句子: 81%|████████ | 2794/3460 [05:17<01:00, 11.09it/s]
分批tokenize目标句子: 81%|████████ | 2796/3460 [05:17<00:59, 11.15it/s]
分批tokenize目标句子: 81%|████████ | 2798/3460 [05:17<00:59, 11.06it/s]
分批tokenize目标句子: 81%|████████ | 2800/3460 [05:17<00:58, 11.19it/s]
分批tokenize目标句子: 81%|████████ | 2802/3460 [05:17<00:59, 11.10it/s]
分批tokenize目标句子: 81%|████████ | 2804/3460 [05:18<01:00, 10.82it/s]
分批tokenize目标句子: 81%|████████ | 2806/3460 [05:18<01:00, 10.87it/s]
分批tokenize目标句子: 81%|████████ | 2808/3460 [05:18<01:00, 10.85it/s]
分批tokenize目标句子: 81%|████████ | 2810/3460 [05:18<00:58, 11.03it/s]
分批tokenize目标句子: 81%|████████▏ | 2812/3460 [05:18<00:58, 11.07it/s]
分批tokenize目标句子: 81%|████████▏ | 2814/3460 [05:19<00:58, 11.08it/s]
分批tokenize目标句子: 81%|████████▏ | 2816/3460 [05:19<00:58, 10.98it/s]
分批tokenize目标句子: 81%|████████▏ | 2818/3460 [05:19<00:58, 10.96it/s]
分批tokenize目标句子: 82%|████████▏ | 2820/3460 [05:19<00:58, 11.01it/s]
分批tokenize目标句子: 82%|████████▏ | 2822/3460 [05:19<00:57, 11.07it/s]
分批tokenize目标句子: 82%|████████▏ | 2824/3460 [05:19<00:57, 11.06it/s]
分批tokenize目标句子: 82%|████████▏ | 2826/3460 [05:20<00:57, 11.08it/s]
分批tokenize目标句子: 82%|████████▏ | 2828/3460 [05:20<00:56, 11.15it/s]
分批tokenize目标句子: 82%|████████▏ | 2830/3460 [05:20<00:56, 11.20it/s]
分批tokenize目标句子: 82%|████████▏ | 2832/3460 [05:20<00:55, 11.26it/s]
分批tokenize目标句子: 82%|████████▏ | 2834/3460 [05:20<00:55, 11.27it/s]
分批tokenize目标句子: 82%|████████▏ | 2836/3460 [05:21<00:55, 11.27it/s]
分批tokenize目标句子: 82%|████████▏ | 2838/3460 [05:21<00:55, 11.25it/s]
分批tokenize目标句子: 82%|████████▏ | 2840/3460 [05:21<00:55, 11.27it/s]
分批tokenize目标句子: 82%|████████▏ | 2842/3460 [05:21<00:55, 11.22it/s]
分批tokenize目标句子: 82%|████████▏ | 2844/3460 [05:21<00:54, 11.23it/s]
分批tokenize目标句子: 82%|████████▏ | 2846/3460 [05:21<00:54, 11.20it/s]
分批tokenize目标句子: 82%|████████▏ | 2848/3460 [05:22<00:54, 11.23it/s]
分批tokenize目标句子: 82%|████████▏ | 2850/3460 [05:22<00:54, 11.18it/s]
分批tokenize目标句子: 82%|████████▏ | 2852/3460 [05:22<00:54, 11.15it/s]
分批tokenize目标句子: 82%|████████▏ | 2854/3460 [05:22<00:54, 11.12it/s]
分批tokenize目标句子: 83%|████████▎ | 2856/3460 [05:22<00:54, 11.12it/s]
分批tokenize目标句子: 83%|████████▎ | 2858/3460 [05:23<00:53, 11.17it/s]
分批tokenize目标句子: 83%|████████▎ | 2860/3460 [05:23<00:53, 11.12it/s]
分批tokenize目标句子: 83%|████████▎ | 2862/3460 [05:23<00:53, 11.14it/s]
分批tokenize目标句子: 83%|████████▎ | 2864/3460 [05:23<00:53, 11.22it/s]
分批tokenize目标句子: 83%|████████▎ | 2866/3460 [05:23<00:52, 11.22it/s]
分批tokenize目标句子: 83%|████████▎ | 2868/3460 [05:23<00:52, 11.23it/s]
分批tokenize目标句子: 83%|████████▎ | 2870/3460 [05:24<00:52, 11.23it/s]
分批tokenize目标句子: 83%|████████▎ | 2872/3460 [05:24<00:52, 11.27it/s]
分批tokenize目标句子: 83%|████████▎ | 2874/3460 [05:24<00:51, 11.33it/s]
分批tokenize目标句子: 83%|████████▎ | 2876/3460 [05:24<00:51, 11.29it/s]
分批tokenize目标句子: 83%|████████▎ | 2878/3460 [05:24<00:51, 11.27it/s]
分批tokenize目标句子: 83%|████████▎ | 2880/3460 [05:24<00:51, 11.30it/s]
分批tokenize目标句子: 83%|████████▎ | 2882/3460 [05:25<00:51, 11.32it/s]
分批tokenize目标句子: 83%|████████▎ | 2884/3460 [05:25<00:50, 11.36it/s]
分批tokenize目标句子: 83%|████████▎ | 2886/3460 [05:25<00:50, 11.36it/s]
分批tokenize目标句子: 83%|████████▎ | 2888/3460 [05:25<00:50, 11.35it/s]
分批tokenize目标句子: 84%|████████▎ | 2890/3460 [05:25<00:50, 11.39it/s]
分批tokenize目标句子: 84%|████████▎ | 2892/3460 [05:26<00:49, 11.39it/s]
分批tokenize目标句子: 84%|████████▎ | 2894/3460 [05:26<00:49, 11.39it/s]
分批tokenize目标句子: 84%|████████▎ | 2896/3460 [05:26<00:49, 11.43it/s]
分批tokenize目标句子: 84%|████████▍ | 2898/3460 [05:26<00:49, 11.39it/s]
分批tokenize目标句子: 84%|████████▍ | 2900/3460 [05:26<00:49, 11.34it/s]
分批tokenize目标句子: 84%|████████▍ | 2902/3460 [05:26<00:49, 11.26it/s]
分批tokenize目标句子: 84%|████████▍ | 2904/3460 [05:27<00:49, 11.16it/s]
分批tokenize目标句子: 84%|████████▍ | 2906/3460 [05:27<00:49, 11.16it/s]
分批tokenize目标句子: 84%|████████▍ | 2908/3460 [05:27<00:49, 11.22it/s]
分批tokenize目标句子: 84%|████████▍ | 2910/3460 [05:27<00:48, 11.23it/s]
分批tokenize目标句子: 84%|████████▍ | 2912/3460 [05:27<00:49, 11.17it/s]
分批tokenize目标句子: 84%|████████▍ | 2914/3460 [05:27<00:48, 11.15it/s]
分批tokenize目标句子: 84%|████████▍ | 2916/3460 [05:28<00:48, 11.20it/s]
分批tokenize目标句子: 84%|████████▍ | 2918/3460 [05:28<00:48, 11.20it/s]
分批tokenize目标句子: 84%|████████▍ | 2920/3460 [05:28<00:48, 11.24it/s]
分批tokenize目标句子: 84%|████████▍ | 2922/3460 [05:28<00:47, 11.27it/s]
分批tokenize目标句子: 85%|████████▍ | 2924/3460 [05:28<00:47, 11.32it/s]
分批tokenize目标句子: 85%|████████▍ | 2926/3460 [05:29<00:47, 11.26it/s]
分批tokenize目标句子: 85%|████████▍ | 2928/3460 [05:29<00:47, 11.28it/s]
分批tokenize目标句子: 85%|████████▍ | 2930/3460 [05:29<00:46, 11.32it/s]
分批tokenize目标句子: 85%|████████▍ | 2932/3460 [05:29<00:47, 11.19it/s]
分批tokenize目标句子: 85%|████████▍ | 2934/3460 [05:29<00:47, 11.14it/s]
分批tokenize目标句子: 85%|████████▍ | 2936/3460 [05:29<00:46, 11.21it/s]
分批tokenize目标句子: 85%|████████▍ | 2938/3460 [05:30<00:46, 11.18it/s]
分批tokenize目标句子: 85%|████████▍ | 2940/3460 [05:30<00:46, 11.16it/s]
分批tokenize目标句子: 85%|████████▌ | 2942/3460 [05:30<00:46, 11.18it/s]
分批tokenize目标句子: 85%|████████▌ | 2944/3460 [05:30<00:46, 11.01it/s]
分批tokenize目标句子: 85%|████████▌ | 2946/3460 [05:30<00:46, 11.03it/s]
分批tokenize目标句子: 85%|████████▌ | 2948/3460 [05:31<00:46, 11.04it/s]
分批tokenize目标句子: 85%|████████▌ | 2950/3460 [05:31<00:46, 11.07it/s]
分批tokenize目标句子: 85%|████████▌ | 2952/3460 [05:31<00:45, 11.05it/s]
分批tokenize目标句子: 85%|████████▌ | 2954/3460 [05:31<00:45, 11.06it/s]
分批tokenize目标句子: 85%|████████▌ | 2956/3460 [05:31<00:45, 11.06it/s]
分批tokenize目标句子: 85%|████████▌ | 2958/3460 [05:31<00:45, 11.08it/s]
分批tokenize目标句子: 86%|████████▌ | 2960/3460 [05:32<00:45, 11.11it/s]
分批tokenize目标句子: 86%|████████▌ | 2962/3460 [05:32<00:44, 11.12it/s]
分批tokenize目标句子: 86%|████████▌ | 2964/3460 [05:32<00:44, 11.11it/s]
分批tokenize目标句子: 86%|████████▌ | 2966/3460 [05:32<00:44, 11.09it/s]
分批tokenize目标句子: 86%|████████▌ | 2968/3460 [05:32<00:44, 11.02it/s]
分批tokenize目标句子: 86%|████████▌ | 2970/3460 [05:33<00:44, 11.06it/s]
分批tokenize目标句子: 86%|████████▌ | 2972/3460 [05:33<00:44, 11.02it/s]
分批tokenize目标句子: 86%|████████▌ | 2974/3460 [05:33<00:43, 11.12it/s]
分批tokenize目标句子: 86%|████████▌ | 2976/3460 [05:33<00:43, 11.11it/s]
分批tokenize目标句子: 86%|████████▌ | 2978/3460 [05:33<00:43, 11.17it/s]
分批tokenize目标句子: 86%|████████▌ | 2980/3460 [05:33<00:42, 11.17it/s]
分批tokenize目标句子: 86%|████████▌ | 2982/3460 [05:34<00:43, 11.07it/s]
分批tokenize目标句子: 86%|████████▌ | 2984/3460 [05:34<00:43, 11.03it/s]
分批tokenize目标句子: 86%|████████▋ | 2986/3460 [05:34<00:43, 10.97it/s]
分批tokenize目标句子: 86%|████████▋ | 2988/3460 [05:34<00:43, 10.91it/s]
分批tokenize目标句子: 86%|████████▋ | 2990/3460 [05:34<00:43, 10.93it/s]
分批tokenize目标句子: 86%|████████▋ | 2992/3460 [05:35<00:42, 10.95it/s]
分批tokenize目标句子: 87%|████████▋ | 2994/3460 [05:35<00:42, 11.03it/s]
分批tokenize目标句子: 87%|████████▋ | 2996/3460 [05:35<00:41, 11.11it/s]
分批tokenize目标句子: 87%|████████▋ | 2998/3460 [05:35<00:41, 11.14it/s]
分批tokenize目标句子: 87%|████████▋ | 3000/3460 [05:35<00:41, 11.07it/s]
分批tokenize目标句子: 87%|████████▋ | 3002/3460 [05:35<00:41, 11.13it/s]
分批tokenize目标句子: 87%|████████▋ | 3004/3460 [05:36<00:41, 11.04it/s]
分批tokenize目标句子: 87%|████████▋ | 3006/3460 [05:36<00:40, 11.15it/s]
分批tokenize目标句子: 87%|████████▋ | 3008/3460 [05:36<00:40, 11.20it/s]
分批tokenize目标句子: 87%|████████▋ | 3010/3460 [05:36<00:39, 11.25it/s]
分批tokenize目标句子: 87%|████████▋ | 3012/3460 [05:36<00:39, 11.27it/s]
分批tokenize目标句子: 87%|████████▋ | 3014/3460 [05:36<00:39, 11.29it/s]
分批tokenize目标句子: 87%|████████▋ | 3016/3460 [05:37<00:39, 11.23it/s]
分批tokenize目标句子: 87%|████████▋ | 3018/3460 [05:37<00:39, 11.25it/s]
分批tokenize目标句子: 87%|████████▋ | 3020/3460 [05:37<00:38, 11.30it/s]
分批tokenize目标句子: 87%|████████▋ | 3022/3460 [05:37<00:38, 11.30it/s]
分批tokenize目标句子: 87%|████████▋ | 3024/3460 [05:37<00:38, 11.28it/s]
分批tokenize目标句子: 87%|████████▋ | 3026/3460 [05:38<00:38, 11.23it/s]
分批tokenize目标句子: 88%|████████▊ | 3028/3460 [05:38<00:38, 11.09it/s]
分批tokenize目标句子: 88%|████████▊ | 3030/3460 [05:38<00:39, 10.87it/s]
分批tokenize目标句子: 88%|████████▊ | 3032/3460 [05:38<00:39, 10.90it/s]
分批tokenize目标句子: 88%|████████▊ | 3034/3460 [05:38<00:39, 10.88it/s]
分批tokenize目标句子: 88%|████████▊ | 3036/3460 [05:38<00:38, 10.94it/s]
分批tokenize目标句子: 88%|████████▊ | 3038/3460 [05:39<00:38, 11.02it/s]
分批tokenize目标句子: 88%|████████▊ | 3040/3460 [05:39<00:37, 11.10it/s]
分批tokenize目标句子: 88%|████████▊ | 3042/3460 [05:39<00:37, 11.10it/s]
分批tokenize目标句子: 88%|████████▊ | 3044/3460 [05:39<00:37, 11.16it/s]
分批tokenize目标句子: 88%|████████▊ | 3046/3460 [05:39<00:36, 11.21it/s]
分批tokenize目标句子: 88%|████████▊ | 3048/3460 [05:40<00:36, 11.22it/s]
分批tokenize目标句子: 88%|████████▊ | 3050/3460 [05:40<00:36, 11.14it/s]
分批tokenize目标句子: 88%|████████▊ | 3052/3460 [05:40<00:36, 11.04it/s]
分批tokenize目标句子: 88%|████████▊ | 3054/3460 [05:40<00:36, 11.09it/s]
分批tokenize目标句子: 88%|████████▊ | 3056/3460 [05:40<00:36, 11.07it/s]
分批tokenize目标句子: 88%|████████▊ | 3058/3460 [05:40<00:36, 11.00it/s]
分批tokenize目标句子: 88%|████████▊ | 3060/3460 [05:41<00:36, 11.03it/s]
分批tokenize目标句子: 88%|████████▊ | 3062/3460 [05:41<00:35, 11.08it/s]
分批tokenize目标句子: 89%|████████▊ | 3064/3460 [05:41<00:35, 11.10it/s]
分批tokenize目标句子: 89%|████████▊ | 3066/3460 [05:41<00:35, 11.15it/s]
分批tokenize目标句子: 89%|████████▊ | 3068/3460 [05:41<00:35, 11.19it/s]
分批tokenize目标句子: 89%|████████▊ | 3070/3460 [05:42<00:34, 11.23it/s]
分批tokenize目标句子: 89%|████████▉ | 3072/3460 [05:42<00:34, 11.22it/s]
分批tokenize目标句子: 89%|████████▉ | 3074/3460 [05:42<00:34, 11.17it/s]
分批tokenize目标句子: 89%|████████▉ | 3076/3460 [05:42<00:34, 11.22it/s]
分批tokenize目标句子: 89%|████████▉ | 3078/3460 [05:42<00:34, 11.19it/s]
分批tokenize目标句子: 89%|████████▉ | 3080/3460 [05:42<00:33, 11.20it/s]
分批tokenize目标句子: 89%|████████▉ | 3082/3460 [05:43<00:33, 11.21it/s]
分批tokenize目标句子: 89%|████████▉ | 3084/3460 [05:43<00:33, 11.22it/s]
分批tokenize目标句子: 89%|████████▉ | 3086/3460 [05:43<00:33, 11.27it/s]
分批tokenize目标句子: 89%|████████▉ | 3088/3460 [05:43<00:33, 11.24it/s]
分批tokenize目标句子: 89%|████████▉ | 3090/3460 [05:43<00:32, 11.28it/s]
分批tokenize目标句子: 89%|████████▉ | 3092/3460 [05:43<00:32, 11.28it/s]
分批tokenize目标句子: 89%|████████▉ | 3094/3460 [05:44<00:32, 11.26it/s]
分批tokenize目标句子: 89%|████████▉ | 3096/3460 [05:44<00:32, 11.17it/s]
分批tokenize目标句子: 90%|████████▉ | 3098/3460 [05:44<00:32, 11.25it/s]
分批tokenize目标句子: 90%|████████▉ | 3100/3460 [05:44<00:31, 11.27it/s]
分批tokenize目标句子: 90%|████████▉ | 3102/3460 [05:44<00:31, 11.28it/s]
分批tokenize目标句子: 90%|████████▉ | 3104/3460 [05:45<00:31, 11.28it/s]
分批tokenize目标句子: 90%|████████▉ | 3106/3460 [05:45<00:31, 11.30it/s]
分批tokenize目标句子: 90%|████████▉ | 3108/3460 [05:45<00:31, 11.33it/s]
分批tokenize目标句子: 90%|████████▉ | 3110/3460 [05:45<00:30, 11.33it/s]
分批tokenize目标句子: 90%|████████▉ | 3112/3460 [05:45<00:30, 11.33it/s]
分批tokenize目标句子: 90%|█████████ | 3114/3460 [05:45<00:30, 11.21it/s]
分批tokenize目标句子: 90%|█████████ | 3116/3460 [05:46<00:30, 11.12it/s]
分批tokenize目标句子: 90%|█████████ | 3118/3460 [05:46<00:30, 11.05it/s]
分批tokenize目标句子: 90%|█████████ | 3120/3460 [05:46<00:30, 11.03it/s]
分批tokenize目标句子: 90%|█████████ | 3122/3460 [05:46<00:30, 10.97it/s]
分批tokenize目标句子: 90%|█████████ | 3124/3460 [05:46<00:30, 10.95it/s]
分批tokenize目标句子: 90%|█████████ | 3126/3460 [05:47<00:30, 11.01it/s]
分批tokenize目标句子: 90%|█████████ | 3128/3460 [05:47<00:30, 11.02it/s]
分批tokenize目标句子: 90%|█████████ | 3130/3460 [05:47<00:30, 10.99it/s]
分批tokenize目标句子: 91%|█████████ | 3132/3460 [05:47<00:29, 10.97it/s]
分批tokenize目标句子: 91%|█████████ | 3134/3460 [05:47<00:29, 10.87it/s]
分批tokenize目标句子: 91%|█████████ | 3136/3460 [05:47<00:30, 10.77it/s]
分批tokenize目标句子: 91%|█████████ | 3138/3460 [05:48<00:30, 10.58it/s]
分批tokenize目标句子: 91%|█████████ | 3140/3460 [05:48<00:30, 10.60it/s]
分批tokenize目标句子: 91%|█████████ | 3142/3460 [05:48<00:29, 10.64it/s]
分批tokenize目标句子: 91%|█████████ | 3144/3460 [05:48<00:29, 10.67it/s]
分批tokenize目标句子: 91%|█████████ | 3146/3460 [05:48<00:29, 10.77it/s]
分批tokenize目标句子: 91%|█████████ | 3148/3460 [05:49<00:28, 10.89it/s]
分批tokenize目标句子: 91%|█████████ | 3150/3460 [05:49<00:28, 10.70it/s]
分批tokenize目标句子: 91%|█████████ | 3152/3460 [05:49<00:28, 10.79it/s]
分批tokenize目标句子: 91%|█████████ | 3154/3460 [05:49<00:28, 10.83it/s]
分批tokenize目标句子: 91%|█████████ | 3156/3460 [05:49<00:27, 10.91it/s]
分批tokenize目标句子: 91%|█████████▏| 3158/3460 [05:49<00:27, 11.01it/s]
分批tokenize目标句子: 91%|█████████▏| 3160/3460 [05:50<00:27, 11.02it/s]
分批tokenize目标句子: 91%|█████████▏| 3162/3460 [05:50<00:27, 11.01it/s]
分批tokenize目标句子: 91%|█████████▏| 3164/3460 [05:50<00:26, 11.01it/s]
分批tokenize目标句子: 92%|█████████▏| 3166/3460 [05:50<00:26, 11.00it/s]
分批tokenize目标句子: 92%|█████████▏| 3168/3460 [05:50<00:26, 11.03it/s]
分批tokenize目标句子: 92%|█████████▏| 3170/3460 [05:51<00:26, 11.06it/s]
分批tokenize目标句子: 92%|█████████▏| 3172/3460 [05:51<00:26, 11.02it/s]
分批tokenize目标句子: 92%|█████████▏| 3174/3460 [05:51<00:25, 11.04it/s]
分批tokenize目标句子: 92%|█████████▏| 3176/3460 [05:51<00:25, 11.10it/s]
分批tokenize目标句子: 92%|█████████▏| 3178/3460 [05:51<00:25, 11.04it/s]
分批tokenize目标句子: 92%|█████████▏| 3180/3460 [05:51<00:25, 11.00it/s]
分批tokenize目标句子: 92%|█████████▏| 3182/3460 [05:52<00:25, 11.01it/s]
分批tokenize目标句子: 92%|█████████▏| 3184/3460 [05:52<00:25, 11.02it/s]
分批tokenize目标句子: 92%|█████████▏| 3186/3460 [05:52<00:24, 11.03it/s]
分批tokenize目标句子: 92%|█████████▏| 3188/3460 [05:52<00:24, 11.09it/s]
分批tokenize目标句子: 92%|█████████▏| 3190/3460 [05:52<00:24, 11.12it/s]
分批tokenize目标句子: 92%|█████████▏| 3192/3460 [05:53<00:24, 11.12it/s]
分批tokenize目标句子: 92%|█████████▏| 3194/3460 [05:53<00:23, 11.11it/s]
分批tokenize目标句子: 92%|█████████▏| 3196/3460 [05:53<00:23, 11.10it/s]
分批tokenize目标句子: 92%|█████████▏| 3198/3460 [05:53<00:23, 11.09it/s]
分批tokenize目标句子: 92%|█████████▏| 3200/3460 [05:53<00:23, 11.07it/s]
分批tokenize目标句子: 93%|█████████▎| 3202/3460 [05:53<00:23, 11.09it/s]
分批tokenize目标句子: 93%|█████████▎| 3204/3460 [05:54<00:23, 11.10it/s]
分批tokenize目标句子: 93%|█████████▎| 3206/3460 [05:54<00:22, 11.13it/s]
分批tokenize目标句子: 93%|█████████▎| 3208/3460 [05:54<00:22, 11.15it/s]
分批tokenize目标句子: 93%|█████████▎| 3210/3460 [05:54<00:22, 11.12it/s]
分批tokenize目标句子: 93%|█████████▎| 3212/3460 [05:54<00:22, 11.11it/s]
分批tokenize目标句子: 93%|█████████▎| 3214/3460 [05:55<00:22, 11.10it/s]
分批tokenize目标句子: 93%|█████████▎| 3216/3460 [05:55<00:21, 11.09it/s]
分批tokenize目标句子: 93%|█████████▎| 3218/3460 [05:55<00:22, 10.95it/s]
分批tokenize目标句子: 93%|█████████▎| 3220/3460 [05:55<00:22, 10.88it/s]
分批tokenize目标句子: 93%|█████████▎| 3222/3460 [05:55<00:22, 10.79it/s]
分批tokenize目标句子: 93%|█████████▎| 3224/3460 [05:55<00:21, 10.81it/s]
分批tokenize目标句子: 93%|█████████▎| 3226/3460 [05:56<00:21, 10.84it/s]
分批tokenize目标句子: 93%|█████████▎| 3228/3460 [05:56<00:21, 10.85it/s]
分批tokenize目标句子: 93%|█████████▎| 3230/3460 [05:56<00:21, 10.94it/s]
分批tokenize目标句子: 93%|█████████▎| 3232/3460 [05:56<00:20, 10.96it/s]
分批tokenize目标句子: 93%|█████████▎| 3234/3460 [05:56<00:20, 10.92it/s]
分批tokenize目标句子: 94%|█████████▎| 3236/3460 [05:57<00:20, 10.91it/s]
分批tokenize目标句子: 94%|█████████▎| 3238/3460 [05:57<00:20, 10.97it/s]
分批tokenize目标句子: 94%|█████████▎| 3240/3460 [05:57<00:20, 10.92it/s]
分批tokenize目标句子: 94%|█████████▎| 3242/3460 [05:57<00:19, 10.94it/s]
分批tokenize目标句子: 94%|█████████▍| 3244/3460 [05:57<00:19, 10.95it/s]
分批tokenize目标句子: 94%|█████████▍| 3246/3460 [05:57<00:19, 10.91it/s]
分批tokenize目标句子: 94%|█████████▍| 3248/3460 [05:58<00:19, 10.83it/s]
分批tokenize目标句子: 94%|█████████▍| 3250/3460 [05:58<00:19, 10.83it/s]
分批tokenize目标句子: 94%|█████████▍| 3252/3460 [05:58<00:19, 10.80it/s]
分批tokenize目标句子: 94%|█████████▍| 3254/3460 [05:58<00:18, 10.86it/s]
分批tokenize目标句子: 94%|█████████▍| 3256/3460 [05:58<00:18, 10.80it/s]
分批tokenize目标句子: 94%|█████████▍| 3258/3460 [05:59<00:18, 10.83it/s]
分批tokenize目标句子: 94%|█████████▍| 3260/3460 [05:59<00:18, 10.88it/s]
分批tokenize目标句子: 94%|█████████▍| 3262/3460 [05:59<00:18, 10.88it/s]
分批tokenize目标句子: 94%|█████████▍| 3264/3460 [05:59<00:17, 10.91it/s]
分批tokenize目标句子: 94%|█████████▍| 3266/3460 [05:59<00:17, 10.96it/s]
分批tokenize目标句子: 94%|█████████▍| 3268/3460 [06:00<00:17, 10.97it/s]
分批tokenize目标句子: 95%|█████████▍| 3270/3460 [06:00<00:17, 10.98it/s]
分批tokenize目标句子: 95%|█████████▍| 3272/3460 [06:00<00:17, 11.02it/s]
分批tokenize目标句子: 95%|█████████▍| 3274/3460 [06:00<00:16, 11.03it/s]
分批tokenize目标句子: 95%|█████████▍| 3276/3460 [06:00<00:16, 11.01it/s]
分批tokenize目标句子: 95%|█████████▍| 3278/3460 [06:00<00:16, 10.97it/s]
分批tokenize目标句子: 95%|█████████▍| 3280/3460 [06:01<00:16, 10.98it/s]
分批tokenize目标句子: 95%|█████████▍| 3282/3460 [06:01<00:16, 10.97it/s]
分批tokenize目标句子: 95%|█████████▍| 3284/3460 [06:01<00:16, 11.00it/s]
分批tokenize目标句子: 95%|█████████▍| 3286/3460 [06:01<00:15, 10.93it/s]
分批tokenize目标句子: 95%|█████████▌| 3288/3460 [06:01<00:16, 10.58it/s]
分批tokenize目标句子: 95%|█████████▌| 3290/3460 [06:02<00:15, 10.67it/s]
分批tokenize目标句子: 95%|█████████▌| 3292/3460 [06:02<00:15, 10.74it/s]
分批tokenize目标句子: 95%|█████████▌| 3294/3460 [06:02<00:15, 10.78it/s]
分批tokenize目标句子: 95%|█████████▌| 3296/3460 [06:02<00:15, 10.81it/s]
分批tokenize目标句子: 95%|█████████▌| 3298/3460 [06:02<00:14, 10.90it/s]
分批tokenize目标句子: 95%|█████████▌| 3300/3460 [06:02<00:14, 10.80it/s]
分批tokenize目标句子: 95%|█████████▌| 3302/3460 [06:03<00:14, 10.82it/s]
分批tokenize目标句子: 95%|█████████▌| 3304/3460 [06:03<00:14, 10.79it/s]
分批tokenize目标句子: 96%|█████████▌| 3306/3460 [06:03<00:14, 10.87it/s]
分批tokenize目标句子: 96%|█████████▌| 3308/3460 [06:03<00:13, 10.90it/s]
分批tokenize目标句子: 96%|█████████▌| 3310/3460 [06:03<00:13, 10.91it/s]
分批tokenize目标句子: 96%|█████████▌| 3312/3460 [06:04<00:13, 10.84it/s]
分批tokenize目标句子: 96%|█████████▌| 3314/3460 [06:04<00:13, 10.89it/s]
分批tokenize目标句子: 96%|█████████▌| 3316/3460 [06:04<00:13, 10.91it/s]
分批tokenize目标句子: 96%|█████████▌| 3318/3460 [06:04<00:13, 10.92it/s]
分批tokenize目标句子: 96%|█████████▌| 3320/3460 [06:04<00:12, 10.94it/s]
分批tokenize目标句子: 96%|█████████▌| 3322/3460 [06:04<00:12, 10.98it/s]
分批tokenize目标句子: 96%|█████████▌| 3324/3460 [06:05<00:12, 10.98it/s]
分批tokenize目标句子: 96%|█████████▌| 3326/3460 [06:05<00:12, 11.06it/s]
分批tokenize目标句子: 96%|█████████▌| 3328/3460 [06:05<00:11, 11.05it/s]
分批tokenize目标句子: 96%|█████████▌| 3330/3460 [06:05<00:11, 11.10it/s]
分批tokenize目标句子: 96%|█████████▋| 3332/3460 [06:05<00:11, 11.09it/s]
分批tokenize目标句子: 96%|█████████▋| 3334/3460 [06:06<00:11, 11.09it/s]
分批tokenize目标句子: 96%|█████████▋| 3336/3460 [06:06<00:11, 11.11it/s]
分批tokenize目标句子: 96%|█████████▋| 3338/3460 [06:06<00:10, 11.19it/s]
分批tokenize目标句子: 97%|█████████▋| 3340/3460 [06:06<00:10, 11.21it/s]
分批tokenize目标句子: 97%|█████████▋| 3340/3460 [06:24<00:10, 11.21it/s]
分批tokenize目标句子: 97%|█████████▋| 3342/3460 [06:24<05:29, 2.79s/it]
分批tokenize目标句子: 97%|█████████▋| 3344/3460 [06:24<03:49, 1.98s/it]
分批tokenize目标句子: 97%|█████████▋| 3346/3460 [06:25<02:40, 1.41s/it]
分批tokenize目标句子: 97%|█████████▋| 3348/3460 [06:25<01:53, 1.01s/it]
分批tokenize目标句子: 97%|█████████▋| 3350/3460 [06:25<01:20, 1.36it/s]
分批tokenize目标句子: 97%|█████████▋| 3352/3460 [06:25<00:58, 1.84it/s]
分批tokenize目标句子: 97%|█████████▋| 3354/3460 [06:25<00:43, 2.46it/s]
分批tokenize目标句子: 97%|█████████▋| 3356/3460 [06:25<00:32, 3.20it/s]
分批tokenize目标句子: 97%|█████████▋| 3358/3460 [06:26<00:24, 4.08it/s]
分批tokenize目标句子: 97%|█████████▋| 3360/3460 [06:26<00:19, 5.07it/s]
分批tokenize目标句子: 97%|█████████▋| 3362/3460 [06:26<00:16, 6.08it/s]
分批tokenize目标句子: 97%|█████████▋| 3364/3460 [06:26<00:13, 7.05it/s]
分批tokenize目标句子: 97%|█████████▋| 3366/3460 [06:26<00:11, 7.95it/s]
分批tokenize目标句子: 97%|█████████▋| 3368/3460 [06:27<00:10, 8.74it/s]
分批tokenize目标句子: 97%|█████████▋| 3370/3460 [06:27<00:09, 9.33it/s]
分批tokenize目标句子: 97%|█████████▋| 3372/3460 [06:27<00:08, 9.83it/s]
分批tokenize目标句子: 98%|█████████▊| 3374/3460 [06:27<00:08, 10.20it/s]
分批tokenize目标句子: 98%|█████████▊| 3376/3460 [06:27<00:07, 10.55it/s]
分批tokenize目标句子: 98%|█████████▊| 3378/3460 [06:27<00:07, 10.74it/s]
分批tokenize目标句子: 98%|█████████▊| 3380/3460 [06:28<00:07, 10.95it/s]
分批tokenize目标句子: 98%|█████████▊| 3382/3460 [06:28<00:07, 11.14it/s]
分批tokenize目标句子: 98%|█████████▊| 3384/3460 [06:28<00:06, 11.29it/s]
分批tokenize目标句子: 98%|█████████▊| 3386/3460 [06:28<00:06, 11.34it/s]
分批tokenize目标句子: 98%|█████████▊| 3388/3460 [06:28<00:06, 11.44it/s]
分批tokenize目标句子: 98%|█████████▊| 3390/3460 [06:28<00:06, 11.45it/s]
分批tokenize目标句子: 98%|█████████▊| 3392/3460 [06:29<00:05, 11.48it/s]
分批tokenize目标句子: 98%|█████████▊| 3394/3460 [06:29<00:05, 11.45it/s]
分批tokenize目标句子: 98%|█████████▊| 3396/3460 [06:29<00:05, 11.47it/s]
分批tokenize目标句子: 98%|█████████▊| 3398/3460 [06:29<00:05, 11.47it/s]
分批tokenize目标句子: 98%|█████████▊| 3400/3460 [06:29<00:05, 11.47it/s]
分批tokenize目标句子: 98%|█████████▊| 3402/3460 [06:30<00:05, 11.46it/s]
分批tokenize目标句子: 98%|█████████▊| 3404/3460 [06:30<00:04, 11.46it/s]
分批tokenize目标句子: 98%|█████████▊| 3406/3460 [06:30<00:04, 11.44it/s]
分批tokenize目标句子: 98%|█████████▊| 3408/3460 [06:30<00:04, 11.43it/s]
分批tokenize目标句子: 99%|█████████▊| 3410/3460 [06:30<00:04, 11.40it/s]
分批tokenize目标句子: 99%|█████████▊| 3412/3460 [06:30<00:04, 11.41it/s]
分批tokenize目标句子: 99%|█████████▊| 3414/3460 [06:31<00:04, 11.46it/s]
分批tokenize目标句子: 99%|█████████▊| 3416/3460 [06:31<00:03, 11.43it/s]
分批tokenize目标句子: 99%|█████████▉| 3418/3460 [06:31<00:03, 11.36it/s]
分批tokenize目标句子: 99%|█████████▉| 3420/3460 [06:31<00:03, 11.37it/s]
分批tokenize目标句子: 99%|█████████▉| 3422/3460 [06:31<00:03, 11.39it/s]
分批tokenize目标句子: 99%|█████████▉| 3424/3460 [06:31<00:03, 11.23it/s]
分批tokenize目标句子: 99%|█████████▉| 3426/3460 [06:32<00:03, 11.04it/s]
分批tokenize目标句子: 99%|█████████▉| 3428/3460 [06:32<00:02, 10.97it/s]
分批tokenize目标句子: 99%|█████████▉| 3430/3460 [06:32<00:02, 10.93it/s]
分批tokenize目标句子: 99%|█████████▉| 3432/3460 [06:32<00:02, 10.93it/s]
分批tokenize目标句子: 99%|█████████▉| 3434/3460 [06:32<00:02, 11.02it/s]
分批tokenize目标句子: 99%|█████████▉| 3436/3460 [06:33<00:02, 10.99it/s]
分批tokenize目标句子: 99%|█████████▉| 3438/3460 [06:33<00:01, 11.03it/s]
分批tokenize目标句子: 99%|█████████▉| 3440/3460 [06:33<00:01, 10.99it/s]
分批tokenize目标句子: 99%|█████████▉| 3442/3460 [06:33<00:01, 11.02it/s]
分批tokenize目标句子: 100%|█████████▉| 3444/3460 [06:33<00:01, 11.07it/s]
分批tokenize目标句子: 100%|█████████▉| 3446/3460 [06:33<00:01, 11.06it/s]
分批tokenize目标句子: 100%|█████████▉| 3448/3460 [06:34<00:01, 11.05it/s]
分批tokenize目标句子: 100%|█████████▉| 3450/3460 [06:34<00:00, 11.05it/s]
分批tokenize目标句子: 100%|█████████▉| 3452/3460 [06:34<00:00, 11.08it/s]
分批tokenize目标句子: 100%|█████████▉| 3454/3460 [06:34<00:00, 11.10it/s]
分批tokenize目标句子: 100%|█████████▉| 3456/3460 [06:34<00:00, 11.07it/s]
分批tokenize目标句子: 100%|█████████▉| 3458/3460 [06:35<00:00, 11.15it/s]
分批tokenize目标句子: 100%|██████████| 3460/3460 [06:35<00:00, 11.29it/s]
分批tokenize目标句子: 100%|██████████| 3460/3460 [06:35<00:00, 8.75it/s]
🎉 数据预处理完成! 共处理 3459987 个样本
[2025-07-04 16:20:46,742] [INFO] [real_accelerator.py:254:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2025-07-04 16:20:47,801] [INFO] [logging.py:107:log_dist] [Rank -1] DeepSpeed info: version=0.17.0, git-hash=unknown, git-branch=unknown
[2025-07-04 16:20:47,801] [INFO] [comm.py:675:init_distributed] cdb=None
[2025-07-04 16:20:47,801] [INFO] [comm.py:690:init_distributed] Not using the DeepSpeed or dist launchers, attempting to detect MPI environment...
[2025-07-04 16:20:49,381] [INFO] [comm.py:745:mpi_discovery] Discovered MPI settings of world_rank=0, local_rank=0, world_size=1, master_addr=192.168.1.39, master_port=29500
[2025-07-04 16:20:49,382] [INFO] [comm.py:706:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
[2025-07-04 16:20:49,389] [INFO] [config.py:744:__init__] Config mesh_device None world_size = 1
[2025-07-04 16:20:49,905] [INFO] [engine.py:1313:_configure_distributed_model] ********** distributed groups summary **********
self.dp_world_size=1
self.mp_world_size=1
self.seq_dp_world_size=1
self.sequence_parallel_size=1
***********************************************
[2025-07-04 16:20:50,149] [INFO] [logging.py:107:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
[2025-07-04 16:20:50,150] [INFO] [logging.py:107:log_dist] [Rank 0] Using client Optimizer as basic optimizer
[2025-07-04 16:20:50,150] [INFO] [logging.py:107:log_dist] [Rank 0] Removing param_group that has no 'params' in the basic Optimizer
[2025-07-04 16:20:50,153] [INFO] [logging.py:107:log_dist] [Rank 0] DeepSpeed Basic Optimizer = AdamW
[2025-07-04 16:20:50,153] [INFO] [utils.py:59:is_zero_supported_optimizer] Checking ZeRO support for optimizer=AdamW type=<class 'torch.optim.adamw.AdamW'>
[2025-07-04 16:20:50,153] [INFO] [logging.py:107:log_dist] [Rank 0] Creating torch.bfloat16 ZeRO stage 2 optimizer
[2025-07-04 16:20:50,153] [INFO] [stage_1_and_2.py:150:__init__] Reduce bucket size 500000000
[2025-07-04 16:20:50,153] [INFO] [stage_1_and_2.py:151:__init__] Allgather bucket size 500000000
[2025-07-04 16:20:50,153] [INFO] [stage_1_and_2.py:152:__init__] CPU Offload: False
[2025-07-04 16:20:50,154] [INFO] [stage_1_and_2.py:153:__init__] Round robin gradient partitioning: False
[2025-07-04 16:20:55,774] [INFO] [utils.py:781:see_memory_usage] Before initializing optimizer states
[2025-07-04 16:20:55,775] [INFO] [utils.py:782:see_memory_usage] MA 0.38 GB Max_MA 0.41 GB CA 0.44 GB Max_CA 0 GB
[2025-07-04 16:20:55,778] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.3 GB, percent = 17.8%
[2025-07-04 16:20:59,850] [INFO] [utils.py:781:see_memory_usage] After initializing optimizer states
[2025-07-04 16:20:59,851] [INFO] [utils.py:782:see_memory_usage] MA 0.38 GB Max_MA 0.44 GB CA 0.49 GB Max_CA 0 GB
[2025-07-04 16:20:59,852] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.27 GB, percent = 17.8%
[2025-07-04 16:20:59,852] [INFO] [stage_1_and_2.py:571:__init__] optimizer state initialized
[2025-07-04 16:21:02,402] [INFO] [utils.py:781:see_memory_usage] After initializing ZeRO optimizer
[2025-07-04 16:21:02,403] [INFO] [utils.py:782:see_memory_usage] MA 0.38 GB Max_MA 0.38 GB CA 0.49 GB Max_CA 0 GB
[2025-07-04 16:21:02,404] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.24 GB, percent = 17.8%
[2025-07-04 16:21:02,408] [INFO] [logging.py:107:log_dist] [Rank 0] DeepSpeed Final Optimizer = DeepSpeedZeroOptimizer
[2025-07-04 16:21:02,408] [INFO] [logging.py:107:log_dist] [Rank 0] DeepSpeed using configured LR scheduler = None
[2025-07-04 16:21:02,408] [INFO] [logging.py:107:log_dist] [Rank 0] DeepSpeed LR Scheduler = None
[2025-07-04 16:21:02,408] [INFO] [logging.py:107:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0], mom=[(0.9, 0.999)]
[2025-07-04 16:21:02,409] [INFO] [config.py:1014:print] DeepSpeedEngine configuration:
[2025-07-04 16:21:02,409] [INFO] [config.py:1018:print] activation_checkpointing_config {
"partition_activations": false,
"contiguous_memory_optimization": false,
"cpu_checkpointing": false,
"number_checkpoints": null,
"synchronize_checkpoint_boundary": false,
"profile": false
}
[2025-07-04 16:21:02,409] [INFO] [config.py:1018:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'intra_op_parallelism': 1, 'single_submit': False, 'overlap_events': True, 'use_gds': False}
[2025-07-04 16:21:02,409] [INFO] [config.py:1018:print] amp_enabled .................. False
[2025-07-04 16:21:02,409] [INFO] [config.py:1018:print] amp_params ................... False
[2025-07-04 16:21:02,410] [INFO] [config.py:1018:print] autotuning_config ............ {
"enabled": false,
"start_step": null,
"end_step": null,
"metric_path": null,
"arg_mappings": null,
"metric": "throughput",
"model_info": null,
"results_dir": "autotuning_results",
"exps_dir": "autotuning_exps",
"overwrite": true,
"fast": true,
"start_profile_step": 3,
"end_profile_step": 5,
"tuner_type": "gridsearch",
"tuner_early_stopping": 5,
"tuner_num_trials": 50,
"model_info_path": null,
"mp_size": 1,
"max_train_batch_size": null,
"min_train_batch_size": 1,
"max_train_micro_batch_size_per_gpu": 1.024000e+03,
"min_train_micro_batch_size_per_gpu": 1,
"num_tuning_micro_batch_sizes": 3
}
[2025-07-04 16:21:02,410] [INFO] [config.py:1018:print] bfloat16_enabled ............. True
[2025-07-04 16:21:02,410] [INFO] [config.py:1018:print] bfloat16_immediate_grad_update True
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] checkpoint_parallel_write_pipeline False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] checkpoint_tag_validation_enabled True
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] checkpoint_tag_validation_fail False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7f61031c7340>
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] communication_data_type ...... None
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] compile_config ............... deepcompile=False free_activation=False offload_activation=False offload_opt_states=False double_buffer=True symmetric_memory=False debug_log=False offload_parameters=False sync_before_reduce=False sync_after_reduce=False sync_before_allgather=False sync_after_allgather=False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] curriculum_enabled_legacy .... False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] curriculum_params_legacy ..... False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'pin_memory': False, 'curriculum_learning': {'enabled': False}, 'dynamic_batching': {'enabled': False, 'lr_scaling_method': 'linear', 'min_batch_size': 1, 'max_batch_size': None, 'sequence_picking_order': 'dataloader', 'verbose': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] data_efficiency_enabled ...... False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] dataloader_drop_last ......... False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] disable_allgather ............ False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] dump_state ................... False
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] dynamic_loss_scale_args ...... None
[2025-07-04 16:21:02,411] [INFO] [config.py:1018:print] eigenvalue_enabled ........... False
[2025-07-04 16:21:02,412] [INFO] [config.py:1018:print] eigenvalue_gas_boundary_resolution 1
[2025-07-04 16:21:02,412] [INFO] [config.py:1018:print] eigenvalue_layer_name ........ bert.encoder.layer
[2025-07-04 16:21:02,412] [INFO] [config.py:1018:print] eigenvalue_layer_num ......... 0
[2025-07-04 16:21:02,412] [INFO] [config.py:1018:print] eigenvalue_max_iter .......... 100
[2025-07-04 16:21:02,412] [INFO] [config.py:1018:print] eigenvalue_stability ......... 1e-06
[2025-07-04 16:21:02,412] [INFO] [config.py:1018:print] eigenvalue_tol ............... 0.01
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] eigenvalue_verbose ........... False
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] elasticity_enabled ........... False
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] flops_profiler_config ........ {
"enabled": false,
"recompute_fwd_factor": 0.0,
"profile_step": 1,
"module_depth": -1,
"top_modules": 1,
"detailed": true,
"output_file": null
}
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] fp16_auto_cast ............... None
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] fp16_enabled ................. False
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] fp16_master_weights_and_gradients False
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] global_rank .................. 0
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] grad_accum_dtype ............. None
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] gradient_accumulation_steps .. 32
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] gradient_clipping ............ 1.0
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] gradient_predivide_factor .... 1.0
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] graph_harvesting ............. False
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8
[2025-07-04 16:21:02,413] [INFO] [config.py:1018:print] initial_dynamic_scale ........ 1
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] load_universal_checkpoint .... False
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] loss_scale ................... 1.0
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] memory_breakdown ............. False
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] mics_hierarchial_params_gather False
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] mics_shard_size .............. -1
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') comet=CometConfig(enabled=False, samples_log_interval=100, project=None, workspace=None, api_key=None, experiment_name=None, experiment_key=None, online=None, mode=None) wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName')
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] nebula_config ................ {
"enabled": false,
"persistent_storage_path": null,
"persistent_time_interval": 100,
"num_of_version_in_retention": 2,
"enable_nebula_load": true,
"load_path": null
}
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] optimizer_legacy_fusion ...... False
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] optimizer_name ............... None
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] optimizer_params ............. None
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0, 'pipe_partitioned': True, 'grad_partitioned': True}
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] pld_enabled .................. False
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] pld_params ................... False
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] prescale_gradients ........... False
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] scheduler_name ............... None
[2025-07-04 16:21:02,414] [INFO] [config.py:1018:print] scheduler_params ............. None
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] seq_parallel_communication_data_type torch.float32
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] sparse_attention ............. None
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] sparse_gradients_enabled ..... False
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] steps_per_print .............. inf
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] tensor_parallel_config ....... dtype=torch.float16 autotp_size=0 tp_overlap_comm=False tensor_parallel=TPConfig(tp_size=1, tp_grain_size=1, mpu=None, tp_group=None) injection_policy_tuple=None keep_module_on_host=False replace_with_kernel_inject=False
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] timers_config ................ enabled=True synchronized=True
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] train_batch_size ............. 6144
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] train_micro_batch_size_per_gpu 192
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] use_data_before_expert_parallel_ False
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] use_node_local_storage ....... False
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] wall_clock_breakdown ......... False
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] weight_quantization_config ... None
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] world_size ................... 1
[2025-07-04 16:21:02,415] [INFO] [config.py:1018:print] zero_allow_untested_optimizer True
[2025-07-04 16:21:02,416] [INFO] [config.py:1018:print] zero_config .................. stage=2 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500000000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500000000 overlap_comm=False load_from_fp32_weights=True elastic_checkpoint=False offload_param=DeepSpeedZeroOffloadParamConfig(device='none', nvme_path=None, buffer_count=5, buffer_size=100000000, max_in_cpu=1000000000, pin_memory=False) offload_optimizer=DeepSpeedZeroOffloadOptimizerConfig(device='none', nvme_path=None, buffer_count=4, pin_memory=False, pipeline_read=False, pipeline_write=False, fast_init=False, ratio=1.0) sub_group_size=1000000000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=50000000 param_persistence_threshold=100000 model_persistence_threshold=9223372036854775807 max_live_parameters=1000000000 max_reuse_distance=1000000000 gather_16bit_weights_on_model_save=False module_granularity_threshold=0 use_all_reduce_for_fetch_params=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_weights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients=False zeropp_loco_param=None mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient_linear=True pipeline_loading_checkpoint=False override_module_apply=True log_trace_cache_warnings=False
[2025-07-04 16:21:02,416] [INFO] [config.py:1018:print] zero_enabled ................. True
[2025-07-04 16:21:02,416] [INFO] [config.py:1018:print] zero_force_ds_cpu_optimizer .. True
[2025-07-04 16:21:02,416] [INFO] [config.py:1018:print] zero_optimization_stage ...... 2
[2025-07-04 16:21:02,416] [INFO] [config.py:1004:print_user_config] json = {
"train_batch_size": 6.144000e+03,
"train_micro_batch_size_per_gpu": 192,
"gradient_accumulation_steps": 32,
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "none",
"nvme_path": null
},
"offload_param": {
"device": "none",
"nvme_path": null
},
"stage3_gather_16bit_weights_on_model_save": false
},
"gradient_clipping": 1.0,
"steps_per_print": inf,
"bf16": {
"enabled": true
},
"fp16": {
"enabled": false
},
"zero_allow_untested_optimizer": true
}
[2025-07-04 16:21:02] 开始第1轮训练
[2025-07-04 16:21:03] 三元组提取训练模式
[2025-07-04 16:21:03] 使用预tokenized三元组目标数据
[2025-07-04 16:21:46] Epoch 1/4, Step 50/18020, Loss(triple): 45.131344, Loss(predicate): 216.875000, LR: 0.000001, Speed: 110697.24 tokens/sec | Epoch Time Left: 4:25:58 | Total Time Left: 17:46:05
[2025-07-04 16:22:28] Epoch 1/4, Step 100/18020, Loss(triple): 45.561543, Loss(predicate): 216.822922, LR: 0.000003, Speed: 117597.28 tokens/sec | Epoch Time Left: 4:17:26 | Total Time Left: 17:14:06
[2025-07-04 16:23:10] Epoch 1/4, Step 150/18020, Loss(triple): 45.171806, Loss(predicate): 216.317703, LR: 0.000004, Speed: 118577.25 tokens/sec | Epoch Time Left: 4:13:27 | Total Time Left: 17:00:12
[2025-07-04 16:23:51] Epoch 1/4, Step 200/18020, Loss(triple): 45.189026, Loss(predicate): 214.645828, LR: 0.000006, Speed: 119508.79 tokens/sec | Epoch Time Left: 4:10:38 | Total Time Left: 16:50:59
[2025-07-04 16:24:32] Epoch 1/4, Step 250/18020, Loss(triple): 45.200523, Loss(predicate): 214.640625, LR: 0.000007, Speed: 118649.81 tokens/sec | Epoch Time Left: 4:09:01 | Total Time Left: 16:46:36
[2025-07-04 16:25:13] Epoch 1/4, Step 300/18020, Loss(triple): 44.912113, Loss(predicate): 208.166672, LR: 0.000008, Speed: 118849.13 tokens/sec | Epoch Time Left: 4:07:38 | Total Time Left: 16:43:10
[2025-07-04 16:25:55] Epoch 1/4, Step 350/18020, Loss(triple): 45.167187, Loss(predicate): 206.822922, LR: 0.000010, Speed: 118633.78 tokens/sec | Epoch Time Left: 4:06:31 | Total Time Left: 16:40:46
[2025-07-04 16:26:36] Epoch 1/4, Step 400/18020, Loss(triple): 45.190811, Loss(predicate): 187.781250, LR: 0.000011, Speed: 120039.60 tokens/sec | Epoch Time Left: 4:05:10 | Total Time Left: 16:37:22
[2025-07-04 16:27:17] Epoch 1/4, Step 450/18020, Loss(triple): 44.828392, Loss(predicate): 180.151047, LR: 0.000012, Speed: 119299.16 tokens/sec | Epoch Time Left: 4:04:07 | Total Time Left: 16:35:14
[2025-07-04 16:27:58] === GPU性能分析 (平均每步) ===
[2025-07-04 16:27:58] 前向传播: 63.19ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 16:27:58] GPU总时间: 65.14ms, 实际迭代时间: 828.68ms, GPU利用率: 7.9%
[2025-07-04 16:27:58] ==================================================
[2025-07-04 16:27:58] === 三元组预测示例 ===
[2025-07-04 16:27:59] 样本1目标: Grabinek, Warmian-Masurian Voivodeship country Poland
[2025-07-04 16:27:59] 样本1预测: leumiesleoreicesurances terarconomore ajinessasiveduabversum
[2025-07-04 16:27:59] 样本2目标: Dichelopa anthracodelta taxon rank species
[2025-07-04 16:27:59] 样本2预测: veumiesandussiffdances formosadeore cententasictduakevers<72>
[2025-07-04 16:27:59] ==================
[2025-07-04 16:27:59] Epoch 1/4, Step 500/18020, Loss(triple): 44.883881, Loss(predicate): 177.859375, LR: 0.000014, Speed: 118626.51 tokens/sec | Epoch Time Left: 4:03:16 | Total Time Left: 16:33:56
[2025-07-04 16:28:40] Epoch 1/4, Step 550/18020, Loss(triple): 44.452766, Loss(predicate): 161.770828, LR: 0.000015, Speed: 118544.62 tokens/sec | Epoch Time Left: 4:02:28 | Total Time Left: 16:32:49
[2025-07-04 16:29:21] Epoch 1/4, Step 600/18020, Loss(triple): 44.755806, Loss(predicate): 156.583328, LR: 0.000017, Speed: 119429.58 tokens/sec | Epoch Time Left: 4:01:33 | Total Time Left: 16:31:10
[2025-07-04 16:30:02] Epoch 1/4, Step 650/18020, Loss(triple): 44.717293, Loss(predicate): 135.052078, LR: 0.000018, Speed: 119505.12 tokens/sec | Epoch Time Left: 4:00:39 | Total Time Left: 16:29:37
[2025-07-04 16:30:44] Epoch 1/4, Step 700/18020, Loss(triple): 44.283058, Loss(predicate): 128.705734, LR: 0.000019, Speed: 118780.09 tokens/sec | Epoch Time Left: 3:59:53 | Total Time Left: 16:28:37
[2025-07-04 16:31:25] Epoch 1/4, Step 750/18020, Loss(triple): 44.472065, Loss(predicate): 118.117188, LR: 0.000021, Speed: 118188.27 tokens/sec | Epoch Time Left: 3:59:12 | Total Time Left: 16:27:59
[2025-07-04 16:32:06] Epoch 1/4, Step 800/18020, Loss(triple): 44.302155, Loss(predicate): 115.382812, LR: 0.000022, Speed: 119395.03 tokens/sec | Epoch Time Left: 3:58:22 | Total Time Left: 16:26:43
[2025-07-04 16:32:48] Epoch 1/4, Step 850/18020, Loss(triple): 43.987030, Loss(predicate): 93.483070, LR: 0.000024, Speed: 119365.38 tokens/sec | Epoch Time Left: 3:57:33 | Total Time Left: 16:25:32
[2025-07-04 16:33:31] Epoch 1/4, Step 900/18020, Loss(triple): 43.786957, Loss(predicate): 64.125000, LR: 0.000025, Speed: 113585.18 tokens/sec | Epoch Time Left: 3:57:25 | Total Time Left: 16:27:10
[2025-07-04 16:34:22] Epoch 1/4, Step 950/18020, Loss(triple): 43.298126, Loss(predicate): 62.707684, LR: 0.000026, Speed: 95845.84 tokens/sec | Epoch Time Left: 3:59:38 | Total Time Left: 16:38:33
[2025-07-04 16:35:14] === GPU性能分析 (平均每步) ===
[2025-07-04 16:35:14] 前向传播: 74.70ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 16:35:14] GPU总时间: 76.64ms, 实际迭代时间: 1046.35ms, GPU利用率: 7.3%
[2025-07-04 16:35:14] ==================================================
[2025-07-04 16:35:14] === 三元组预测示例 ===
[2025-07-04 16:35:14] 样本1目标: Jim Crandall country of citizenship American
[2025-07-04 16:35:14] 样本1预测: avriakoreoreobakav oreav4ill obilavatingillifang<6E>
[2025-07-04 16:35:14] 样本2目标: jeans made from material denim
[2025-07-04 16:35:14] 样本2预测: leavubandoreubakav oreavifir obilasokelapobum
[2025-07-04 16:35:14] ==================
[2025-07-04 16:35:14] Epoch 1/4, Step 1000/18020, Loss(triple): 43.106319, Loss(predicate): 36.057941, LR: 0.000028, Speed: 93949.80 tokens/sec | Epoch Time Left: 4:01:49 | Total Time Left: 16:49:56
[2025-07-04 16:35:56] Epoch 1/4, Step 1050/18020, Loss(triple): 42.894886, Loss(predicate): 36.076824, LR: 0.000029, Speed: 117380.43 tokens/sec | Epoch Time Left: 4:00:54 | Total Time Left: 16:48:22
[2025-07-04 16:36:37] Epoch 1/4, Step 1100/18020, Loss(triple): 41.748459, Loss(predicate): 31.330841, LR: 0.000031, Speed: 120668.82 tokens/sec | Epoch Time Left: 3:59:43 | Total Time Left: 16:45:40
[2025-07-04 16:37:18] Epoch 1/4, Step 1150/18020, Loss(triple): 40.683487, Loss(predicate): 33.368099, LR: 0.000032, Speed: 119744.96 tokens/sec | Epoch Time Left: 3:58:39 | Total Time Left: 16:43:28
[2025-07-04 16:37:59] Epoch 1/4, Step 1200/18020, Loss(triple): 39.217178, Loss(predicate): 39.034630, LR: 0.000033, Speed: 119007.37 tokens/sec | Epoch Time Left: 3:57:41 | Total Time Left: 16:41:38
[2025-07-04 16:38:43] Epoch 1/4, Step 1250/18020, Loss(triple): 36.776688, Loss(predicate): 32.606281, LR: 0.000035, Speed: 113975.99 tokens/sec | Epoch Time Left: 3:57:08 | Total Time Left: 16:41:37
[2025-07-04 16:39:24] Epoch 1/4, Step 1300/18020, Loss(triple): 35.117268, Loss(predicate): 31.107912, LR: 0.000036, Speed: 119089.17 tokens/sec | Epoch Time Left: 3:56:11 | Total Time Left: 16:39:52
[2025-07-04 16:40:04] Epoch 1/4, Step 1350/18020, Loss(triple): 29.387671, Loss(predicate): 20.993273, LR: 0.000037, Speed: 120965.75 tokens/sec | Epoch Time Left: 3:55:07 | Total Time Left: 16:37:38
[2025-07-04 16:40:45] Epoch 1/4, Step 1400/18020, Loss(triple): 27.587267, Loss(predicate): 40.426434, LR: 0.000039, Speed: 120373.42 tokens/sec | Epoch Time Left: 3:54:07 | Total Time Left: 16:35:41
[2025-07-04 16:41:26] Epoch 1/4, Step 1450/18020, Loss(triple): 20.704500, Loss(predicate): 30.683535, LR: 0.000040, Speed: 121272.81 tokens/sec | Epoch Time Left: 3:53:05 | Total Time Left: 16:33:34
[2025-07-04 16:42:09] === GPU性能分析 (平均每步) ===
[2025-07-04 16:42:09] 前向传播: 64.47ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 16:42:09] GPU总时间: 66.42ms, 实际迭代时间: 870.24ms, GPU利用率: 7.6%
[2025-07-04 16:42:09] ==================================================
[2025-07-04 16:42:09] === 三元组预测示例 ===
[2025-07-04 16:42:09] 样本1目标: Justin Brady occupation actor
[2025-07-04 16:42:09] 样本1预测: igieieandoreubakub ieilisore oreilstzelakandst
[2025-07-04 16:42:09] 样本2目标: Log Cabin Republicans field of work LGBT
[2025-07-04 16:42:09] 样本2预测: igieuboreoreubakub ieilisore oreilststeloreandum
[2025-07-04 16:42:09] ==================
[2025-07-04 16:42:09] Epoch 1/4, Step 1500/18020, Loss(triple): 18.886604, Loss(predicate): 28.259245, LR: 0.000042, Speed: 112962.06 tokens/sec | Epoch Time Left: 3:52:37 | Total Time Left: 16:33:54
[2025-07-04 16:42:51] Epoch 1/4, Step 1550/18020, Loss(triple): 17.417841, Loss(predicate): 41.352993, LR: 0.000043, Speed: 116714.11 tokens/sec | Epoch Time Left: 3:51:54 | Total Time Left: 16:33:05
[2025-07-04 16:43:33] Epoch 1/4, Step 1600/18020, Loss(triple): 17.146231, Loss(predicate): 46.373753, LR: 0.000044, Speed: 119339.91 tokens/sec | Epoch Time Left: 3:51:01 | Total Time Left: 16:31:37
[2025-07-04 16:44:13] Epoch 1/4, Step 1650/18020, Loss(triple): 16.871035, Loss(predicate): 35.002216, LR: 0.000046, Speed: 121215.51 tokens/sec | Epoch Time Left: 3:50:02 | Total Time Left: 16:29:44
[2025-07-04 16:44:54] Epoch 1/4, Step 1700/18020, Loss(triple): 16.763775, Loss(predicate): 42.194405, LR: 0.000047, Speed: 120663.17 tokens/sec | Epoch Time Left: 3:49:06 | Total Time Left: 16:28:02
[2025-07-04 16:45:35] Epoch 1/4, Step 1750/18020, Loss(triple): 16.780495, Loss(predicate): 29.356102, LR: 0.000049, Speed: 119658.49 tokens/sec | Epoch Time Left: 3:48:14 | Total Time Left: 16:26:39
[2025-07-04 16:46:16] Epoch 1/4, Step 1800/18020, Loss(triple): 15.295885, Loss(predicate): 35.041527, LR: 0.000050, Speed: 120679.49 tokens/sec | Epoch Time Left: 3:47:20 | Total Time Left: 16:25:03
[2025-07-04 16:46:56] Epoch 1/4, Step 1850/18020, Loss(triple): 15.614405, Loss(predicate): 43.171726, LR: 0.000051, Speed: 120941.27 tokens/sec | Epoch Time Left: 3:46:26 | Total Time Left: 16:23:28
[2025-07-04 16:47:37] Epoch 1/4, Step 1900/18020, Loss(triple): 15.281368, Loss(predicate): 53.407284, LR: 0.000053, Speed: 120606.29 tokens/sec | Epoch Time Left: 3:45:33 | Total Time Left: 16:22:00
[2025-07-04 16:48:18] Epoch 1/4, Step 1950/18020, Loss(triple): 15.262808, Loss(predicate): 28.280325, LR: 0.000054, Speed: 120421.63 tokens/sec | Epoch Time Left: 3:44:42 | Total Time Left: 16:20:36
[2025-07-04 16:48:59] === GPU性能分析 (平均每步) ===
[2025-07-04 16:48:59] 前向传播: 55.86ms, 损失计算: 0.02ms, 反向传播: 1.92ms, 优化器: 0.00ms
[2025-07-04 16:48:59] GPU总时间: 57.80ms, 实际迭代时间: 818.91ms, GPU利用率: 7.1%
[2025-07-04 16:48:59] ==================================================
[2025-07-04 16:48:59] === 三元组预测示例 ===
[2025-07-04 16:48:59] 样本1目标: 200809 Primera Divisió sport football
[2025-07-04 16:48:59] 样本1预测: )kinasinaninin ieilisie adachinininartolo
[2025-07-04 16:48:59] 样本2目标: Dutch Ussat date of birth April 11, 1904
[2025-07-04 16:48:59] 样本2预测: )kinasinaninin ieilisie adachinininartolo
[2025-07-04 16:48:59] ==================
[2025-07-04 16:48:59] Epoch 1/4, Step 2000/18020, Loss(triple): 14.324287, Loss(predicate): 29.588079, LR: 0.000055, Speed: 120042.38 tokens/sec | Epoch Time Left: 3:43:52 | Total Time Left: 16:19:19
[2025-07-04 16:49:39] Epoch 1/4, Step 2050/18020, Loss(triple): 14.262953, Loss(predicate): 29.560730, LR: 0.000057, Speed: 120890.16 tokens/sec | Epoch Time Left: 3:43:00 | Total Time Left: 16:17:54
[2025-07-04 16:50:20] Epoch 1/4, Step 2100/18020, Loss(triple): 13.323330, Loss(predicate): 9.192417, LR: 0.000058, Speed: 121192.84 tokens/sec | Epoch Time Left: 3:42:08 | Total Time Left: 16:16:27
[2025-07-04 16:51:01] Epoch 1/4, Step 2150/18020, Loss(triple): 12.619385, Loss(predicate): 26.274139, LR: 0.000060, Speed: 120375.06 tokens/sec | Epoch Time Left: 3:41:18 | Total Time Left: 16:15:12
[2025-07-04 16:51:42] Epoch 1/4, Step 2200/18020, Loss(triple): 12.040726, Loss(predicate): 26.454088, LR: 0.000061, Speed: 120370.90 tokens/sec | Epoch Time Left: 3:40:29 | Total Time Left: 16:13:58
[2025-07-04 16:52:23] Epoch 1/4, Step 2250/18020, Loss(triple): 12.375034, Loss(predicate): 20.576212, LR: 0.000062, Speed: 120017.35 tokens/sec | Epoch Time Left: 3:39:42 | Total Time Left: 16:12:50
[2025-07-04 16:53:03] Epoch 1/4, Step 2300/18020, Loss(triple): 12.458298, Loss(predicate): 14.114086, LR: 0.000064, Speed: 120904.12 tokens/sec | Epoch Time Left: 3:38:52 | Total Time Left: 16:11:33
[2025-07-04 16:53:44] Epoch 1/4, Step 2350/18020, Loss(triple): 11.816998, Loss(predicate): 17.101339, LR: 0.000065, Speed: 120954.51 tokens/sec | Epoch Time Left: 3:38:03 | Total Time Left: 16:10:18
[2025-07-04 16:54:25] Epoch 1/4, Step 2400/18020, Loss(triple): 12.070099, Loss(predicate): 15.073262, LR: 0.000067, Speed: 119709.09 tokens/sec | Epoch Time Left: 3:37:16 | Total Time Left: 16:09:16
[2025-07-04 16:55:06] Epoch 1/4, Step 2450/18020, Loss(triple): 11.754757, Loss(predicate): 16.771423, LR: 0.000068, Speed: 120651.73 tokens/sec | Epoch Time Left: 3:36:28 | Total Time Left: 16:08:06
[2025-07-04 16:55:47] === GPU性能分析 (平均每步) ===
[2025-07-04 16:55:47] 前向传播: 57.14ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 16:55:47] GPU总时间: 59.09ms, 实际迭代时间: 816.71ms, GPU利用率: 7.2%
[2025-07-04 16:55:47] ==================================================
[2025-07-04 16:55:47] === 三元组预测示例 ===
[2025-07-04 16:55:47] 样本1目标: São Miguel do Fidalgo instance of municipality
[2025-07-04 16:55:47] 样本1预测: )umcladoameran ieilisie :artor ofmart Po
[2025-07-04 16:55:47] 样本2目标: Air Kasaï airline hub N'Dolo Airport
[2025-07-04 16:55:47] 样本2预测: )umcladoameran ieilisie :artor ofmart Po
[2025-07-04 16:55:47] ==================
[2025-07-04 16:55:47] Epoch 1/4, Step 2500/18020, Loss(triple): 11.397768, Loss(predicate): 12.955627, LR: 0.000069, Speed: 120365.60 tokens/sec | Epoch Time Left: 3:35:41 | Total Time Left: 16:07:00
[2025-07-04 16:56:27] Epoch 1/4, Step 2550/18020, Loss(triple): 11.233477, Loss(predicate): 12.686275, LR: 0.000071, Speed: 121274.92 tokens/sec | Epoch Time Left: 3:34:52 | Total Time Left: 16:05:47
[2025-07-04 16:57:08] Epoch 1/4, Step 2600/18020, Loss(triple): 11.599659, Loss(predicate): 9.364705, LR: 0.000072, Speed: 121175.88 tokens/sec | Epoch Time Left: 3:34:04 | Total Time Left: 16:04:36
[2025-07-04 16:57:49] Epoch 1/4, Step 2650/18020, Loss(triple): 11.013382, Loss(predicate): 15.843562, LR: 0.000074, Speed: 119764.71 tokens/sec | Epoch Time Left: 3:33:19 | Total Time Left: 16:03:38
[2025-07-04 16:58:30] Epoch 1/4, Step 2700/18020, Loss(triple): 11.520782, Loss(predicate): 15.870847, LR: 0.000075, Speed: 120057.64 tokens/sec | Epoch Time Left: 3:32:33 | Total Time Left: 16:02:38
[2025-07-04 16:59:10] Epoch 1/4, Step 2750/18020, Loss(triple): 11.061575, Loss(predicate): 21.087545, LR: 0.000076, Speed: 120687.09 tokens/sec | Epoch Time Left: 3:31:47 | Total Time Left: 16:01:34
[2025-07-04 16:59:51] Epoch 1/4, Step 2800/18020, Loss(triple): 10.555201, Loss(predicate): 12.945964, LR: 0.000078, Speed: 120872.08 tokens/sec | Epoch Time Left: 3:31:00 | Total Time Left: 16:00:29
[2025-07-04 17:00:37] Epoch 1/4, Step 2850/18020, Loss(triple): 11.371559, Loss(predicate): 16.579773, LR: 0.000079, Speed: 107677.22 tokens/sec | Epoch Time Left: 3:30:40 | Total Time Left: 16:01:26
[2025-07-04 17:01:27] Epoch 1/4, Step 2900/18020, Loss(triple): 11.440628, Loss(predicate): 8.388000, LR: 0.000080, Speed: 98160.73 tokens/sec | Epoch Time Left: 3:30:42 | Total Time Left: 16:04:05
[2025-07-04 17:02:13] Epoch 1/4, Step 2950/18020, Loss(triple): 10.717131, Loss(predicate): 9.200276, LR: 0.000082, Speed: 105345.59 tokens/sec | Epoch Time Left: 3:30:25 | Total Time Left: 16:05:17
[2025-07-04 17:03:02] === GPU性能分析 (平均每步) ===
[2025-07-04 17:03:02] 前向传播: 62.73ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 17:03:02] GPU总时间: 64.67ms, 实际迭代时间: 976.86ms, GPU利用率: 6.6%
[2025-07-04 17:03:02] ==================================================
[2025-07-04 17:03:02] === 三元组预测示例 ===
[2025-07-04 17:03:02] 样本1目标: Sam Spiegel award received Best Picture
[2025-07-04 17:03:02] 样本1预测: FAclicataoran ieolisug Eimorsmain Ro
[2025-07-04 17:03:02] 样本2目标: Wang Wei languages spoken, written or signed Chinese
[2025-07-04 17:03:02] 样本2预测: FAclicataoran zolisas Eimorsmain Ro
[2025-07-04 17:03:02] ==================
[2025-07-04 17:03:02] Epoch 1/4, Step 3000/18020, Loss(triple): 10.565201, Loss(predicate): 6.224538, LR: 0.000083, Speed: 100632.71 tokens/sec | Epoch Time Left: 3:30:18 | Total Time Left: 16:07:15
[2025-07-04 17:03:44] Epoch 1/4, Step 3050/18020, Loss(triple): 10.845831, Loss(predicate): 12.588155, LR: 0.000085, Speed: 117240.59 tokens/sec | Epoch Time Left: 3:29:36 | Total Time Left: 16:06:31
[2025-07-04 17:04:32] Epoch 1/4, Step 3100/18020, Loss(triple): 11.414492, Loss(predicate): 11.212677, LR: 0.000086, Speed: 102596.33 tokens/sec | Epoch Time Left: 3:29:22 | Total Time Left: 16:08:01
[2025-07-04 17:05:18] Epoch 1/4, Step 3150/18020, Loss(triple): 10.651964, Loss(predicate): 11.292908, LR: 0.000087, Speed: 106700.77 tokens/sec | Epoch Time Left: 3:28:59 | Total Time Left: 16:08:45
[2025-07-04 17:06:05] Epoch 1/4, Step 3200/18020, Loss(triple): 10.650085, Loss(predicate): 9.987854, LR: 0.000089, Speed: 106107.58 tokens/sec | Epoch Time Left: 3:28:36 | Total Time Left: 16:09:33
[2025-07-04 17:06:47] Epoch 1/4, Step 3250/18020, Loss(triple): 10.667431, Loss(predicate): 13.620850, LR: 0.000090, Speed: 115158.93 tokens/sec | Epoch Time Left: 3:27:56 | Total Time Left: 16:09:00
[2025-07-04 17:07:32] Epoch 1/4, Step 3300/18020, Loss(triple): 10.866062, Loss(predicate): 11.072453, LR: 0.000092, Speed: 110811.55 tokens/sec | Epoch Time Left: 3:27:23 | Total Time Left: 16:09:02
[2025-07-04 17:08:14] Epoch 1/4, Step 3350/18020, Loss(triple): 10.789280, Loss(predicate): 10.153666, LR: 0.000093, Speed: 116468.18 tokens/sec | Epoch Time Left: 3:26:40 | Total Time Left: 16:08:18
[2025-07-04 17:08:55] Epoch 1/4, Step 3400/18020, Loss(triple): 10.611526, Loss(predicate): 7.455292, LR: 0.000094, Speed: 118918.34 tokens/sec | Epoch Time Left: 3:25:54 | Total Time Left: 16:07:17
[2025-07-04 17:09:36] Epoch 1/4, Step 3450/18020, Loss(triple): 10.356781, Loss(predicate): 12.921834, LR: 0.000096, Speed: 119990.50 tokens/sec | Epoch Time Left: 3:25:06 | Total Time Left: 16:06:09
[2025-07-04 17:10:17] === GPU性能分析 (平均每步) ===
[2025-07-04 17:10:17] 前向传播: 51.99ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 17:10:17] GPU总时间: 53.94ms, 实际迭代时间: 815.41ms, GPU利用率: 6.6%
[2025-07-04 17:10:17] ==================================================
[2025-07-04 17:10:17] === 三元组预测示例 ===
[2025-07-04 17:10:17] 样本1目标: Sooneck Castle instance of castle
[2025-07-04 17:10:17] 样本1预测: FAneiconaoran isieyug Eateor ofmass S of
[2025-07-04 17:10:17] 样本2目标: Rothbury located in the administrative territorial entity Northumberland
[2025-07-04 17:10:17] 样本2预测: FAneiconaoran isieyav Eateor ofcass S of
[2025-07-04 17:10:17] ==================
[2025-07-04 17:10:17] Epoch 1/4, Step 3500/18020, Loss(triple): 10.918791, Loss(predicate): 9.729115, LR: 0.000097, Speed: 120557.14 tokens/sec | Epoch Time Left: 3:24:18 | Total Time Left: 16:04:58
[2025-07-04 17:10:58] Epoch 1/4, Step 3550/18020, Loss(triple): 10.701302, Loss(predicate): 11.982961, LR: 0.000099, Speed: 120019.91 tokens/sec | Epoch Time Left: 3:23:31 | Total Time Left: 16:03:52
[2025-07-04 17:11:38] Epoch 1/4, Step 3600/18020, Loss(triple): 10.953087, Loss(predicate): 15.946045, LR: 0.000100, Speed: 121063.80 tokens/sec | Epoch Time Left: 3:22:42 | Total Time Left: 16:02:39
[2025-07-04 17:12:19] Epoch 1/4, Step 3650/18020, Loss(triple): 10.765022, Loss(predicate): 11.334468, LR: 0.000101, Speed: 120049.20 tokens/sec | Epoch Time Left: 3:21:55 | Total Time Left: 16:01:34
[2025-07-04 17:13:00] Epoch 1/4, Step 3700/18020, Loss(triple): 9.940525, Loss(predicate): 10.785991, LR: 0.000103, Speed: 121209.71 tokens/sec | Epoch Time Left: 3:21:07 | Total Time Left: 16:00:22
[2025-07-04 17:13:40] Epoch 1/4, Step 3750/18020, Loss(triple): 10.455500, Loss(predicate): 12.931915, LR: 0.000104, Speed: 121069.52 tokens/sec | Epoch Time Left: 3:20:19 | Total Time Left: 15:59:12
[2025-07-04 17:14:21] Epoch 1/4, Step 3800/18020, Loss(triple): 10.663370, Loss(predicate): 13.389964, LR: 0.000105, Speed: 120051.48 tokens/sec | Epoch Time Left: 3:19:32 | Total Time Left: 15:58:09
[2025-07-04 17:15:02] Epoch 1/4, Step 3850/18020, Loss(triple): 10.543655, Loss(predicate): 9.024343, LR: 0.000107, Speed: 120321.85 tokens/sec | Epoch Time Left: 3:18:46 | Total Time Left: 15:57:05
[2025-07-04 17:15:43] Epoch 1/4, Step 3900/18020, Loss(triple): 10.120996, Loss(predicate): 10.471782, LR: 0.000108, Speed: 121062.04 tokens/sec | Epoch Time Left: 3:17:58 | Total Time Left: 15:55:57
[2025-07-04 17:16:23] Epoch 1/4, Step 3950/18020, Loss(triple): 10.121040, Loss(predicate): 7.337962, LR: 0.000110, Speed: 121142.82 tokens/sec | Epoch Time Left: 3:17:11 | Total Time Left: 15:54:49
[2025-07-04 17:17:04] === GPU性能分析 (平均每步) ===
[2025-07-04 17:17:04] 前向传播: 53.07ms, 损失计算: 0.02ms, 反向传播: 1.97ms, 优化器: 0.00ms
[2025-07-04 17:17:04] GPU总时间: 55.06ms, 实际迭代时间: 816.51ms, GPU利用率: 6.7%
[2025-07-04 17:17:04] ==================================================
[2025-07-04 17:17:04] === 三元组预测示例 ===
[2025-07-04 17:17:04] 样本1目标: 1999 WNBA All-Star Game instance of WNBA All-Star Game
[2025-07-04 17:17:04] 样本1预测: FAXitonaran isilyug EateX ofmr R of
[2025-07-04 17:17:04] 样本2目标: One for the Radio performer McFly
[2025-07-04 17:17:04] 样本2预测: FAXitonaran isieyug Eater ofmr R of
[2025-07-04 17:17:04] ==================
[2025-07-04 17:17:04] Epoch 1/4, Step 4000/18020, Loss(triple): 10.776836, Loss(predicate): 10.854706, LR: 0.000111, Speed: 120395.01 tokens/sec | Epoch Time Left: 3:16:24 | Total Time Left: 15:53:46
[2025-07-04 17:17:45] Epoch 1/4, Step 4050/18020, Loss(triple): 10.671307, Loss(predicate): 10.347524, LR: 0.000112, Speed: 119442.16 tokens/sec | Epoch Time Left: 3:15:39 | Total Time Left: 15:52:50
[2025-07-04 17:18:26] Epoch 1/4, Step 4100/18020, Loss(triple): 10.218933, Loss(predicate): 9.075938, LR: 0.000114, Speed: 119692.61 tokens/sec | Epoch Time Left: 3:14:54 | Total Time Left: 15:51:52
[2025-07-04 17:19:07] Epoch 1/4, Step 4150/18020, Loss(triple): 10.460344, Loss(predicate): 13.110046, LR: 0.000115, Speed: 120352.43 tokens/sec | Epoch Time Left: 3:14:08 | Total Time Left: 15:50:51
[2025-07-04 17:19:48] Epoch 1/4, Step 4200/18020, Loss(triple): 10.480438, Loss(predicate): 12.478027, LR: 0.000117, Speed: 120678.65 tokens/sec | Epoch Time Left: 3:13:22 | Total Time Left: 15:49:48
[2025-07-04 17:20:29] Epoch 1/4, Step 4250/18020, Loss(triple): 10.306107, Loss(predicate): 7.799174, LR: 0.000118, Speed: 120179.90 tokens/sec | Epoch Time Left: 3:12:37 | Total Time Left: 15:48:49
[2025-07-04 17:21:10] Epoch 1/4, Step 4300/18020, Loss(triple): 10.472752, Loss(predicate): 15.182027, LR: 0.000119, Speed: 119133.40 tokens/sec | Epoch Time Left: 3:11:52 | Total Time Left: 15:47:56
[2025-07-04 17:21:51] Epoch 1/4, Step 4350/18020, Loss(triple): 9.949884, Loss(predicate): 8.771759, LR: 0.000121, Speed: 120178.44 tokens/sec | Epoch Time Left: 3:11:07 | Total Time Left: 15:46:58
[2025-07-04 17:22:32] Epoch 1/4, Step 4400/18020, Loss(triple): 10.316746, Loss(predicate): 10.619761, LR: 0.000122, Speed: 120547.38 tokens/sec | Epoch Time Left: 3:10:22 | Total Time Left: 15:45:58
[2025-07-04 17:23:13] Epoch 1/4, Step 4450/18020, Loss(triple): 10.424570, Loss(predicate): 13.574056, LR: 0.000123, Speed: 119490.34 tokens/sec | Epoch Time Left: 3:09:37 | Total Time Left: 15:45:04
[2025-07-04 17:23:54] === GPU性能分析 (平均每步) ===
[2025-07-04 17:23:54] 前向传播: 60.32ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 17:23:54] GPU总时间: 62.27ms, 实际迭代时间: 819.24ms, GPU利用率: 7.6%
[2025-07-04 17:23:54] ==================================================
[2025-07-04 17:23:54] === 三元组预测示例 ===
[2025-07-04 17:23:54] 样本1目标: Undercurrent (Kenny Drew album) performer Kenny Drew
[2025-07-04 17:23:54] 样本1预测: FW Ititinaran iailyug Eanceory ofmth R of
[2025-07-04 17:23:54] 样本2目标: Tirana Bank headquarters location Tirana
[2025-07-04 17:23:54] 样本2预测: FW Ititinaran iailyug Eanceory ofmth R of
[2025-07-04 17:23:54] ==================
[2025-07-04 17:23:54] Epoch 1/4, Step 4500/18020, Loss(triple): 9.902962, Loss(predicate): 8.883037, LR: 0.000125, Speed: 119994.58 tokens/sec | Epoch Time Left: 3:08:52 | Total Time Left: 15:44:07
[2025-07-04 17:24:35] Epoch 1/4, Step 4550/18020, Loss(triple): 10.594881, Loss(predicate): 14.881734, LR: 0.000126, Speed: 119163.02 tokens/sec | Epoch Time Left: 3:08:09 | Total Time Left: 15:43:15
[2025-07-04 17:25:16] Epoch 1/4, Step 4600/18020, Loss(triple): 10.685036, Loss(predicate): 17.339050, LR: 0.000128, Speed: 120762.48 tokens/sec | Epoch Time Left: 3:07:23 | Total Time Left: 15:42:16
[2025-07-04 17:25:57] Epoch 1/4, Step 4650/18020, Loss(triple): 9.765436, Loss(predicate): 12.562744, LR: 0.000129, Speed: 120988.28 tokens/sec | Epoch Time Left: 3:06:38 | Total Time Left: 15:41:16
[2025-07-04 17:26:38] Epoch 1/4, Step 4700/18020, Loss(triple): 10.230135, Loss(predicate): 10.958598, LR: 0.000130, Speed: 119767.58 tokens/sec | Epoch Time Left: 3:05:53 | Total Time Left: 15:40:22
[2025-07-04 17:27:18] Epoch 1/4, Step 4750/18020, Loss(triple): 10.419558, Loss(predicate): 14.578201, LR: 0.000132, Speed: 120619.16 tokens/sec | Epoch Time Left: 3:05:08 | Total Time Left: 15:39:24
[2025-07-04 17:27:59] Epoch 1/4, Step 4800/18020, Loss(triple): 10.510899, Loss(predicate): 6.845978, LR: 0.000133, Speed: 120701.93 tokens/sec | Epoch Time Left: 3:04:23 | Total Time Left: 15:38:26
[2025-07-04 17:28:40] Epoch 1/4, Step 4850/18020, Loss(triple): 9.912617, Loss(predicate): 10.131307, LR: 0.000135, Speed: 121220.72 tokens/sec | Epoch Time Left: 3:03:38 | Total Time Left: 15:37:26
[2025-07-04 17:29:20] Epoch 1/4, Step 4900/18020, Loss(triple): 10.229767, Loss(predicate): 7.576660, LR: 0.000136, Speed: 120748.13 tokens/sec | Epoch Time Left: 3:02:53 | Total Time Left: 15:36:29
[2025-07-04 17:30:07] Epoch 1/4, Step 4950/18020, Loss(triple): 10.137684, Loss(predicate): 12.544291, LR: 0.000137, Speed: 105246.73 tokens/sec | Epoch Time Left: 3:02:24 | Total Time Left: 15:36:54
[2025-07-04 17:30:52] === GPU性能分析 (平均每步) ===
[2025-07-04 17:30:52] 前向传播: 61.96ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 17:30:52] GPU总时间: 63.90ms, 实际迭代时间: 899.59ms, GPU利用率: 7.1%
[2025-07-04 17:30:52] ==================================================
[2025-07-04 17:30:52] === 三元组预测示例 ===
[2025-07-04 17:30:52] 样本1目标: Antonov An-24 manufacturer Antonov Design Bureau
[2025-07-04 17:30:52] 样本1预测: FAlicitonaran iaieyug speciesist3 ofmr R of
[2025-07-04 17:30:52] 样本2目标: 87th Academy Awards point in time February 22, 2015
[2025-07-04 17:30:52] 样本2预测: FWlicitonaram stieyug speciesist3 ofmr R of
[2025-07-04 17:30:52] ==================
[2025-07-04 17:30:52] Epoch 1/4, Step 5000/18020, Loss(triple): 10.441898, Loss(predicate): 13.429240, LR: 0.000139, Speed: 109276.88 tokens/sec | Epoch Time Left: 3:01:50 | Total Time Left: 15:36:53
[2025-07-04 17:31:33] Epoch 1/4, Step 5050/18020, Loss(triple): 10.162394, Loss(predicate): 8.507548, LR: 0.000140, Speed: 119102.67 tokens/sec | Epoch Time Left: 3:01:07 | Total Time Left: 15:36:03
[2025-07-04 17:32:15] Epoch 1/4, Step 5100/18020, Loss(triple): 9.855936, Loss(predicate): 10.993999, LR: 0.000142, Speed: 118917.67 tokens/sec | Epoch Time Left: 3:00:24 | Total Time Left: 15:35:14
[2025-07-04 17:32:57] Epoch 1/4, Step 5150/18020, Loss(triple): 9.838099, Loss(predicate): 10.842387, LR: 0.000143, Speed: 115567.60 tokens/sec | Epoch Time Left: 2:59:43 | Total Time Left: 15:34:40
[2025-07-04 17:33:38] Epoch 1/4, Step 5200/18020, Loss(triple): 9.755518, Loss(predicate): 11.545909, LR: 0.000144, Speed: 119230.42 tokens/sec | Epoch Time Left: 2:59:00 | Total Time Left: 15:33:50
[2025-07-04 17:34:19] Epoch 1/4, Step 5250/18020, Loss(triple): 10.045525, Loss(predicate): 8.726949, LR: 0.000146, Speed: 120641.65 tokens/sec | Epoch Time Left: 2:58:15 | Total Time Left: 15:32:53
[2025-07-04 17:35:00] Epoch 1/4, Step 5300/18020, Loss(triple): 10.477234, Loss(predicate): 8.290833, LR: 0.000147, Speed: 120362.27 tokens/sec | Epoch Time Left: 2:57:31 | Total Time Left: 15:31:58
[2025-07-04 17:35:40] Epoch 1/4, Step 5350/18020, Loss(triple): 9.660015, Loss(predicate): 9.787333, LR: 0.000148, Speed: 121124.22 tokens/sec | Epoch Time Left: 2:56:46 | Total Time Left: 15:31:00
[2025-07-04 17:36:21] Epoch 1/4, Step 5400/18020, Loss(triple): 9.812998, Loss(predicate): 12.247162, LR: 0.000150, Speed: 120948.86 tokens/sec | Epoch Time Left: 2:56:01 | Total Time Left: 15:30:03
[2025-07-04 17:37:02] Epoch 1/4, Step 5450/18020, Loss(triple): 9.749969, Loss(predicate): 8.380157, LR: 0.000151, Speed: 119836.38 tokens/sec | Epoch Time Left: 2:55:17 | Total Time Left: 15:29:11
[2025-07-04 17:37:43] === GPU性能分析 (平均每步) ===
[2025-07-04 17:37:43] 前向传播: 60.01ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 17:37:43] GPU总时间: 61.96ms, 实际迭代时间: 815.26ms, GPU利用率: 7.6%
[2025-07-04 17:37:43] ==================================================
[2025-07-04 17:37:43] === 三元组预测示例 ===
[2025-07-04 17:37:43] 样本1目标: Bülent Uzun place of birth Rize
[2025-07-04 17:37:43] 样本1预测: countryW aditonaere st<73>yas ativeistr ofmr S of
[2025-07-04 17:37:43] 样本2目标: Hippocrates occupation physician
[2025-07-04 17:37:43] 样本2预测: countryA aditonaeran stkyil ativeistr ofmr S of
[2025-07-04 17:37:43] ==================
[2025-07-04 17:37:43] Epoch 1/4, Step 5500/18020, Loss(triple): 10.221516, Loss(predicate): 14.944305, LR: 0.000153, Speed: 120580.46 tokens/sec | Epoch Time Left: 2:54:33 | Total Time Left: 15:28:17
[2025-07-04 17:38:24] Epoch 1/4, Step 5550/18020, Loss(triple): 10.492153, Loss(predicate): 8.745341, LR: 0.000154, Speed: 121017.68 tokens/sec | Epoch Time Left: 2:53:48 | Total Time Left: 15:27:20
[2025-07-04 17:39:04] Epoch 1/4, Step 5600/18020, Loss(triple): 10.460901, Loss(predicate): 10.011189, LR: 0.000155, Speed: 121047.54 tokens/sec | Epoch Time Left: 2:53:04 | Total Time Left: 15:26:24
[2025-07-04 17:39:45] Epoch 1/4, Step 5650/18020, Loss(triple): 10.116673, Loss(predicate): 10.596375, LR: 0.000157, Speed: 120218.55 tokens/sec | Epoch Time Left: 2:52:20 | Total Time Left: 15:25:31
[2025-07-04 17:40:26] Epoch 1/4, Step 5700/18020, Loss(triple): 9.967655, Loss(predicate): 7.076894, LR: 0.000158, Speed: 120068.33 tokens/sec | Epoch Time Left: 2:51:37 | Total Time Left: 15:24:40
[2025-07-04 17:41:07] Epoch 1/4, Step 5750/18020, Loss(triple): 10.235773, Loss(predicate): 11.065231, LR: 0.000160, Speed: 121117.40 tokens/sec | Epoch Time Left: 2:50:52 | Total Time Left: 15:23:44
[2025-07-04 17:41:47] Epoch 1/4, Step 5800/18020, Loss(triple): 10.298500, Loss(predicate): 13.692647, LR: 0.000161, Speed: 121083.07 tokens/sec | Epoch Time Left: 2:50:08 | Total Time Left: 15:22:49
[2025-07-04 17:42:28] Epoch 1/4, Step 5850/18020, Loss(triple): 9.861221, Loss(predicate): 10.524312, LR: 0.000162, Speed: 119577.51 tokens/sec | Epoch Time Left: 2:49:25 | Total Time Left: 15:21:59
[2025-07-04 17:43:09] Epoch 1/4, Step 5900/18020, Loss(triple): 9.823997, Loss(predicate): 11.631378, LR: 0.000164, Speed: 120546.46 tokens/sec | Epoch Time Left: 2:48:41 | Total Time Left: 15:21:06
[2025-07-04 17:43:50] Epoch 1/4, Step 5950/18020, Loss(triple): 9.760220, Loss(predicate): 9.902832, LR: 0.000165, Speed: 120362.29 tokens/sec | Epoch Time Left: 2:47:57 | Total Time Left: 15:20:15
[2025-07-04 17:44:30] === GPU性能分析 (平均每步) ===
[2025-07-04 17:44:30] 前向传播: 50.32ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 17:44:30] GPU总时间: 52.27ms, 实际迭代时间: 809.77ms, GPU利用率: 6.5%
[2025-07-04 17:44:30] ==================================================
[2025-07-04 17:44:30] === 三元组预测示例 ===
[2025-07-04 17:44:30] 样本1目标: Bruce North country Canada
[2025-07-04 17:44:30] 样本1预测: countryB aditonaaran iaad,as ativeistiz ofmr B of
[2025-07-04 17:44:30] 样本2目标: Saaristattus taxon rank species
[2025-07-04 17:44:30] 样本2预测: countryB aditonaaran umad,as ativeistiz ofmr B of
[2025-07-04 17:44:30] ==================
[2025-07-04 17:44:30] Epoch 1/4, Step 6000/18020, Loss(triple): 9.973810, Loss(predicate): 13.448375, LR: 0.000166, Speed: 121398.01 tokens/sec | Epoch Time Left: 2:47:13 | Total Time Left: 15:19:19
[2025-07-04 17:45:11] Epoch 1/4, Step 6050/18020, Loss(triple): 10.363075, Loss(predicate): 10.635762, LR: 0.000168, Speed: 120667.83 tokens/sec | Epoch Time Left: 2:46:29 | Total Time Left: 15:18:26
[2025-07-04 17:45:52] Epoch 1/4, Step 6100/18020, Loss(triple): 10.231865, Loss(predicate): 8.417500, LR: 0.000169, Speed: 119551.44 tokens/sec | Epoch Time Left: 2:45:46 | Total Time Left: 15:17:38
[2025-07-04 17:46:33] Epoch 1/4, Step 6150/18020, Loss(triple): 9.583103, Loss(predicate): 9.016052, LR: 0.000171, Speed: 120642.39 tokens/sec | Epoch Time Left: 2:45:03 | Total Time Left: 15:16:46
[2025-07-04 17:47:14] Epoch 1/4, Step 6200/18020, Loss(triple): 9.603821, Loss(predicate): 11.821355, LR: 0.000172, Speed: 121046.66 tokens/sec | Epoch Time Left: 2:44:19 | Total Time Left: 15:15:52
[2025-07-04 17:47:54] Epoch 1/4, Step 6250/18020, Loss(triple): 10.033302, Loss(predicate): 12.067922, LR: 0.000173, Speed: 121015.29 tokens/sec | Epoch Time Left: 2:43:35 | Total Time Left: 15:14:59
[2025-07-04 17:48:35] Epoch 1/4, Step 6300/18020, Loss(triple): 10.276566, Loss(predicate): 10.052612, LR: 0.000175, Speed: 120308.15 tokens/sec | Epoch Time Left: 2:42:52 | Total Time Left: 15:14:08
[2025-07-04 17:49:16] Epoch 1/4, Step 6350/18020, Loss(triple): 10.069454, Loss(predicate): 9.968059, LR: 0.000176, Speed: 119610.37 tokens/sec | Epoch Time Left: 2:42:09 | Total Time Left: 15:13:21
[2025-07-04 17:49:57] Epoch 1/4, Step 6400/18020, Loss(triple): 10.237320, Loss(predicate): 16.239542, LR: 0.000178, Speed: 121046.17 tokens/sec | Epoch Time Left: 2:41:25 | Total Time Left: 15:12:28
[2025-07-04 17:50:37] Epoch 1/4, Step 6450/18020, Loss(triple): 9.901354, Loss(predicate): 10.547999, LR: 0.000179, Speed: 121017.72 tokens/sec | Epoch Time Left: 2:40:42 | Total Time Left: 15:11:35
[2025-07-04 17:51:18] === GPU性能分析 (平均每步) ===
[2025-07-04 17:51:18] 前向传播: 59.68ms, 损失计算: 0.02ms, 反向传播: 1.92ms, 优化器: 0.00ms
[2025-07-04 17:51:18] GPU总时间: 61.62ms, 实际迭代时间: 820.45ms, GPU利用率: 7.5%
[2025-07-04 17:51:18] ==================================================
[2025-07-04 17:51:18] === 三元组预测示例 ===
[2025-07-04 17:51:18] 样本1目标: Lacey Township School District located in the administrative territorial entity New Jersey
[2025-07-04 17:51:18] 样本1预测: countryB adronaaran stie,om ativeanceiz ofmr B of
[2025-07-04 17:51:18] 样本2目标: Spang instance of village
[2025-07-04 17:51:18] 样本2预测: countryB aditonaaran stin,om ativeanceiz ofmr B of
[2025-07-04 17:51:18] ==================
[2025-07-04 17:51:18] Epoch 1/4, Step 6500/18020, Loss(triple): 10.270206, Loss(predicate): 18.829416, LR: 0.000180, Speed: 119817.01 tokens/sec | Epoch Time Left: 2:39:59 | Total Time Left: 15:10:47
[2025-07-04 17:51:59] Epoch 1/4, Step 6550/18020, Loss(triple): 9.899246, Loss(predicate): 15.716624, LR: 0.000182, Speed: 120531.90 tokens/sec | Epoch Time Left: 2:39:16 | Total Time Left: 15:09:57
[2025-07-04 17:52:40] Epoch 1/4, Step 6600/18020, Loss(triple): 10.114685, Loss(predicate): 10.694133, LR: 0.000183, Speed: 120621.52 tokens/sec | Epoch Time Left: 2:38:33 | Total Time Left: 15:09:06
[2025-07-04 17:53:20] Epoch 1/4, Step 6650/18020, Loss(triple): 10.036005, Loss(predicate): 9.943257, LR: 0.000185, Speed: 121047.30 tokens/sec | Epoch Time Left: 2:37:49 | Total Time Left: 15:08:14
[2025-07-04 17:54:01] Epoch 1/4, Step 6700/18020, Loss(triple): 9.882097, Loss(predicate): 11.535024, LR: 0.000186, Speed: 120788.83 tokens/sec | Epoch Time Left: 2:37:06 | Total Time Left: 15:07:23
[2025-07-04 17:54:42] Epoch 1/4, Step 6750/18020, Loss(triple): 9.874130, Loss(predicate): 9.336141, LR: 0.000187, Speed: 119644.41 tokens/sec | Epoch Time Left: 2:36:23 | Total Time Left: 15:06:36
[2025-07-04 17:55:23] Epoch 1/4, Step 6800/18020, Loss(triple): 10.434809, Loss(predicate): 11.201874, LR: 0.000189, Speed: 120108.35 tokens/sec | Epoch Time Left: 2:35:41 | Total Time Left: 15:05:48
[2025-07-04 17:56:04] Epoch 1/4, Step 6850/18020, Loss(triple): 9.582499, Loss(predicate): 10.151944, LR: 0.000190, Speed: 121075.35 tokens/sec | Epoch Time Left: 2:34:57 | Total Time Left: 15:04:56
[2025-07-04 17:56:44] Epoch 1/4, Step 6900/18020, Loss(triple): 9.761810, Loss(predicate): 7.500651, LR: 0.000191, Speed: 121174.08 tokens/sec | Epoch Time Left: 2:34:14 | Total Time Left: 15:04:04
[2025-07-04 17:57:25] Epoch 1/4, Step 6950/18020, Loss(triple): 9.709805, Loss(predicate): 14.930949, LR: 0.000193, Speed: 120415.16 tokens/sec | Epoch Time Left: 2:33:31 | Total Time Left: 15:03:15
[2025-07-04 17:58:06] === GPU性能分析 (平均每步) ===
[2025-07-04 17:58:06] 前向传播: 58.02ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 17:58:06] GPU总时间: 59.97ms, 实际迭代时间: 821.79ms, GPU利用率: 7.3%
[2025-07-04 17:58:06] ==================================================
[2025-07-04 17:58:06] === 三元组预测示例 ===
[2025-07-04 17:58:06] 样本1目标: Pol Theis date of birth February 10, 1968
[2025-07-04 17:58:06] 样本1预测: countryB adronaran ia<69>,ug ialanceiz ofmax B of
[2025-07-04 17:58:06] 样本2目标: ward country Tanzania
[2025-07-04 17:58:06] 样本2预测: countryB adronaran osin,as ialanceiz ofmax B r
[2025-07-04 17:58:06] ==================
[2025-07-04 17:58:06] Epoch 1/4, Step 7000/18020, Loss(triple): 9.690159, Loss(predicate): 12.905477, LR: 0.000194, Speed: 119622.13 tokens/sec | Epoch Time Left: 2:32:49 | Total Time Left: 15:02:29
[2025-07-04 17:58:47] Epoch 1/4, Step 7050/18020, Loss(triple): 9.551682, Loss(predicate): 13.167491, LR: 0.000196, Speed: 120546.78 tokens/sec | Epoch Time Left: 2:32:06 | Total Time Left: 15:01:40
[2025-07-04 17:59:28] Epoch 1/4, Step 7100/18020, Loss(triple): 10.208935, Loss(predicate): 10.393825, LR: 0.000197, Speed: 121150.81 tokens/sec | Epoch Time Left: 2:31:23 | Total Time Left: 15:00:49
[2025-07-04 18:00:08] Epoch 1/4, Step 7150/18020, Loss(triple): 9.867996, Loss(predicate): 7.808573, LR: 0.000198, Speed: 120529.45 tokens/sec | Epoch Time Left: 2:30:40 | Total Time Left: 15:00:00
[2025-07-04 18:00:49] Epoch 1/4, Step 7200/18020, Loss(triple): 9.983902, Loss(predicate): 11.484883, LR: 0.000200, Speed: 120531.29 tokens/sec | Epoch Time Left: 2:29:57 | Total Time Left: 14:59:11
[2025-07-04 18:01:30] Epoch 1/4, Step 7250/18020, Loss(triple): 9.712841, Loss(predicate): 7.862488, LR: 0.000200, Speed: 119858.05 tokens/sec | Epoch Time Left: 2:29:15 | Total Time Left: 14:58:24
[2025-07-04 18:02:11] Epoch 1/4, Step 7300/18020, Loss(triple): 10.227303, Loss(predicate): 6.062093, LR: 0.000200, Speed: 120912.61 tokens/sec | Epoch Time Left: 2:28:32 | Total Time Left: 14:57:35
[2025-07-04 18:02:51] Epoch 1/4, Step 7350/18020, Loss(triple): 9.806328, Loss(predicate): 6.199829, LR: 0.000200, Speed: 121051.83 tokens/sec | Epoch Time Left: 2:27:49 | Total Time Left: 14:56:45
[2025-07-04 18:03:32] Epoch 1/4, Step 7400/18020, Loss(triple): 9.864021, Loss(predicate): 7.967885, LR: 0.000200, Speed: 119876.16 tokens/sec | Epoch Time Left: 2:27:06 | Total Time Left: 14:55:58
[2025-07-04 18:04:13] Epoch 1/4, Step 7450/18020, Loss(triple): 9.659626, Loss(predicate): 8.590596, LR: 0.000200, Speed: 120859.16 tokens/sec | Epoch Time Left: 2:26:23 | Total Time Left: 14:55:09
[2025-07-04 18:04:54] === GPU性能分析 (平均每步) ===
[2025-07-04 18:04:54] 前向传播: 56.71ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 18:04:54] GPU总时间: 58.65ms, 实际迭代时间: 818.93ms, GPU利用率: 7.2%
[2025-07-04 18:04:54] ==================================================
[2025-07-04 18:04:54] === 三元组预测示例 ===
[2025-07-04 18:04:54] 样本1目标: Sir George Byng occupation statesman
[2025-07-04 18:04:54] 样本1预测: countryK adoonaran itinyom ativeanceiz ofminal B A
[2025-07-04 18:04:54] 样本2目标: Cypress Hills Cemetery instance of cemetery
[2025-07-04 18:04:54] 样本2预测: countryB adoonaran iakyil ialanceiz ofminal B A
[2025-07-04 18:04:54] ==================
[2025-07-04 18:04:54] Epoch 1/4, Step 7500/18020, Loss(triple): 9.847832, Loss(predicate): 9.687408, LR: 0.000200, Speed: 120040.17 tokens/sec | Epoch Time Left: 2:25:41 | Total Time Left: 14:54:22
[2025-07-04 18:05:35] Epoch 1/4, Step 7550/18020, Loss(triple): 9.657124, Loss(predicate): 10.669475, LR: 0.000200, Speed: 121160.84 tokens/sec | Epoch Time Left: 2:24:58 | Total Time Left: 14:53:32
[2025-07-04 18:06:15] Epoch 1/4, Step 7600/18020, Loss(triple): 9.934193, Loss(predicate): 9.915466, LR: 0.000200, Speed: 120727.57 tokens/sec | Epoch Time Left: 2:24:15 | Total Time Left: 14:52:44
[2025-07-04 18:06:56] Epoch 1/4, Step 7650/18020, Loss(triple): 9.840143, Loss(predicate): 9.997543, LR: 0.000200, Speed: 119640.00 tokens/sec | Epoch Time Left: 2:23:33 | Total Time Left: 14:51:58
[2025-07-04 18:07:37] Epoch 1/4, Step 7700/18020, Loss(triple): 10.059061, Loss(predicate): 7.298025, LR: 0.000200, Speed: 120107.49 tokens/sec | Epoch Time Left: 2:22:51 | Total Time Left: 14:51:12
[2025-07-04 18:08:18] Epoch 1/4, Step 7750/18020, Loss(triple): 9.645359, Loss(predicate): 8.234909, LR: 0.000200, Speed: 120988.96 tokens/sec | Epoch Time Left: 2:22:08 | Total Time Left: 14:50:23
[2025-07-04 18:08:59] Epoch 1/4, Step 7800/18020, Loss(triple): 9.917780, Loss(predicate): 10.031860, LR: 0.000200, Speed: 121065.86 tokens/sec | Epoch Time Left: 2:21:26 | Total Time Left: 14:49:33
[2025-07-04 18:09:39] Epoch 1/4, Step 7850/18020, Loss(triple): 9.878229, Loss(predicate): 12.149506, LR: 0.000200, Speed: 120346.11 tokens/sec | Epoch Time Left: 2:20:43 | Total Time Left: 14:48:46
[2025-07-04 18:10:20] Epoch 1/4, Step 7900/18020, Loss(triple): 9.804041, Loss(predicate): 9.192668, LR: 0.000200, Speed: 119569.47 tokens/sec | Epoch Time Left: 2:20:01 | Total Time Left: 14:48:02
[2025-07-04 18:11:01] Epoch 1/4, Step 7950/18020, Loss(triple): 9.559181, Loss(predicate): 9.996623, LR: 0.000200, Speed: 120540.41 tokens/sec | Epoch Time Left: 2:19:19 | Total Time Left: 14:47:14
[2025-07-04 18:11:42] === GPU性能分析 (平均每步) ===
[2025-07-04 18:11:42] 前向传播: 50.73ms, 损失计算: 0.02ms, 反向传播: 1.97ms, 优化器: 0.00ms
[2025-07-04 18:11:42] GPU总时间: 52.72ms, 实际迭代时间: 812.93ms, GPU利用率: 6.5%
[2025-07-04 18:11:42] ==================================================
[2025-07-04 18:11:42] === 三元组预测示例 ===
[2025-07-04 18:11:42] 样本1目标: Eavestone instance of civil parish
[2025-07-04 18:11:42] 样本1预测: countryB adtonaran iain,as ialistiz ofmax B r
[2025-07-04 18:11:42] 样本2目标: Guillaume Durand (nephew) languages spoken, written or signed French
[2025-07-04 18:11:42] 样本2预测: countryB adoonaran iakyil ialitiz ofmax B r
[2025-07-04 18:11:42] ==================
[2025-07-04 18:11:42] Epoch 1/4, Step 8000/18020, Loss(triple): 10.065239, Loss(predicate): 13.941609, LR: 0.000200, Speed: 120925.74 tokens/sec | Epoch Time Left: 2:18:36 | Total Time Left: 14:46:26
[2025-07-04 18:12:23] Epoch 1/4, Step 8050/18020, Loss(triple): 10.026138, Loss(predicate): 9.818950, LR: 0.000200, Speed: 120408.42 tokens/sec | Epoch Time Left: 2:17:54 | Total Time Left: 14:45:39
[2025-07-04 18:13:03] Epoch 1/4, Step 8100/18020, Loss(triple): 9.924509, Loss(predicate): 8.684509, LR: 0.000200, Speed: 120606.71 tokens/sec | Epoch Time Left: 2:17:11 | Total Time Left: 14:44:52
[2025-07-04 18:13:44] Epoch 1/4, Step 8150/18020, Loss(triple): 10.116272, Loss(predicate): 9.217610, LR: 0.000200, Speed: 119950.54 tokens/sec | Epoch Time Left: 2:16:29 | Total Time Left: 14:44:06
[2025-07-04 18:14:25] Epoch 1/4, Step 8200/18020, Loss(triple): 9.879707, Loss(predicate): 7.179321, LR: 0.000200, Speed: 120541.71 tokens/sec | Epoch Time Left: 2:15:47 | Total Time Left: 14:43:19
[2025-07-04 18:15:06] Epoch 1/4, Step 8250/18020, Loss(triple): 9.428799, Loss(predicate): 14.371358, LR: 0.000200, Speed: 120925.88 tokens/sec | Epoch Time Left: 2:15:04 | Total Time Left: 14:42:31
[2025-07-04 18:15:47] Epoch 1/4, Step 8300/18020, Loss(triple): 9.914383, Loss(predicate): 10.364522, LR: 0.000200, Speed: 120380.75 tokens/sec | Epoch Time Left: 2:14:22 | Total Time Left: 14:41:45
[2025-07-04 18:16:28] Epoch 1/4, Step 8350/18020, Loss(triple): 9.763493, Loss(predicate): 8.180043, LR: 0.000200, Speed: 120283.52 tokens/sec | Epoch Time Left: 2:13:40 | Total Time Left: 14:40:58
[2025-07-04 18:17:09] Epoch 1/4, Step 8400/18020, Loss(triple): 9.659592, Loss(predicate): 10.473918, LR: 0.000200, Speed: 120090.81 tokens/sec | Epoch Time Left: 2:12:58 | Total Time Left: 14:40:13
[2025-07-04 18:17:49] Epoch 1/4, Step 8450/18020, Loss(triple): 9.427729, Loss(predicate): 11.965709, LR: 0.000200, Speed: 120719.12 tokens/sec | Epoch Time Left: 2:12:16 | Total Time Left: 14:39:26
[2025-07-04 18:18:30] === GPU性能分析 (平均每步) ===
[2025-07-04 18:18:30] 前向传播: 50.38ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 18:18:30] GPU总时间: 52.33ms, 实际迭代时间: 811.74ms, GPU利用率: 6.4%
[2025-07-04 18:18:30] ==================================================
[2025-07-04 18:18:30] === 三元组预测示例 ===
[2025-07-04 18:18:30] 样本1目标: Marievale Bird Sanctuary country South Africa
[2025-07-04 18:18:30] 样本1预测: countryM adoonaran iain,as ialistiz ofmax B r
[2025-07-04 18:18:30] 样本2目标: Sampan (film) director Terry Bourke
[2025-07-04 18:18:30] 样本2预测: countryM adoonaran osinusid ritanceiz ofmth M A
[2025-07-04 18:18:30] ==================
[2025-07-04 18:18:30] Epoch 1/4, Step 8500/18020, Loss(triple): 9.821871, Loss(predicate): 10.988770, LR: 0.000200, Speed: 121103.20 tokens/sec | Epoch Time Left: 2:11:33 | Total Time Left: 14:38:38
[2025-07-04 18:19:11] Epoch 1/4, Step 8550/18020, Loss(triple): 9.768009, Loss(predicate): 12.120219, LR: 0.000200, Speed: 120137.49 tokens/sec | Epoch Time Left: 2:10:51 | Total Time Left: 14:37:52
[2025-07-04 18:19:51] Epoch 1/4, Step 8600/18020, Loss(triple): 9.461374, Loss(predicate): 16.318155, LR: 0.000200, Speed: 120563.36 tokens/sec | Epoch Time Left: 2:10:09 | Total Time Left: 14:37:06
[2025-07-04 18:20:32] Epoch 1/4, Step 8650/18020, Loss(triple): 9.969330, Loss(predicate): 11.650289, LR: 0.000200, Speed: 120540.26 tokens/sec | Epoch Time Left: 2:09:27 | Total Time Left: 14:36:19
[2025-07-04 18:21:13] Epoch 1/4, Step 8700/18020, Loss(triple): 10.243027, Loss(predicate): 16.237732, LR: 0.000200, Speed: 121231.24 tokens/sec | Epoch Time Left: 2:08:44 | Total Time Left: 14:35:31
[2025-07-04 18:21:53] Epoch 1/4, Step 8750/18020, Loss(triple): 9.521667, Loss(predicate): 9.933757, LR: 0.000200, Speed: 121267.01 tokens/sec | Epoch Time Left: 2:08:02 | Total Time Left: 14:34:43
[2025-07-04 18:22:34] Epoch 1/4, Step 8800/18020, Loss(triple): 9.387680, Loss(predicate): 9.745463, LR: 0.000200, Speed: 120252.71 tokens/sec | Epoch Time Left: 2:07:20 | Total Time Left: 14:33:58
[2025-07-04 18:23:15] Epoch 1/4, Step 8850/18020, Loss(triple): 9.938408, Loss(predicate): 12.367778, LR: 0.000200, Speed: 120638.06 tokens/sec | Epoch Time Left: 2:06:38 | Total Time Left: 14:33:11
[2025-07-04 18:23:56] Epoch 1/4, Step 8900/18020, Loss(triple): 9.768990, Loss(predicate): 15.417287, LR: 0.000200, Speed: 120375.36 tokens/sec | Epoch Time Left: 2:05:56 | Total Time Left: 14:32:26
[2025-07-04 18:24:36] Epoch 1/4, Step 8950/18020, Loss(triple): 9.583206, Loss(predicate): 5.179026, LR: 0.000200, Speed: 121518.65 tokens/sec | Epoch Time Left: 2:05:13 | Total Time Left: 14:31:37
[2025-07-04 18:25:17] === GPU性能分析 (平均每步) ===
[2025-07-04 18:25:17] 前向传播: 50.29ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 18:25:17] GPU总时间: 52.23ms, 实际迭代时间: 810.56ms, GPU利用率: 6.4%
[2025-07-04 18:25:17] ==================================================
[2025-07-04 18:25:17] === 三元组预测示例 ===
[2025-07-04 18:25:17] 样本1目标: Shorn Cliff and Caswell Woods heritage designation SSSI
[2025-07-04 18:25:17] 样本1预测: countryP adiconaran ol<6F>yil ativeanceiz ofmax M t
[2025-07-04 18:25:17] 样本2目标: SHOUTcast developer Nullsoft
[2025-07-04 18:25:17] 样本2预测: countryK adtonaran stkyil ativeitiz ofmth M A
[2025-07-04 18:25:17] ==================
[2025-07-04 18:25:17] Epoch 1/4, Step 9000/18020, Loss(triple): 10.200615, Loss(predicate): 12.519938, LR: 0.000200, Speed: 121279.34 tokens/sec | Epoch Time Left: 2:04:31 | Total Time Left: 14:30:50
[2025-07-04 18:25:58] Epoch 1/4, Step 9050/18020, Loss(triple): 9.476456, Loss(predicate): 9.402608, LR: 0.000200, Speed: 119975.76 tokens/sec | Epoch Time Left: 2:03:49 | Total Time Left: 14:30:05
[2025-07-04 18:26:38] Epoch 1/4, Step 9100/18020, Loss(triple): 9.792971, Loss(predicate): 11.886333, LR: 0.000200, Speed: 120701.84 tokens/sec | Epoch Time Left: 2:03:07 | Total Time Left: 14:29:19
[2025-07-04 18:27:19] Epoch 1/4, Step 9150/18020, Loss(triple): 9.519321, Loss(predicate): 11.238667, LR: 0.000200, Speed: 120856.69 tokens/sec | Epoch Time Left: 2:02:25 | Total Time Left: 14:28:32
[2025-07-04 18:28:00] Epoch 1/4, Step 9200/18020, Loss(triple): 9.934258, Loss(predicate): 8.380391, LR: 0.000200, Speed: 121242.02 tokens/sec | Epoch Time Left: 2:01:43 | Total Time Left: 14:27:45
[2025-07-04 18:28:40] Epoch 1/4, Step 9250/18020, Loss(triple): 9.739586, Loss(predicate): 5.735209, LR: 0.000200, Speed: 120891.08 tokens/sec | Epoch Time Left: 2:01:00 | Total Time Left: 14:26:59
[2025-07-04 18:29:21] Epoch 1/4, Step 9300/18020, Loss(triple): 9.383194, Loss(predicate): 6.955119, LR: 0.000199, Speed: 119967.62 tokens/sec | Epoch Time Left: 2:00:19 | Total Time Left: 14:26:14
[2025-07-04 18:30:02] Epoch 1/4, Step 9350/18020, Loss(triple): 9.944231, Loss(predicate): 11.585887, LR: 0.000199, Speed: 120531.41 tokens/sec | Epoch Time Left: 1:59:37 | Total Time Left: 14:25:29
[2025-07-04 18:30:43] Epoch 1/4, Step 9400/18020, Loss(triple): 9.931763, Loss(predicate): 10.766704, LR: 0.000199, Speed: 121270.41 tokens/sec | Epoch Time Left: 1:58:55 | Total Time Left: 14:24:42
[2025-07-04 18:31:32] Epoch 1/4, Step 9450/18020, Loss(triple): 9.705708, Loss(predicate): 10.502869, LR: 0.000199, Speed: 100168.79 tokens/sec | Epoch Time Left: 1:58:20 | Total Time Left: 14:24:51
[2025-07-04 18:32:13] === GPU性能分析 (平均每步) ===
[2025-07-04 18:32:13] 前向传播: 59.45ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 18:32:13] GPU总时间: 61.39ms, 实际迭代时间: 832.86ms, GPU利用率: 7.4%
[2025-07-04 18:32:13] ==================================================
[2025-07-04 18:32:13] === 三元组预测示例 ===
[2025-07-04 18:32:13] 样本1目标: Guelph country Canada
[2025-07-04 18:32:13] 样本1预测: countryW admmaoran allie,om ialistiz ofmax M t
[2025-07-04 18:32:13] 样本2目标: Robert Sadler occupation politician
[2025-07-04 18:32:13] 样本2预测: countryK admonaran allie,om ativeate3 ofmth M A
[2025-07-04 18:32:13] ==================
[2025-07-04 18:32:13] Epoch 1/4, Step 9500/18020, Loss(triple): 9.937683, Loss(predicate): 13.784953, LR: 0.000199, Speed: 118032.18 tokens/sec | Epoch Time Left: 1:57:39 | Total Time Left: 14:24:11
[2025-07-04 18:32:54] Epoch 1/4, Step 9550/18020, Loss(triple): 9.039652, Loss(predicate): 7.524007, LR: 0.000199, Speed: 120143.18 tokens/sec | Epoch Time Left: 1:56:57 | Total Time Left: 14:23:27
[2025-07-04 18:33:35] Epoch 1/4, Step 9600/18020, Loss(triple): 9.366877, Loss(predicate): 10.467204, LR: 0.000199, Speed: 119553.05 tokens/sec | Epoch Time Left: 1:56:15 | Total Time Left: 14:22:43
[2025-07-04 18:34:16] Epoch 1/4, Step 9650/18020, Loss(triple): 9.371677, Loss(predicate): 14.415181, LR: 0.000199, Speed: 120191.05 tokens/sec | Epoch Time Left: 1:55:33 | Total Time Left: 14:21:58
[2025-07-04 18:34:57] Epoch 1/4, Step 9700/18020, Loss(triple): 9.593929, Loss(predicate): 14.552510, LR: 0.000199, Speed: 119830.69 tokens/sec | Epoch Time Left: 1:54:52 | Total Time Left: 14:21:14
[2025-07-04 18:35:38] Epoch 1/4, Step 9750/18020, Loss(triple): 9.865295, Loss(predicate): 8.613770, LR: 0.000199, Speed: 119266.53 tokens/sec | Epoch Time Left: 1:54:10 | Total Time Left: 14:20:31
[2025-07-04 18:36:20] Epoch 1/4, Step 9800/18020, Loss(triple): 9.283487, Loss(predicate): 8.658508, LR: 0.000199, Speed: 118967.48 tokens/sec | Epoch Time Left: 1:53:29 | Total Time Left: 14:19:49
[2025-07-04 18:37:01] Epoch 1/4, Step 9850/18020, Loss(triple): 9.561876, Loss(predicate): 11.518921, LR: 0.000199, Speed: 120099.57 tokens/sec | Epoch Time Left: 1:52:47 | Total Time Left: 14:19:05
[2025-07-04 18:37:42] Epoch 1/4, Step 9900/18020, Loss(triple): 9.152651, Loss(predicate): 10.772522, LR: 0.000199, Speed: 120487.92 tokens/sec | Epoch Time Left: 1:52:05 | Total Time Left: 14:18:20
[2025-07-04 18:38:23] Epoch 1/4, Step 9950/18020, Loss(triple): 9.775759, Loss(predicate): 8.695415, LR: 0.000199, Speed: 118965.72 tokens/sec | Epoch Time Left: 1:51:23 | Total Time Left: 14:17:38
[2025-07-04 18:39:04] === GPU性能分析 (平均每步) ===
[2025-07-04 18:39:04] 前向传播: 59.16ms, 损失计算: 0.02ms, 反向传播: 1.92ms, 优化器: 0.00ms
[2025-07-04 18:39:04] GPU总时间: 61.10ms, 实际迭代时间: 824.73ms, GPU利用率: 7.4%
[2025-07-04 18:39:04] ==================================================
[2025-07-04 18:39:04] === 三元组预测示例 ===
[2025-07-04 18:39:04] 样本1目标: Applied Mechanics Reviews instance of scientific journal
[2025-07-04 18:39:04] 样本1预测: countryW birmmaeran opPore ativeateiz ofbth M F
[2025-07-04 18:39:04] 样本2目标: Min Shin Saw father Sithu I
[2025-07-04 18:39:04] 样本2预测: countryM admonaran ilkyas ativeisteg ofmth B t
[2025-07-04 18:39:04] ==================
[2025-07-04 18:39:04] Epoch 1/4, Step 10000/18020, Loss(triple): 9.607828, Loss(predicate): 10.054118, LR: 0.000199, Speed: 119195.41 tokens/sec | Epoch Time Left: 1:50:42 | Total Time Left: 14:16:55
[2025-07-04 18:39:45] Epoch 1/4, Step 10050/18020, Loss(triple): 9.220058, Loss(predicate): 5.778463, LR: 0.000199, Speed: 120240.88 tokens/sec | Epoch Time Left: 1:50:00 | Total Time Left: 14:16:10
[2025-07-04 18:40:26] Epoch 1/4, Step 10100/18020, Loss(triple): 9.433174, Loss(predicate): 14.427856, LR: 0.000199, Speed: 120624.36 tokens/sec | Epoch Time Left: 1:49:18 | Total Time Left: 14:15:25
[2025-07-04 18:41:07] Epoch 1/4, Step 10150/18020, Loss(triple): 9.496689, Loss(predicate): 9.825917, LR: 0.000199, Speed: 119242.99 tokens/sec | Epoch Time Left: 1:48:36 | Total Time Left: 14:14:42
[2025-07-04 18:41:48] Epoch 1/4, Step 10200/18020, Loss(triple): 9.632065, Loss(predicate): 7.746358, LR: 0.000199, Speed: 119644.92 tokens/sec | Epoch Time Left: 1:47:55 | Total Time Left: 14:13:59
[2025-07-04 18:42:29] Epoch 1/4, Step 10250/18020, Loss(triple): 9.622002, Loss(predicate): 11.633769, LR: 0.000199, Speed: 120648.45 tokens/sec | Epoch Time Left: 1:47:13 | Total Time Left: 14:13:14
[2025-07-04 18:43:10] Epoch 1/4, Step 10300/18020, Loss(triple): 9.879902, Loss(predicate): 10.101766, LR: 0.000199, Speed: 120226.46 tokens/sec | Epoch Time Left: 1:46:31 | Total Time Left: 14:12:29
[2025-07-04 18:43:51] Epoch 1/4, Step 10350/18020, Loss(triple): 9.219288, Loss(predicate): 8.918030, LR: 0.000199, Speed: 119368.05 tokens/sec | Epoch Time Left: 1:45:50 | Total Time Left: 14:11:46
[2025-07-04 18:44:32] Epoch 1/4, Step 10400/18020, Loss(triple): 9.310328, Loss(predicate): 15.123454, LR: 0.000199, Speed: 119567.11 tokens/sec | Epoch Time Left: 1:45:08 | Total Time Left: 14:11:03
[2025-07-04 18:45:13] Epoch 1/4, Step 10450/18020, Loss(triple): 9.215229, Loss(predicate): 6.576437, LR: 0.000199, Speed: 120563.52 tokens/sec | Epoch Time Left: 1:44:26 | Total Time Left: 14:10:18
[2025-07-04 18:45:53] === GPU性能分析 (平均每步) ===
[2025-07-04 18:45:53] 前向传播: 51.81ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 18:45:53] GPU总时间: 53.75ms, 实际迭代时间: 815.32ms, GPU利用率: 6.6%
[2025-07-04 18:45:53] ==================================================
[2025-07-04 18:45:53] === 三元组预测示例 ===
[2025-07-04 18:45:53] 样本1目标: Native American country USA
[2025-07-04 18:45:53] 样本1预测: countryK admmaoran itin,re ativeist species ofianres the P
[2025-07-04 18:45:53] 样本2目标: Setteri instance of village
[2025-07-04 18:45:53] 样本2预测: countryM admonaran zinusul ativeance species ofianax the t
[2025-07-04 18:45:53] ==================
[2025-07-04 18:45:53] Epoch 1/4, Step 10500/18020, Loss(triple): 9.380817, Loss(predicate): 12.881541, LR: 0.000199, Speed: 120570.50 tokens/sec | Epoch Time Left: 1:43:44 | Total Time Left: 14:09:33
[2025-07-04 18:46:35] Epoch 1/4, Step 10550/18020, Loss(triple): 9.548615, Loss(predicate): 12.155701, LR: 0.000199, Speed: 119172.87 tokens/sec | Epoch Time Left: 1:43:03 | Total Time Left: 14:08:51
[2025-07-04 18:47:16] Epoch 1/4, Step 10600/18020, Loss(triple): 9.402115, Loss(predicate): 12.618001, LR: 0.000199, Speed: 119887.44 tokens/sec | Epoch Time Left: 1:42:21 | Total Time Left: 14:08:07
[2025-07-04 18:47:56] Epoch 1/4, Step 10650/18020, Loss(triple): 8.983889, Loss(predicate): 8.075459, LR: 0.000199, Speed: 120540.98 tokens/sec | Epoch Time Left: 1:41:39 | Total Time Left: 14:07:22
[2025-07-04 18:48:37] Epoch 1/4, Step 10700/18020, Loss(triple): 9.781038, Loss(predicate): 11.332397, LR: 0.000199, Speed: 120992.83 tokens/sec | Epoch Time Left: 1:40:57 | Total Time Left: 14:06:37
[2025-07-04 18:49:18] Epoch 1/4, Step 10750/18020, Loss(triple): 9.411701, Loss(predicate): 9.457530, LR: 0.000199, Speed: 119874.84 tokens/sec | Epoch Time Left: 1:40:16 | Total Time Left: 14:05:53
[2025-07-04 18:49:59] Epoch 1/4, Step 10800/18020, Loss(triple): 9.604862, Loss(predicate): 13.134583, LR: 0.000198, Speed: 119091.24 tokens/sec | Epoch Time Left: 1:39:34 | Total Time Left: 14:05:11
[2025-07-04 18:50:40] Epoch 1/4, Step 10850/18020, Loss(triple): 9.047724, Loss(predicate): 6.875570, LR: 0.000198, Speed: 119666.66 tokens/sec | Epoch Time Left: 1:38:53 | Total Time Left: 14:04:28
[2025-07-04 18:51:21] Epoch 1/4, Step 10900/18020, Loss(triple): 9.800251, Loss(predicate): 7.655945, LR: 0.000198, Speed: 120294.90 tokens/sec | Epoch Time Left: 1:38:11 | Total Time Left: 14:03:44
[2025-07-04 18:52:02] Epoch 1/4, Step 10950/18020, Loss(triple): 9.539423, Loss(predicate): 13.610107, LR: 0.000198, Speed: 119606.56 tokens/sec | Epoch Time Left: 1:37:29 | Total Time Left: 14:03:01
[2025-07-04 18:52:43] === GPU性能分析 (平均每步) ===
[2025-07-04 18:52:43] 前向传播: 60.58ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 18:52:43] GPU总时间: 62.52ms, 实际迭代时间: 819.64ms, GPU利用率: 7.6%
[2025-07-04 18:52:43] ==================================================
[2025-07-04 18:52:43] === 三元组预测示例 ===
[2025-07-04 18:52:43] 样本1目标: USS Elfin (SP-965) operator United States Navy
[2025-07-04 18:52:43] 样本1预测: countryW entmmaran olinfre 6anceiz ofmth M A
[2025-07-04 18:52:43] 样本2目标: Rochelle Park School District located in the administrative territorial entity New Jersey
[2025-07-04 18:52:43] 样本2预测: countryW admmaran allC,om ialityater ofbrit the P
[2025-07-04 18:52:43] ==================
[2025-07-04 18:52:43] Epoch 1/4, Step 11000/18020, Loss(triple): 8.963814, Loss(predicate): 8.372498, LR: 0.000198, Speed: 119934.90 tokens/sec | Epoch Time Left: 1:36:48 | Total Time Left: 14:02:17
[2025-07-04 18:53:24] Epoch 1/4, Step 11050/18020, Loss(triple): 9.341265, Loss(predicate): 14.434692, LR: 0.000198, Speed: 119593.59 tokens/sec | Epoch Time Left: 1:36:06 | Total Time Left: 14:01:34
[2025-07-04 18:54:05] Epoch 1/4, Step 11100/18020, Loss(triple): 9.049828, Loss(predicate): 6.417521, LR: 0.000198, Speed: 120465.43 tokens/sec | Epoch Time Left: 1:35:25 | Total Time Left: 14:00:50
[2025-07-04 18:54:46] Epoch 1/4, Step 11150/18020, Loss(triple): 9.260849, Loss(predicate): 7.415995, LR: 0.000198, Speed: 120081.25 tokens/sec | Epoch Time Left: 1:34:43 | Total Time Left: 14:00:06
[2025-07-04 18:55:28] Epoch 1/4, Step 11200/18020, Loss(triple): 9.354084, Loss(predicate): 6.387472, LR: 0.000198, Speed: 118926.08 tokens/sec | Epoch Time Left: 1:34:02 | Total Time Left: 13:59:25
[2025-07-04 18:56:09] Epoch 1/4, Step 11250/18020, Loss(triple): 9.107239, Loss(predicate): 9.502706, LR: 0.000198, Speed: 118963.38 tokens/sec | Epoch Time Left: 1:33:20 | Total Time Left: 13:58:43
[2025-07-04 18:56:51] Epoch 1/4, Step 11300/18020, Loss(triple): 9.188892, Loss(predicate): 9.862285, LR: 0.000198, Speed: 115546.05 tokens/sec | Epoch Time Left: 1:32:40 | Total Time Left: 13:58:08
[2025-07-04 18:57:41] Epoch 1/4, Step 11350/18020, Loss(triple): 9.627649, Loss(predicate): 9.340962, LR: 0.000198, Speed: 99952.09 tokens/sec | Epoch Time Left: 1:32:03 | Total Time Left: 13:58:08
[2025-07-04 18:58:23] Epoch 1/4, Step 11400/18020, Loss(triple): 9.475908, Loss(predicate): 9.003448, LR: 0.000198, Speed: 117151.05 tokens/sec | Epoch Time Left: 1:31:22 | Total Time Left: 13:57:30
[2025-07-04 18:59:04] Epoch 1/4, Step 11450/18020, Loss(triple): 9.090679, Loss(predicate): 12.635010, LR: 0.000198, Speed: 119199.66 tokens/sec | Epoch Time Left: 1:30:40 | Total Time Left: 13:56:48
[2025-07-04 18:59:45] === GPU性能分析 (平均每步) ===
[2025-07-04 18:59:45] 前向传播: 62.24ms, 损失计算: 0.02ms, 反向传播: 1.92ms, 优化器: 0.00ms
[2025-07-04 18:59:45] GPU总时间: 64.18ms, 实际迭代时间: 822.43ms, GPU利用率: 7.8%
[2025-07-04 18:59:45] ==================================================
[2025-07-04 18:59:45] === 三元组预测示例 ===
[2025-07-04 18:59:45] 样本1目标: Barbara Lynn Ozen genre rhythm
[2025-07-04 18:59:45] 样本1预测: countryW biryhearan ilin,re ialistiz ofbrit B C
[2025-07-04 18:59:45] 样本2目标: Ramona Marquez place of birth London
[2025-07-04 18:59:45] 样本2预测: countryM entyharu il<69>yag 6ateiz ofbth M A
[2025-07-04 18:59:45] ==================
[2025-07-04 18:59:45] Epoch 1/4, Step 11500/18020, Loss(triple): 9.235483, Loss(predicate): 7.569560, LR: 0.000198, Speed: 119528.23 tokens/sec | Epoch Time Left: 1:29:59 | Total Time Left: 13:56:05
[2025-07-04 19:00:26] Epoch 1/4, Step 11550/18020, Loss(triple): 9.047998, Loss(predicate): 9.189229, LR: 0.000198, Speed: 120116.21 tokens/sec | Epoch Time Left: 1:29:17 | Total Time Left: 13:55:21
[2025-07-04 19:01:06] Epoch 1/4, Step 11600/18020, Loss(triple): 9.136301, Loss(predicate): 7.123617, LR: 0.000198, Speed: 120786.16 tokens/sec | Epoch Time Left: 1:28:35 | Total Time Left: 13:54:36
[2025-07-04 19:01:47] Epoch 1/4, Step 11650/18020, Loss(triple): 9.018000, Loss(predicate): 8.029561, LR: 0.000198, Speed: 121340.31 tokens/sec | Epoch Time Left: 1:27:53 | Total Time Left: 13:53:50
[2025-07-04 19:02:28] Epoch 1/4, Step 11700/18020, Loss(triple): 9.035583, Loss(predicate): 10.683330, LR: 0.000198, Speed: 120877.77 tokens/sec | Epoch Time Left: 1:27:11 | Total Time Left: 13:53:04
[2025-07-04 19:03:09] Epoch 1/4, Step 11750/18020, Loss(triple): 9.061756, Loss(predicate): 6.973592, LR: 0.000198, Speed: 119585.49 tokens/sec | Epoch Time Left: 1:26:30 | Total Time Left: 13:52:22
[2025-07-04 19:03:50] Epoch 1/4, Step 11800/18020, Loss(triple): 9.258392, Loss(predicate): 12.440145, LR: 0.000198, Speed: 120552.32 tokens/sec | Epoch Time Left: 1:25:48 | Total Time Left: 13:51:37
[2025-07-04 19:04:30] Epoch 1/4, Step 11850/18020, Loss(triple): 9.055679, Loss(predicate): 10.732991, LR: 0.000197, Speed: 121202.74 tokens/sec | Epoch Time Left: 1:25:06 | Total Time Left: 13:50:51
[2025-07-04 19:05:11] Epoch 1/4, Step 11900/18020, Loss(triple): 9.183863, Loss(predicate): 7.363892, LR: 0.000197, Speed: 120762.64 tokens/sec | Epoch Time Left: 1:24:25 | Total Time Left: 13:50:07
[2025-07-04 19:05:52] Epoch 1/4, Step 11950/18020, Loss(triple): 9.288776, Loss(predicate): 11.410716, LR: 0.000197, Speed: 120676.17 tokens/sec | Epoch Time Left: 1:23:43 | Total Time Left: 13:49:22
[2025-07-04 19:06:32] === GPU性能分析 (平均每步) ===
[2025-07-04 19:06:32] 前向传播: 55.27ms, 损失计算: 0.02ms, 反向传播: 1.97ms, 优化器: 0.00ms
[2025-07-04 19:06:32] GPU总时间: 57.26ms, 实际迭代时间: 819.62ms, GPU利用率: 7.0%
[2025-07-04 19:06:32] ==================================================
[2025-07-04 19:06:32] === 三元组预测示例 ===
[2025-07-04 19:06:33] 样本1目标: Embassy of Sweden, Prague country Czech Republic
[2025-07-04 19:06:33] 样本1预测: countryK admhaoru zia,ak ialist ter ofinarit the C
[2025-07-04 19:06:33] 样本2目标: Jakob Green Jensen country of citizenship Danish
[2025-07-04 19:06:33] 样本2预测: countryW biryheaeran all<6C>,ah 6itiz ofbth M F
[2025-07-04 19:06:33] ==================
[2025-07-04 19:06:33] Epoch 1/4, Step 12000/18020, Loss(triple): 9.287348, Loss(predicate): 11.163696, LR: 0.000197, Speed: 119938.38 tokens/sec | Epoch Time Left: 1:23:01 | Total Time Left: 13:48:39
[2025-07-04 19:07:13] Epoch 1/4, Step 12050/18020, Loss(triple): 8.940887, Loss(predicate): 10.625712, LR: 0.000197, Speed: 120577.35 tokens/sec | Epoch Time Left: 1:22:20 | Total Time Left: 13:47:54
[2025-07-04 19:07:54] Epoch 1/4, Step 12100/18020, Loss(triple): 8.969437, Loss(predicate): 7.335083, LR: 0.000197, Speed: 121096.18 tokens/sec | Epoch Time Left: 1:21:38 | Total Time Left: 13:47:09
[2025-07-04 19:08:35] Epoch 1/4, Step 12150/18020, Loss(triple): 8.893038, Loss(predicate): 10.795857, LR: 0.000197, Speed: 120494.76 tokens/sec | Epoch Time Left: 1:20:56 | Total Time Left: 13:46:25
[2025-07-04 19:09:16] Epoch 1/4, Step 12200/18020, Loss(triple): 9.221699, Loss(predicate): 10.020020, LR: 0.000197, Speed: 120160.20 tokens/sec | Epoch Time Left: 1:20:15 | Total Time Left: 13:45:41
[2025-07-04 19:09:56] Epoch 1/4, Step 12250/18020, Loss(triple): 9.346409, Loss(predicate): 8.396953, LR: 0.000197, Speed: 120205.14 tokens/sec | Epoch Time Left: 1:19:33 | Total Time Left: 13:44:57
[2025-07-04 19:10:37] Epoch 1/4, Step 12300/18020, Loss(triple): 8.975611, Loss(predicate): 10.310283, LR: 0.000197, Speed: 121103.12 tokens/sec | Epoch Time Left: 1:18:51 | Total Time Left: 13:44:12
[2025-07-04 19:11:18] Epoch 1/4, Step 12350/18020, Loss(triple): 9.218979, Loss(predicate): 13.260701, LR: 0.000197, Speed: 121145.52 tokens/sec | Epoch Time Left: 1:18:10 | Total Time Left: 13:43:27
[2025-07-04 19:11:59] Epoch 1/4, Step 12400/18020, Loss(triple): 9.304636, Loss(predicate): 9.372151, LR: 0.000197, Speed: 119692.73 tokens/sec | Epoch Time Left: 1:17:28 | Total Time Left: 13:42:44
[2025-07-04 19:12:39] Epoch 1/4, Step 12450/18020, Loss(triple): 9.142529, Loss(predicate): 19.259094, LR: 0.000197, Speed: 120388.91 tokens/sec | Epoch Time Left: 1:16:47 | Total Time Left: 13:42:00
[2025-07-04 19:13:20] === GPU性能分析 (平均每步) ===
[2025-07-04 19:13:20] 前向传播: 54.49ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 19:13:20] GPU总时间: 56.43ms, 实际迭代时间: 812.11ms, GPU利用率: 6.9%
[2025-07-04 19:13:20] ==================================================
[2025-07-04 19:13:20] === 三元组预测示例 ===
[2025-07-04 19:13:20] 样本1目标: Vadim Karpov sport football
[2025-07-04 19:13:20] 样本1预测: countryK adyharu ilkyak umorthelersbert Ber
[2025-07-04 19:13:20] 样本2目标: Irundialba waorani taxon rank species
[2025-07-04 19:13:20] 样本2预测: countryP admonare imin,as ritiss species rankax species t
[2025-07-04 19:13:20] ==================
[2025-07-04 19:13:20] Epoch 1/4, Step 12500/18020, Loss(triple): 9.625343, Loss(predicate): 14.778534, LR: 0.000197, Speed: 121047.81 tokens/sec | Epoch Time Left: 1:16:05 | Total Time Left: 13:41:15
[2025-07-04 19:14:01] Epoch 1/4, Step 12550/18020, Loss(triple): 9.652880, Loss(predicate): 9.354634, LR: 0.000197, Speed: 121091.84 tokens/sec | Epoch Time Left: 1:15:23 | Total Time Left: 13:40:30
[2025-07-04 19:14:42] Epoch 1/4, Step 12600/18020, Loss(triple): 9.175247, Loss(predicate): 15.741506, LR: 0.000197, Speed: 120191.32 tokens/sec | Epoch Time Left: 1:14:42 | Total Time Left: 13:39:47
[2025-07-04 19:15:23] Epoch 1/4, Step 12650/18020, Loss(triple): 9.054499, Loss(predicate): 7.423116, LR: 0.000197, Speed: 119494.22 tokens/sec | Epoch Time Left: 1:14:00 | Total Time Left: 13:39:05
[2025-07-04 19:16:03] Epoch 1/4, Step 12700/18020, Loss(triple): 9.373735, Loss(predicate): 9.339559, LR: 0.000196, Speed: 120729.35 tokens/sec | Epoch Time Left: 1:13:19 | Total Time Left: 13:38:20
[2025-07-04 19:16:44] Epoch 1/4, Step 12750/18020, Loss(triple): 9.369547, Loss(predicate): 10.522552, LR: 0.000196, Speed: 121011.39 tokens/sec | Epoch Time Left: 1:12:37 | Total Time Left: 13:37:35
[2025-07-04 19:17:25] Epoch 1/4, Step 12800/18020, Loss(triple): 9.004053, Loss(predicate): 15.008301, LR: 0.000196, Speed: 120087.74 tokens/sec | Epoch Time Left: 1:11:55 | Total Time Left: 13:36:52
[2025-07-04 19:18:06] Epoch 1/4, Step 12850/18020, Loss(triple): 9.295528, Loss(predicate): 10.106934, LR: 0.000196, Speed: 120930.31 tokens/sec | Epoch Time Left: 1:11:14 | Total Time Left: 13:36:08
[2025-07-04 19:18:54] Epoch 1/4, Step 12900/18020, Loss(triple): 9.031687, Loss(predicate): 10.317444, LR: 0.000196, Speed: 100826.75 tokens/sec | Epoch Time Left: 1:10:35 | Total Time Left: 13:36:00
[2025-07-04 19:19:41] Epoch 1/4, Step 12950/18020, Loss(triple): 9.211246, Loss(predicate): 10.439392, LR: 0.000196, Speed: 104300.87 tokens/sec | Epoch Time Left: 1:09:56 | Total Time Left: 13:35:45
[2025-07-04 19:20:24] === GPU性能分析 (平均每步) ===
[2025-07-04 19:20:24] 前向传播: 54.68ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 19:20:24] GPU总时间: 56.63ms, 实际迭代时间: 850.53ms, GPU利用率: 6.7%
[2025-07-04 19:20:24] ==================================================
[2025-07-04 19:20:24] === 三元组预测示例 ===
[2025-07-04 19:20:24] 样本1目标: Fukushima contains the administrative territorial entity Onahama
[2025-07-04 19:20:24] 样本1预测: countryK admharan ardiayom ialist ter ofancerit B C
[2025-07-04 19:20:24] 样本2目标: Frederic Muspratt occupation chemist
[2025-07-04 19:20:24] 样本2预测: countryK adyharan oninous 6itiz of cth M A
[2025-07-04 19:20:24] ==================
[2025-07-04 19:20:24] Epoch 1/4, Step 13000/18020, Loss(triple): 9.274521, Loss(predicate): 10.593221, LR: 0.000196, Speed: 115579.45 tokens/sec | Epoch Time Left: 1:09:15 | Total Time Left: 13:35:09
[2025-07-04 19:21:05] Epoch 1/4, Step 13050/18020, Loss(triple): 9.093704, Loss(predicate): 9.126892, LR: 0.000196, Speed: 120637.71 tokens/sec | Epoch Time Left: 1:08:34 | Total Time Left: 13:34:25
[2025-07-04 19:21:46] Epoch 1/4, Step 13100/18020, Loss(triple): 9.100220, Loss(predicate): 7.473022, LR: 0.000196, Speed: 119244.13 tokens/sec | Epoch Time Left: 1:07:52 | Total Time Left: 13:33:43
[2025-07-04 19:22:27] Epoch 1/4, Step 13150/18020, Loss(triple): 9.108910, Loss(predicate): 8.327504, LR: 0.000196, Speed: 120413.26 tokens/sec | Epoch Time Left: 1:07:11 | Total Time Left: 13:32:59
[2025-07-04 19:23:08] Epoch 1/4, Step 13200/18020, Loss(triple): 9.564722, Loss(predicate): 11.673055, LR: 0.000196, Speed: 120561.70 tokens/sec | Epoch Time Left: 1:06:29 | Total Time Left: 13:32:15
[2025-07-04 19:23:49] Epoch 1/4, Step 13250/18020, Loss(triple): 9.126728, Loss(predicate): 11.749084, LR: 0.000196, Speed: 119281.75 tokens/sec | Epoch Time Left: 1:05:48 | Total Time Left: 13:31:32
[2025-07-04 19:24:34] Epoch 1/4, Step 13300/18020, Loss(triple): 9.076303, Loss(predicate): 11.469014, LR: 0.000196, Speed: 109355.72 tokens/sec | Epoch Time Left: 1:05:07 | Total Time Left: 13:31:07
[2025-07-04 19:25:23] Epoch 1/4, Step 13350/18020, Loss(triple): 8.868416, Loss(predicate): 9.458130, LR: 0.000196, Speed: 99448.12 tokens/sec | Epoch Time Left: 1:04:29 | Total Time Left: 13:31:01
[2025-07-04 19:26:11] Epoch 1/4, Step 13400/18020, Loss(triple): 9.127522, Loss(predicate): 13.377757, LR: 0.000196, Speed: 102812.64 tokens/sec | Epoch Time Left: 1:03:50 | Total Time Left: 13:30:47
[2025-07-04 19:27:03] Epoch 1/4, Step 13450/18020, Loss(triple): 9.007828, Loss(predicate): 5.621439, LR: 0.000195, Speed: 94816.81 tokens/sec | Epoch Time Left: 1:03:12 | Total Time Left: 13:30:51
[2025-07-04 19:27:47] === GPU性能分析 (平均每步) ===
[2025-07-04 19:27:47] 前向传播: 53.20ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 19:27:47] GPU总时间: 55.14ms, 实际迭代时间: 885.90ms, GPU利用率: 6.2%
[2025-07-04 19:27:47] ==================================================
[2025-07-04 19:27:47] === 三元组预测示例 ===
[2025-07-04 19:27:47] 样本1目标: Honfleur instance of commune
[2025-07-04 19:27:47] 样本1预测: countryT entyonard eninoor ativeance ter ofanceax- t
[2025-07-04 19:27:47] 样本2目标: Mount Hope (Eternity Range) continent Antarctica
[2025-07-04 19:27:47] 样本2预测: countryP adyharan enin,us iality ter ofancerit the A
[2025-07-04 19:27:47] ==================
[2025-07-04 19:27:47] Epoch 1/4, Step 13500/18020, Loss(triple): 8.805393, Loss(predicate): 13.013733, LR: 0.000195, Speed: 110965.29 tokens/sec | Epoch Time Left: 1:02:31 | Total Time Left: 13:30:22
[2025-07-04 19:28:29] Epoch 1/4, Step 13550/18020, Loss(triple): 9.543716, Loss(predicate): 10.449219, LR: 0.000195, Speed: 117580.65 tokens/sec | Epoch Time Left: 1:01:50 | Total Time Left: 13:29:41
[2025-07-04 19:29:10] Epoch 1/4, Step 13600/18020, Loss(triple): 8.859369, Loss(predicate): 11.318237, LR: 0.000195, Speed: 120475.73 tokens/sec | Epoch Time Left: 1:01:08 | Total Time Left: 13:28:57
[2025-07-04 19:29:50] Epoch 1/4, Step 13650/18020, Loss(triple): 8.824024, Loss(predicate): 8.941508, LR: 0.000195, Speed: 120428.24 tokens/sec | Epoch Time Left: 1:00:26 | Total Time Left: 13:28:12
[2025-07-04 19:30:32] Epoch 1/4, Step 13700/18020, Loss(triple): 8.890594, Loss(predicate): 7.589701, LR: 0.000195, Speed: 118963.55 tokens/sec | Epoch Time Left: 0:59:45 | Total Time Left: 13:27:30
[2025-07-04 19:31:13] Epoch 1/4, Step 13750/18020, Loss(triple): 8.988419, Loss(predicate): 7.946635, LR: 0.000195, Speed: 120321.30 tokens/sec | Epoch Time Left: 0:59:03 | Total Time Left: 13:26:46
[2025-07-04 19:31:54] Epoch 1/4, Step 13800/18020, Loss(triple): 9.125483, Loss(predicate): 9.198608, LR: 0.000195, Speed: 119805.88 tokens/sec | Epoch Time Left: 0:58:21 | Total Time Left: 13:26:03
[2025-07-04 19:32:35] Epoch 1/4, Step 13850/18020, Loss(triple): 9.145077, Loss(predicate): 8.104472, LR: 0.000195, Speed: 120358.80 tokens/sec | Epoch Time Left: 0:57:40 | Total Time Left: 13:25:18
[2025-07-04 19:33:15] Epoch 1/4, Step 13900/18020, Loss(triple): 8.794399, Loss(predicate): 8.265808, LR: 0.000195, Speed: 120572.09 tokens/sec | Epoch Time Left: 0:56:58 | Total Time Left: 13:24:34
[2025-07-04 19:33:57] Epoch 1/4, Step 13950/18020, Loss(triple): 9.083780, Loss(predicate): 11.230550, LR: 0.000195, Speed: 118967.10 tokens/sec | Epoch Time Left: 0:56:16 | Total Time Left: 13:23:52
[2025-07-04 19:34:37] === GPU性能分析 (平均每步) ===
[2025-07-04 19:34:37] 前向传播: 61.34ms, 损失计算: 0.02ms, 反向传播: 1.91ms, 优化器: 0.00ms
[2025-07-04 19:34:37] GPU总时间: 63.26ms, 实际迭代时间: 816.19ms, GPU利用率: 7.8%
[2025-07-04 19:34:37] ==================================================
[2025-07-04 19:34:37] === 三元组预测示例 ===
[2025-07-04 19:34:37] 样本1目标: 2003 contest participant Rita Guerra
[2025-07-04 19:34:37] 样本1预测: countryF entyharan onCoel 7anceiz ofbth B A
[2025-07-04 19:34:37] 样本2目标: Shian pari instance of village
[2025-07-04 19:34:37] 样本2预测: SS adyonare ol<6F>kak iality terinancerit in C
[2025-07-04 19:34:37] ==================
[2025-07-04 19:34:37] Epoch 1/4, Step 14000/18020, Loss(triple): 9.171421, Loss(predicate): 13.866048, LR: 0.000195, Speed: 120442.75 tokens/sec | Epoch Time Left: 0:55:35 | Total Time Left: 13:23:07
[2025-07-04 19:35:19] Epoch 1/4, Step 14050/18020, Loss(triple): 9.207249, Loss(predicate): 10.190562, LR: 0.000195, Speed: 119558.46 tokens/sec | Epoch Time Left: 0:54:53 | Total Time Left: 13:22:24
[2025-07-04 19:35:59] Epoch 1/4, Step 14100/18020, Loss(triple): 8.911564, Loss(predicate): 9.924602, LR: 0.000194, Speed: 120454.01 tokens/sec | Epoch Time Left: 0:54:12 | Total Time Left: 13:21:40
[2025-07-04 19:36:40] Epoch 1/4, Step 14150/18020, Loss(triple): 10.023376, Loss(predicate): 8.672536, LR: 0.000194, Speed: 120751.25 tokens/sec | Epoch Time Left: 0:53:30 | Total Time Left: 13:20:55
[2025-07-04 19:37:21] Epoch 1/4, Step 14200/18020, Loss(triple): 8.725475, Loss(predicate): 7.015543, LR: 0.000194, Speed: 119597.18 tokens/sec | Epoch Time Left: 0:52:48 | Total Time Left: 13:20:12
[2025-07-04 19:38:02] Epoch 1/4, Step 14250/18020, Loss(triple): 9.711849, Loss(predicate): 10.321095, LR: 0.000194, Speed: 120276.94 tokens/sec | Epoch Time Left: 0:52:07 | Total Time Left: 13:19:28
[2025-07-04 19:38:43] Epoch 1/4, Step 14300/18020, Loss(triple): 8.774158, Loss(predicate): 10.954997, LR: 0.000194, Speed: 119692.84 tokens/sec | Epoch Time Left: 0:51:25 | Total Time Left: 13:18:45
[2025-07-04 19:39:24] Epoch 1/4, Step 14350/18020, Loss(triple): 8.533970, Loss(predicate): 6.812449, LR: 0.000194, Speed: 120176.36 tokens/sec | Epoch Time Left: 0:50:43 | Total Time Left: 13:18:01
[2025-07-04 19:40:05] Epoch 1/4, Step 14400/18020, Loss(triple): 9.384430, Loss(predicate): 9.761333, LR: 0.000194, Speed: 120300.62 tokens/sec | Epoch Time Left: 0:50:02 | Total Time Left: 13:17:17
[2025-07-04 19:40:46] Epoch 1/4, Step 14450/18020, Loss(triple): 8.942486, Loss(predicate): 9.750671, LR: 0.000194, Speed: 119097.20 tokens/sec | Epoch Time Left: 0:49:20 | Total Time Left: 13:16:35
[2025-07-04 19:41:27] === GPU性能分析 (平均每步) ===
[2025-07-04 19:41:27] 前向传播: 61.39ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 19:41:27] GPU总时间: 63.33ms, 实际迭代时间: 818.08ms, GPU利用率: 7.7%
[2025-07-04 19:41:27] ==================================================
[2025-07-04 19:41:27] === 三元组预测示例 ===
[2025-07-04 19:41:27] 样本1目标: United States contains the administrative territorial entity California
[2025-07-04 19:41:27] 样本1预测: countryW entyhlran itS,us ialist ter ofbrit the C
[2025-07-04 19:41:27] 样本2目标: Baños Canton instance of canton
[2025-07-04 19:41:27] 样本2预测: countryB adtharu ian<61>,ah ialist ter ofancerit in C
[2025-07-04 19:41:27] ==================
[2025-07-04 19:41:27] Epoch 1/4, Step 14500/18020, Loss(triple): 9.167391, Loss(predicate): 5.639760, LR: 0.000194, Speed: 120164.59 tokens/sec | Epoch Time Left: 0:48:39 | Total Time Left: 13:15:52
[2025-07-04 19:42:08] Epoch 1/4, Step 14550/18020, Loss(triple): 9.225260, Loss(predicate): 7.526276, LR: 0.000194, Speed: 119402.71 tokens/sec | Epoch Time Left: 0:47:57 | Total Time Left: 13:15:09
[2025-07-04 19:42:49] Epoch 1/4, Step 14600/18020, Loss(triple): 8.883280, Loss(predicate): 12.222107, LR: 0.000194, Speed: 120513.05 tokens/sec | Epoch Time Left: 0:47:16 | Total Time Left: 13:14:25
[2025-07-04 19:43:30] Epoch 1/4, Step 14650/18020, Loss(triple): 8.994547, Loss(predicate): 15.026917, LR: 0.000194, Speed: 120468.46 tokens/sec | Epoch Time Left: 0:46:34 | Total Time Left: 13:13:41
[2025-07-04 19:44:11] Epoch 1/4, Step 14700/18020, Loss(triple): 9.127834, Loss(predicate): 8.994029, LR: 0.000193, Speed: 118713.97 tokens/sec | Epoch Time Left: 0:45:52 | Total Time Left: 13:12:59
[2025-07-04 19:44:52] Epoch 1/4, Step 14750/18020, Loss(triple): 8.925653, Loss(predicate): 9.893585, LR: 0.000193, Speed: 119962.85 tokens/sec | Epoch Time Left: 0:45:11 | Total Time Left: 13:12:16
[2025-07-04 19:45:33] Epoch 1/4, Step 14800/18020, Loss(triple): 8.867905, Loss(predicate): 10.836772, LR: 0.000193, Speed: 120049.57 tokens/sec | Epoch Time Left: 0:44:29 | Total Time Left: 13:11:32
[2025-07-04 19:46:14] Epoch 1/4, Step 14850/18020, Loss(triple): 9.089184, Loss(predicate): 10.053670, LR: 0.000193, Speed: 120454.30 tokens/sec | Epoch Time Left: 0:43:48 | Total Time Left: 13:10:48
[2025-07-04 19:46:55] Epoch 1/4, Step 14900/18020, Loss(triple): 8.909328, Loss(predicate): 9.668091, LR: 0.000193, Speed: 120534.56 tokens/sec | Epoch Time Left: 0:43:06 | Total Time Left: 13:10:04
[2025-07-04 19:47:36] Epoch 1/4, Step 14950/18020, Loss(triple): 8.424021, Loss(predicate): 9.288045, LR: 0.000193, Speed: 118351.18 tokens/sec | Epoch Time Left: 0:42:25 | Total Time Left: 13:09:23
[2025-07-04 19:48:17] === GPU性能分析 (平均每步) ===
[2025-07-04 19:48:17] 前向传播: 65.41ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 19:48:17] GPU总时间: 67.36ms, 实际迭代时间: 824.80ms, GPU利用率: 8.2%
[2025-07-04 19:48:17] ==================================================
[2025-07-04 19:48:17] === 三元组预测示例 ===
[2025-07-04 19:48:17] 样本1目标: Bolivia shares border with Peru
[2025-07-04 19:48:17] 样本1预测: SB adyonaala ilisusul riton species rankaxi t
[2025-07-04 19:48:17] 样本2目标: Joseph C. Strasser military branch United States Navy
[2025-07-04 19:48:17] 样本2预测: countryK entyhiran all<6C>,ag 4ateiz of cth M A
[2025-07-04 19:48:17] ==================
[2025-07-04 19:48:17] Epoch 1/4, Step 15000/18020, Loss(triple): 8.930805, Loss(predicate): 11.765819, LR: 0.000193, Speed: 119185.58 tokens/sec | Epoch Time Left: 0:41:43 | Total Time Left: 13:08:41
[2025-07-04 19:48:58] Epoch 1/4, Step 15050/18020, Loss(triple): 9.137657, Loss(predicate): 10.223775, LR: 0.000193, Speed: 119778.69 tokens/sec | Epoch Time Left: 0:41:02 | Total Time Left: 13:07:58
[2025-07-04 19:49:39] Epoch 1/4, Step 15100/18020, Loss(triple): 8.702028, Loss(predicate): 9.425923, LR: 0.000193, Speed: 119930.10 tokens/sec | Epoch Time Left: 0:40:20 | Total Time Left: 13:07:15
[2025-07-04 19:50:20] Epoch 1/4, Step 15150/18020, Loss(triple): 8.929050, Loss(predicate): 10.109589, LR: 0.000193, Speed: 119872.91 tokens/sec | Epoch Time Left: 0:39:39 | Total Time Left: 13:06:31
[2025-07-04 19:51:02] Epoch 1/4, Step 15200/18020, Loss(triple): 9.213692, Loss(predicate): 11.569946, LR: 0.000193, Speed: 118326.49 tokens/sec | Epoch Time Left: 0:38:57 | Total Time Left: 13:05:50
[2025-07-04 19:51:43] Epoch 1/4, Step 15250/18020, Loss(triple): 8.931734, Loss(predicate): 7.402669, LR: 0.000193, Speed: 119846.34 tokens/sec | Epoch Time Left: 0:38:16 | Total Time Left: 13:05:07
[2025-07-04 19:52:24] Epoch 1/4, Step 15300/18020, Loss(triple): 8.456211, Loss(predicate): 9.763997, LR: 0.000192, Speed: 120082.41 tokens/sec | Epoch Time Left: 0:37:34 | Total Time Left: 13:04:24
[2025-07-04 19:53:05] Epoch 1/4, Step 15350/18020, Loss(triple): 9.101830, Loss(predicate): 8.342977, LR: 0.000192, Speed: 119284.78 tokens/sec | Epoch Time Left: 0:36:53 | Total Time Left: 13:03:42
[2025-07-04 19:53:46] Epoch 1/4, Step 15400/18020, Loss(triple): 8.652719, Loss(predicate): 11.837178, LR: 0.000192, Speed: 120512.68 tokens/sec | Epoch Time Left: 0:36:11 | Total Time Left: 13:02:58
[2025-07-04 19:54:27] Epoch 1/4, Step 15450/18020, Loss(triple): 9.082726, Loss(predicate): 12.033386, LR: 0.000192, Speed: 119007.89 tokens/sec | Epoch Time Left: 0:35:30 | Total Time Left: 13:02:16
[2025-07-04 19:55:08] === GPU性能分析 (平均每步) ===
[2025-07-04 19:55:08] 前向传播: 58.52ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 19:55:08] GPU总时间: 60.47ms, 实际迭代时间: 818.11ms, GPU利用率: 7.4%
[2025-07-04 19:55:08] ==================================================
[2025-07-04 19:55:08] === 三元组预测示例 ===
[2025-07-04 19:55:08] 样本1目标: The Cement Garden author Ian McEwan
[2025-07-04 19:55:08] 样本1预测: countryIn enty 200l. L enm,r ialist ter ofiaat B A
[2025-07-04 19:55:08] 样本2目标: Son of Aladdin original language of film or TV show English
[2025-07-04 19:55:08] 样本2预测: countryS entyhara enador ialance ter ofmrit B A
[2025-07-04 19:55:08] ==================
[2025-07-04 19:55:08] Epoch 1/4, Step 15500/18020, Loss(triple): 8.993525, Loss(predicate): 16.260956, LR: 0.000192, Speed: 120159.73 tokens/sec | Epoch Time Left: 0:34:48 | Total Time Left: 13:01:32
[2025-07-04 19:55:49] Epoch 1/4, Step 15550/18020, Loss(triple): 8.261044, Loss(predicate): 7.806325, LR: 0.000192, Speed: 120499.58 tokens/sec | Epoch Time Left: 0:34:07 | Total Time Left: 13:00:49
[2025-07-04 19:56:30] Epoch 1/4, Step 15600/18020, Loss(triple): 8.802261, Loss(predicate): 15.593547, LR: 0.000192, Speed: 119132.52 tokens/sec | Epoch Time Left: 0:33:25 | Total Time Left: 13:00:06
[2025-07-04 19:57:11] Epoch 1/4, Step 15650/18020, Loss(triple): 8.930307, Loss(predicate): 4.596899, LR: 0.000192, Speed: 119753.56 tokens/sec | Epoch Time Left: 0:32:44 | Total Time Left: 12:59:24
[2025-07-04 19:57:52] Epoch 1/4, Step 15700/18020, Loss(triple): 8.862690, Loss(predicate): 7.271627, LR: 0.000192, Speed: 119245.75 tokens/sec | Epoch Time Left: 0:32:02 | Total Time Left: 12:58:41
[2025-07-04 19:58:34] Epoch 1/4, Step 15750/18020, Loss(triple): 8.936640, Loss(predicate): 12.181294, LR: 0.000192, Speed: 118864.67 tokens/sec | Epoch Time Left: 0:31:21 | Total Time Left: 12:58:00
[2025-07-04 19:59:21] Epoch 1/4, Step 15800/18020, Loss(triple): 9.039698, Loss(predicate): 8.965363, LR: 0.000191, Speed: 103145.01 tokens/sec | Epoch Time Left: 0:30:40 | Total Time Left: 12:57:40
[2025-07-04 20:00:07] Epoch 1/4, Step 15850/18020, Loss(triple): 8.838381, Loss(predicate): 7.877991, LR: 0.000191, Speed: 107331.63 tokens/sec | Epoch Time Left: 0:29:59 | Total Time Left: 12:57:14
[2025-07-04 20:00:50] Epoch 1/4, Step 15900/18020, Loss(triple): 8.518801, Loss(predicate): 9.433034, LR: 0.000191, Speed: 115716.70 tokens/sec | Epoch Time Left: 0:29:18 | Total Time Left: 12:56:36
[2025-07-04 20:01:38] Epoch 1/4, Step 15950/18020, Loss(triple): 8.706264, Loss(predicate): 10.768474, LR: 0.000191, Speed: 102195.94 tokens/sec | Epoch Time Left: 0:28:37 | Total Time Left: 12:56:18
[2025-07-04 20:02:20] === GPU性能分析 (平均每步) ===
[2025-07-04 20:02:20] 前向传播: 68.21ms, 损失计算: 0.02ms, 反向传播: 1.96ms, 优化器: 0.00ms
[2025-07-04 20:02:20] GPU总时间: 70.18ms, 实际迭代时间: 834.33ms, GPU利用率: 8.4%
[2025-07-04 20:02:20] ==================================================
[2025-07-04 20:02:20] === 三元组预测示例 ===
[2025-07-04 20:02:20] 样本1目标: Brazil lowest point Atlantic Ocean
[2025-07-04 20:02:20] 样本1预测: countryF adyonara inilyus ritist species ofiaass in t
[2025-07-04 20:02:20] 样本2目标: Ținutul Suceava capital Cernăuți
[2025-07-04 20:02:20] 样本2预测: countryK adyharu ziakah upationci ofianth P P
[2025-07-04 20:02:20] ==================
[2025-07-04 20:02:20] Epoch 1/4, Step 16000/18020, Loss(triple): 8.906605, Loss(predicate): 11.710774, LR: 0.000191, Speed: 117823.33 tokens/sec | Epoch Time Left: 0:27:56 | Total Time Left: 12:55:38
[2025-07-04 20:03:00] Epoch 1/4, Step 16050/18020, Loss(triple): 8.300142, Loss(predicate): 8.168294, LR: 0.000191, Speed: 120616.25 tokens/sec | Epoch Time Left: 0:27:14 | Total Time Left: 12:54:53
[2025-07-04 20:03:41] Epoch 1/4, Step 16100/18020, Loss(triple): 8.521149, Loss(predicate): 8.806233, LR: 0.000191, Speed: 120211.71 tokens/sec | Epoch Time Left: 0:26:33 | Total Time Left: 12:54:10
[2025-07-04 20:04:22] Epoch 1/4, Step 16150/18020, Loss(triple): 9.253815, Loss(predicate): 16.751181, LR: 0.000191, Speed: 120291.33 tokens/sec | Epoch Time Left: 0:25:51 | Total Time Left: 12:53:26
[2025-07-04 20:05:03] Epoch 1/4, Step 16200/18020, Loss(triple): 9.175037, Loss(predicate): 8.948812, LR: 0.000191, Speed: 119339.49 tokens/sec | Epoch Time Left: 0:25:10 | Total Time Left: 12:52:44
[2025-07-04 20:05:44] Epoch 1/4, Step 16250/18020, Loss(triple): 8.588884, Loss(predicate): 8.103282, LR: 0.000191, Speed: 119978.25 tokens/sec | Epoch Time Left: 0:24:28 | Total Time Left: 12:52:00
[2025-07-04 20:06:25] Epoch 1/4, Step 16300/18020, Loss(triple): 8.640347, Loss(predicate): 8.214375, LR: 0.000190, Speed: 120780.55 tokens/sec | Epoch Time Left: 0:23:46 | Total Time Left: 12:51:16
[2025-07-04 20:07:06] Epoch 1/4, Step 16350/18020, Loss(triple): 8.763826, Loss(predicate): 7.698771, LR: 0.000190, Speed: 120224.65 tokens/sec | Epoch Time Left: 0:23:05 | Total Time Left: 12:50:33
[2025-07-04 20:07:47] Epoch 1/4, Step 16400/18020, Loss(triple): 8.727791, Loss(predicate): 14.253764, LR: 0.000190, Speed: 120431.45 tokens/sec | Epoch Time Left: 0:22:23 | Total Time Left: 12:49:49
[2025-07-04 20:08:28] Epoch 1/4, Step 16450/18020, Loss(triple): 9.005106, Loss(predicate): 10.628296, LR: 0.000190, Speed: 119873.07 tokens/sec | Epoch Time Left: 0:21:42 | Total Time Left: 12:49:06
[2025-07-04 20:09:10] === GPU性能分析 (平均每步) ===
[2025-07-04 20:09:10] 前向传播: 73.86ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 20:09:10] GPU总时间: 75.80ms, 实际迭代时间: 841.50ms, GPU利用率: 9.0%
[2025-07-04 20:09:10] ==================================================
[2025-07-04 20:09:10] === 三元组预测示例 ===
[2025-07-04 20:09:10] 样本1目标: Velika Ludina country Croatia
[2025-07-04 20:09:10] 样本1预测: countryK adyharu iania,ah ialist ter ofiar in C
[2025-07-04 20:09:10] 样本2目标: Marisa Siketa occupation actress
[2025-07-04 20:09:10] 样本2预测: AmericanSensy Maena ianjoak upitiz of cth Man
[2025-07-04 20:09:10] ==================
[2025-07-04 20:09:10] Epoch 1/4, Step 16500/18020, Loss(triple): 8.594322, Loss(predicate): 7.013092, LR: 0.000190, Speed: 116820.65 tokens/sec | Epoch Time Left: 0:21:00 | Total Time Left: 12:48:26
[2025-07-04 20:09:54] Epoch 1/4, Step 16550/18020, Loss(triple): 8.495684, Loss(predicate): 8.812785, LR: 0.000190, Speed: 111749.76 tokens/sec | Epoch Time Left: 0:20:19 | Total Time Left: 12:47:53
[2025-07-04 20:10:35] Epoch 1/4, Step 16600/18020, Loss(triple): 8.695988, Loss(predicate): 8.189128, LR: 0.000190, Speed: 119198.46 tokens/sec | Epoch Time Left: 0:19:38 | Total Time Left: 12:47:11
[2025-07-04 20:11:16] Epoch 1/4, Step 16650/18020, Loss(triple): 8.591362, Loss(predicate): 9.316701, LR: 0.000190, Speed: 119847.96 tokens/sec | Epoch Time Left: 0:18:56 | Total Time Left: 12:46:28
[2025-07-04 20:11:57] Epoch 1/4, Step 16700/18020, Loss(triple): 8.786194, Loss(predicate): 9.523112, LR: 0.000190, Speed: 119788.08 tokens/sec | Epoch Time Left: 0:18:15 | Total Time Left: 12:45:45
[2025-07-04 20:12:38] Epoch 1/4, Step 16750/18020, Loss(triple): 8.374924, Loss(predicate): 10.371613, LR: 0.000190, Speed: 120247.56 tokens/sec | Epoch Time Left: 0:17:33 | Total Time Left: 12:45:02
[2025-07-04 20:13:19] Epoch 1/4, Step 16800/18020, Loss(triple): 8.666180, Loss(predicate): 6.731893, LR: 0.000189, Speed: 120195.84 tokens/sec | Epoch Time Left: 0:16:52 | Total Time Left: 12:44:18
[2025-07-04 20:14:00] Epoch 1/4, Step 16850/18020, Loss(triple): 8.782671, Loss(predicate): 7.100159, LR: 0.000189, Speed: 119201.61 tokens/sec | Epoch Time Left: 0:16:10 | Total Time Left: 12:43:36
[2025-07-04 20:14:41] Epoch 1/4, Step 16900/18020, Loss(triple): 8.412064, Loss(predicate): 8.199788, LR: 0.000189, Speed: 119791.90 tokens/sec | Epoch Time Left: 0:15:29 | Total Time Left: 12:42:53
[2025-07-04 20:15:22] Epoch 1/4, Step 16950/18020, Loss(triple): 8.791641, Loss(predicate): 9.594646, LR: 0.000189, Speed: 120159.67 tokens/sec | Epoch Time Left: 0:14:47 | Total Time Left: 12:42:10
[2025-07-04 20:16:03] === GPU性能分析 (平均每步) ===
[2025-07-04 20:16:03] 前向传播: 51.11ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 20:16:03] GPU总时间: 53.06ms, 实际迭代时间: 813.00ms, GPU利用率: 6.5%
[2025-07-04 20:16:03] ==================================================
[2025-07-04 20:16:03] === 三元组预测示例 ===
[2025-07-04 20:16:03] 样本1目标: Fiji national rugby league team sport rugby league
[2025-07-04 20:16:03] 样本1预测: countryF biryhiran il<69>yag 7all States ofpion the A
[2025-07-04 20:16:03] 样本2目标: Steriphoma macranthum taxon rank species
[2025-07-04 20:16:03] 样本2预测: SM adoonaala ianiausr riton species rankaxi t
[2025-07-04 20:16:03] ==================
[2025-07-04 20:16:03] Epoch 1/4, Step 17000/18020, Loss(triple): 8.720161, Loss(predicate): 15.562083, LR: 0.000189, Speed: 120915.25 tokens/sec | Epoch Time Left: 0:14:06 | Total Time Left: 12:41:25
[2025-07-04 20:16:43] Epoch 1/4, Step 17050/18020, Loss(triple): 8.400400, Loss(predicate): 11.605408, LR: 0.000189, Speed: 120238.83 tokens/sec | Epoch Time Left: 0:13:24 | Total Time Left: 12:40:42
[2025-07-04 20:17:24] Epoch 1/4, Step 17100/18020, Loss(triple): 9.080421, Loss(predicate): 8.132812, LR: 0.000189, Speed: 119586.54 tokens/sec | Epoch Time Left: 0:12:43 | Total Time Left: 12:39:59
[2025-07-04 20:18:05] Epoch 1/4, Step 17150/18020, Loss(triple): 8.503525, Loss(predicate): 7.226191, LR: 0.000189, Speed: 120622.44 tokens/sec | Epoch Time Left: 0:12:01 | Total Time Left: 12:39:16
[2025-07-04 20:18:46] Epoch 1/4, Step 17200/18020, Loss(triple): 8.515068, Loss(predicate): 8.639485, LR: 0.000189, Speed: 120073.56 tokens/sec | Epoch Time Left: 0:11:20 | Total Time Left: 12:38:32
[2025-07-04 20:19:27] Epoch 1/4, Step 17250/18020, Loss(triple): 8.952669, Loss(predicate): 7.927938, LR: 0.000188, Speed: 120861.57 tokens/sec | Epoch Time Left: 0:10:38 | Total Time Left: 12:37:48
[2025-07-04 20:20:07] Epoch 1/4, Step 17300/18020, Loss(triple): 8.915699, Loss(predicate): 8.085561, LR: 0.000188, Speed: 120915.17 tokens/sec | Epoch Time Left: 0:09:57 | Total Time Left: 12:37:04
[2025-07-04 20:20:49] Epoch 1/4, Step 17350/18020, Loss(triple): 8.607685, Loss(predicate): 9.469075, LR: 0.000188, Speed: 119621.45 tokens/sec | Epoch Time Left: 0:09:15 | Total Time Left: 12:36:22
[2025-07-04 20:21:29] Epoch 1/4, Step 17400/18020, Loss(triple): 8.730839, Loss(predicate): 13.258586, LR: 0.000188, Speed: 120641.49 tokens/sec | Epoch Time Left: 0:08:34 | Total Time Left: 12:35:38
[2025-07-04 20:22:10] Epoch 1/4, Step 17450/18020, Loss(triple): 8.663599, Loss(predicate): 12.430226, LR: 0.000188, Speed: 120244.59 tokens/sec | Epoch Time Left: 0:07:52 | Total Time Left: 12:34:55
[2025-07-04 20:22:51] === GPU性能分析 (平均每步) ===
[2025-07-04 20:22:51] 前向传播: 51.09ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 20:22:51] GPU总时间: 53.04ms, 实际迭代时间: 813.10ms, GPU利用率: 6.5%
[2025-07-04 20:22:51] ==================================================
[2025-07-04 20:22:51] === 三元组预测示例 ===
[2025-07-04 20:22:51] 样本1目标: Kennedy Space Center headquarters location Merritt Island
[2025-07-04 20:22:51] 样本1预测: countryF entym (rd erCnun iality locatedoriarit the A
[2025-07-04 20:22:51] 样本2目标: The Marshall Tucker Band (album) performer The Marshall Tucker Band
[2025-07-04 20:22:51] 样本2预测: countryF biryh (ran eror,r umall foot ofbs Ber
[2025-07-04 20:22:51] ==================
[2025-07-04 20:22:51] Epoch 1/4, Step 17500/18020, Loss(triple): 8.495554, Loss(predicate): 9.365784, LR: 0.000188, Speed: 120900.59 tokens/sec | Epoch Time Left: 0:07:11 | Total Time Left: 12:34:11
[2025-07-04 20:23:32] Epoch 1/4, Step 17550/18020, Loss(triple): 8.408411, Loss(predicate): 8.358754, LR: 0.000188, Speed: 120535.03 tokens/sec | Epoch Time Left: 0:06:29 | Total Time Left: 12:33:27
[2025-07-04 20:24:13] Epoch 1/4, Step 17600/18020, Loss(triple): 9.068531, Loss(predicate): 13.037944, LR: 0.000188, Speed: 119638.26 tokens/sec | Epoch Time Left: 0:05:48 | Total Time Left: 12:32:45
[2025-07-04 20:24:54] Epoch 1/4, Step 17650/18020, Loss(triple): 8.379213, Loss(predicate): 10.866414, LR: 0.000187, Speed: 120350.72 tokens/sec | Epoch Time Left: 0:05:06 | Total Time Left: 12:32:01
[2025-07-04 20:25:34] Epoch 1/4, Step 17700/18020, Loss(triple): 8.349634, Loss(predicate): 5.620087, LR: 0.000187, Speed: 121192.94 tokens/sec | Epoch Time Left: 0:04:25 | Total Time Left: 12:31:17
[2025-07-04 20:26:16] Epoch 1/4, Step 17750/18020, Loss(triple): 8.628513, Loss(predicate): 14.615926, LR: 0.000187, Speed: 116895.49 tokens/sec | Epoch Time Left: 0:03:43 | Total Time Left: 12:30:38
[2025-07-04 20:26:58] Epoch 1/4, Step 17800/18020, Loss(triple): 8.949341, Loss(predicate): 8.466919, LR: 0.000187, Speed: 117112.32 tokens/sec | Epoch Time Left: 0:03:02 | Total Time Left: 12:29:58
[2025-07-04 20:27:40] Epoch 1/4, Step 17850/18020, Loss(triple): 8.708130, Loss(predicate): 7.317667, LR: 0.000187, Speed: 118538.64 tokens/sec | Epoch Time Left: 0:02:20 | Total Time Left: 12:29:16
[2025-07-04 20:28:20] Epoch 1/4, Step 17900/18020, Loss(triple): 8.909815, Loss(predicate): 6.787028, LR: 0.000187, Speed: 120860.37 tokens/sec | Epoch Time Left: 0:01:39 | Total Time Left: 12:28:32
[2025-07-04 20:29:01] Epoch 1/4, Step 17950/18020, Loss(triple): 8.440165, Loss(predicate): 13.451497, LR: 0.000187, Speed: 120957.63 tokens/sec | Epoch Time Left: 0:00:58 | Total Time Left: 12:27:49
[2025-07-04 20:29:42] === GPU性能分析 (平均每步) ===
[2025-07-04 20:29:42] 前向传播: 61.84ms, 损失计算: 0.02ms, 反向传播: 1.93ms, 优化器: 0.00ms
[2025-07-04 20:29:42] GPU总时间: 63.78ms, 实际迭代时间: 824.16ms, GPU利用率: 7.7%
[2025-07-04 20:29:42] ==================================================
[2025-07-04 20:29:42] === 三元组预测示例 ===
[2025-07-04 20:29:42] 样本1目标: 8 cm FK M. 5 instance of field gun
[2025-07-04 20:29:42] 样本1预测: countryF entymaru inCDT wayance ter ofclass M A
[2025-07-04 20:29:42] 样本2目标: Namangan region located in the administrative territorial entity Uzbekistan
[2025-07-04 20:29:42] 样本2预测: countryK adyinara iania,ay ialist ter ofiarit the C
[2025-07-04 20:29:42] ==================
[2025-07-04 20:29:42] Epoch 1/4, Step 18000/18020, Loss(triple): 8.523537, Loss(predicate): 8.124187, LR: 0.000187, Speed: 119278.52 tokens/sec | Epoch Time Left: 0:00:16 | Total Time Left: 12:27:06
[2025-07-04 20:29:59] 第1轮训练完成进行内存清理
[2025-07-04 20:30:01] [Memory Monitor] Epoch 1 completed - System RSS: 27057.54MB, CUDA allocated: 550.62MB, CUDA reserved: 1310.00MB
[2025-07-04 20:30:01] 开始第2轮训练
[2025-07-04 20:30:02] 三元组提取训练模式
[2025-07-04 20:30:02] 使用预tokenized三元组目标数据
[2025-07-04 20:30:42] Epoch 2/4, Step 50/18020, Loss(triple): 9.013447, Loss(predicate): 9.568695, LR: 0.000186, Speed: 120159.74 tokens/sec | Epoch Time Left: 4:05:01 | Total Time Left: 12:26:15
[2025-07-04 20:31:23] Epoch 2/4, Step 100/18020, Loss(triple): 8.370209, Loss(predicate): 9.269063, LR: 0.000186, Speed: 120403.62 tokens/sec | Epoch Time Left: 4:04:05 | Total Time Left: 12:25:31
[2025-07-04 20:32:04] Epoch 2/4, Step 150/18020, Loss(triple): 8.844728, Loss(predicate): 9.306030, LR: 0.000186, Speed: 119036.96 tokens/sec | Epoch Time Left: 4:04:15 | Total Time Left: 12:24:49
[2025-07-04 20:32:49] Epoch 2/4, Step 200/18020, Loss(triple): 8.662569, Loss(predicate): 7.968180, LR: 0.000186, Speed: 110995.25 tokens/sec | Epoch Time Left: 4:08:26 | Total Time Left: 12:24:16
[2025-07-04 20:33:30] Epoch 2/4, Step 250/18020, Loss(triple): 8.244606, Loss(predicate): 7.987101, LR: 0.000186, Speed: 118979.52 tokens/sec | Epoch Time Left: 4:07:08 | Total Time Left: 12:23:34
[2025-07-04 20:34:11] Epoch 2/4, Step 300/18020, Loss(triple): 7.996712, Loss(predicate): 8.821788, LR: 0.000186, Speed: 120472.89 tokens/sec | Epoch Time Left: 4:05:32 | Total Time Left: 12:22:51
[2025-07-04 20:34:52] Epoch 2/4, Step 350/18020, Loss(triple): 8.222561, Loss(predicate): 11.031250, LR: 0.000186, Speed: 118826.40 tokens/sec | Epoch Time Left: 4:04:40 | Total Time Left: 12:22:09
[2025-07-04 20:35:33] Epoch 2/4, Step 400/18020, Loss(triple): 8.755869, Loss(predicate): 11.709889, LR: 0.000186, Speed: 119467.04 tokens/sec | Epoch Time Left: 4:03:41 | Total Time Left: 12:21:27
[2025-07-04 20:36:23] Epoch 2/4, Step 450/18020, Loss(triple): 8.684849, Loss(predicate): 12.871765, LR: 0.000185, Speed: 99496.14 tokens/sec | Epoch Time Left: 4:08:08 | Total Time Left: 12:21:09
[2025-07-04 20:37:05] === GPU性能分析 (平均每步) ===
[2025-07-04 20:37:05] 前向传播: 8.09ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 20:37:05] GPU总时间: 10.01ms, 实际迭代时间: 847.04ms, GPU利用率: 1.2%
[2025-07-04 20:37:05] ==================================================
[2025-07-04 20:37:05] === 三元组预测示例 ===
[2025-07-04 20:37:05] 样本1目标: Figueirópolis d'Oeste instance of municipality
[2025-07-04 20:37:05] 样本1预测: countryF instinasara il<69>kag wayance ter ofationrit- A
[2025-07-04 20:37:05] 样本2目标: British Columbia country Canada
[2025-07-04 20:37:05] 样本2预测: countryF entyhar L on<6F>nag ativeist ter ofiaance in C
[2025-07-04 20:37:05] ==================
[2025-07-04 20:37:05] Epoch 2/4, Step 500/18020, Loss(triple): 9.004381, Loss(predicate): 8.449504, LR: 0.000185, Speed: 116056.02 tokens/sec | Epoch Time Left: 4:07:25 | Total Time Left: 12:20:30
[2025-07-04 20:37:46] Epoch 2/4, Step 550/18020, Loss(triple): 8.346695, Loss(predicate): 8.182790, LR: 0.000185, Speed: 119379.80 tokens/sec | Epoch Time Left: 4:06:05 | Total Time Left: 12:19:47
[2025-07-04 20:38:27] Epoch 2/4, Step 600/18020, Loss(triple): 8.139980, Loss(predicate): 9.233073, LR: 0.000185, Speed: 121233.58 tokens/sec | Epoch Time Left: 4:04:33 | Total Time Left: 12:19:03
[2025-07-04 20:39:07] Epoch 2/4, Step 650/18020, Loss(triple): 8.496647, Loss(predicate): 9.264171, LR: 0.000185, Speed: 121092.44 tokens/sec | Epoch Time Left: 4:03:10 | Total Time Left: 12:18:19
[2025-07-04 20:39:48] Epoch 2/4, Step 700/18020, Loss(triple): 8.998301, Loss(predicate): 9.329224, LR: 0.000185, Speed: 119755.90 tokens/sec | Epoch Time Left: 4:02:04 | Total Time Left: 12:17:36
[2025-07-04 20:40:29] Epoch 2/4, Step 750/18020, Loss(triple): 8.853563, Loss(predicate): 12.656830, LR: 0.000185, Speed: 120329.34 tokens/sec | Epoch Time Left: 4:00:57 | Total Time Left: 12:16:53
[2025-07-04 20:41:15] Epoch 2/4, Step 800/18020, Loss(triple): 8.521412, Loss(predicate): 9.992065, LR: 0.000185, Speed: 106401.37 tokens/sec | Epoch Time Left: 4:01:49 | Total Time Left: 12:16:25
[2025-07-04 20:42:00] Epoch 2/4, Step 850/18020, Loss(triple): 8.485966, Loss(predicate): 8.273682, LR: 0.000184, Speed: 109246.86 tokens/sec | Epoch Time Left: 4:02:04 | Total Time Left: 12:15:53
[2025-07-04 20:42:42] Epoch 2/4, Step 900/18020, Loss(triple): 8.573277, Loss(predicate): 6.368449, LR: 0.000184, Speed: 119278.36 tokens/sec | Epoch Time Left: 4:01:01 | Total Time Left: 12:15:11
[2025-07-04 20:43:22] Epoch 2/4, Step 950/18020, Loss(triple): 8.367649, Loss(predicate): 10.788910, LR: 0.000184, Speed: 120113.29 tokens/sec | Epoch Time Left: 3:59:56 | Total Time Left: 12:14:28
[2025-07-04 20:44:04] === GPU性能分析 (平均每步) ===
[2025-07-04 20:44:04] 前向传播: 7.96ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 20:44:04] GPU总时间: 9.88ms, 实际迭代时间: 823.51ms, GPU利用率: 1.2%
[2025-07-04 20:44:04] ==================================================
[2025-07-04 20:44:04] === 三元组预测示例 ===
[2025-07-04 20:44:04] 样本1目标: Pao-Lu Hsu date of birth September 1, 1910
[2025-07-04 20:44:04] 样本1预测: countryM biristhaaru ilia del upationohan occth Pan
[2025-07-04 20:44:04] 样本2目标: Pseudosesia taxon rank genus
[2025-07-04 20:44:04] 样本2预测: instC instoonisea usisusus axon species rankax gen t
[2025-07-04 20:44:04] ==================
[2025-07-04 20:44:04] Epoch 2/4, Step 1000/18020, Loss(triple): 9.116312, Loss(predicate): 7.910197, LR: 0.000184, Speed: 119371.37 tokens/sec | Epoch Time Left: 3:58:57 | Total Time Left: 12:13:46
[2025-07-04 20:44:44] Epoch 2/4, Step 1050/18020, Loss(triple): 8.589977, Loss(predicate): 7.441111, LR: 0.000184, Speed: 120397.53 tokens/sec | Epoch Time Left: 3:57:53 | Total Time Left: 12:13:02
[2025-07-04 20:45:25] Epoch 2/4, Step 1100/18020, Loss(triple): 8.769566, Loss(predicate): 12.450480, LR: 0.000184, Speed: 120695.52 tokens/sec | Epoch Time Left: 3:56:51 | Total Time Left: 12:12:19
[2025-07-04 20:46:06] Epoch 2/4, Step 1150/18020, Loss(triple): 8.645527, Loss(predicate): 12.111969, LR: 0.000184, Speed: 120757.23 tokens/sec | Epoch Time Left: 3:55:50 | Total Time Left: 12:11:35
[2025-07-04 20:46:47] Epoch 2/4, Step 1200/18020, Loss(triple): 8.455103, Loss(predicate): 11.613312, LR: 0.000184, Speed: 120665.92 tokens/sec | Epoch Time Left: 3:54:51 | Total Time Left: 12:10:52
[2025-07-04 20:47:28] Epoch 2/4, Step 1250/18020, Loss(triple): 8.703501, Loss(predicate): 12.212169, LR: 0.000183, Speed: 119606.99 tokens/sec | Epoch Time Left: 3:53:59 | Total Time Left: 12:10:09
[2025-07-04 20:48:08] Epoch 2/4, Step 1300/18020, Loss(triple): 8.654804, Loss(predicate): 10.064992, LR: 0.000183, Speed: 120912.67 tokens/sec | Epoch Time Left: 3:53:01 | Total Time Left: 12:09:25
[2025-07-04 20:48:49] Epoch 2/4, Step 1350/18020, Loss(triple): 8.604593, Loss(predicate): 12.331807, LR: 0.000183, Speed: 120981.49 tokens/sec | Epoch Time Left: 3:52:05 | Total Time Left: 12:08:42
[2025-07-04 20:49:30] Epoch 2/4, Step 1400/18020, Loss(triple): 8.680607, Loss(predicate): 9.925923, LR: 0.000183, Speed: 120014.67 tokens/sec | Epoch Time Left: 3:51:13 | Total Time Left: 12:07:59
[2025-07-04 20:50:11] Epoch 2/4, Step 1450/18020, Loss(triple): 8.330475, Loss(predicate): 11.688680, LR: 0.000183, Speed: 120945.11 tokens/sec | Epoch Time Left: 3:50:19 | Total Time Left: 12:07:15
[2025-07-04 20:50:52] === GPU性能分析 (平均每步) ===
[2025-07-04 20:50:52] 前向传播: 8.02ms, 损失计算: 0.02ms, 反向传播: 1.95ms, 优化器: 0.00ms
[2025-07-04 20:50:52] GPU总时间: 9.98ms, 实际迭代时间: 818.36ms, GPU利用率: 1.2%
[2025-07-04 20:50:52] ==================================================
[2025-07-04 20:50:52] === 三元组预测示例 ===
[2025-07-04 20:50:52] 样本1目标: Kasthuri occupation actress
[2025-07-04 20:50:52] 样本1预测: countryF biryhaeu oniaoet ortation States ofmth B C
[2025-07-04 20:50:52] 样本2目标: Ivo Georgiev sport football
[2025-07-04 20:50:52] 样本2预测: countryW birurhaaran an<61>kel ortall footerbth ofver
[2025-07-04 20:50:52] ==================
[2025-07-04 20:50:52] Epoch 2/4, Step 1500/18020, Loss(triple): 8.851183, Loss(predicate): 8.194051, LR: 0.000183, Speed: 120123.33 tokens/sec | Epoch Time Left: 3:49:29 | Total Time Left: 12:06:32
[2025-07-04 20:51:32] Epoch 2/4, Step 1550/18020, Loss(triple): 8.560959, Loss(predicate): 7.942159, LR: 0.000183, Speed: 121005.85 tokens/sec | Epoch Time Left: 3:48:36 | Total Time Left: 12:05:48
[2025-07-04 20:52:13] Epoch 2/4, Step 1600/18020, Loss(triple): 8.640007, Loss(predicate): 9.806783, LR: 0.000182, Speed: 121086.31 tokens/sec | Epoch Time Left: 3:47:43 | Total Time Left: 12:05:04
[2025-07-04 20:52:54] Epoch 2/4, Step 1650/18020, Loss(triple): 8.405960, Loss(predicate): 6.098379, LR: 0.000182, Speed: 119807.58 tokens/sec | Epoch Time Left: 3:46:56 | Total Time Left: 12:04:22
[2025-07-04 20:53:34] Epoch 2/4, Step 1700/18020, Loss(triple): 8.799953, Loss(predicate): 6.256042, LR: 0.000182, Speed: 120731.05 tokens/sec | Epoch Time Left: 3:46:06 | Total Time Left: 12:03:38
[2025-07-04 20:54:15] Epoch 2/4, Step 1750/18020, Loss(triple): 8.248829, Loss(predicate): 9.081218, LR: 0.000182, Speed: 120371.43 tokens/sec | Epoch Time Left: 3:45:18 | Total Time Left: 12:02:55
[2025-07-04 20:54:56] Epoch 2/4, Step 1800/18020, Loss(triple): 8.005016, Loss(predicate): 9.364502, LR: 0.000182, Speed: 121225.91 tokens/sec | Epoch Time Left: 3:44:27 | Total Time Left: 12:02:11
[2025-07-04 20:55:37] Epoch 2/4, Step 1850/18020, Loss(triple): 8.420399, Loss(predicate): 9.052388, LR: 0.000182, Speed: 120739.71 tokens/sec | Epoch Time Left: 3:43:39 | Total Time Left: 12:01:28
[2025-07-04 20:56:18] Epoch 2/4, Step 1900/18020, Loss(triple): 8.117638, Loss(predicate): 10.915629, LR: 0.000182, Speed: 120021.54 tokens/sec | Epoch Time Left: 3:42:53 | Total Time Left: 12:00:45
[2025-07-04 20:56:58] Epoch 2/4, Step 1950/18020, Loss(triple): 8.188829, Loss(predicate): 8.430797, LR: 0.000182, Speed: 120889.29 tokens/sec | Epoch Time Left: 3:42:04 | Total Time Left: 12:00:02
[2025-07-04 20:57:39] === GPU性能分析 (平均每步) ===
[2025-07-04 20:57:39] 前向传播: 8.02ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 20:57:39] GPU总时间: 9.93ms, 实际迭代时间: 814.69ms, GPU利用率: 1.2%
[2025-07-04 20:57:39] ==================================================
[2025-07-04 20:57:39] === 三元组预测示例 ===
[2025-07-04 20:57:39] 样本1目标: Kyrgyzstani parliamentary election, 2010 country Kyrgyzstan
[2025-07-04 20:57:39] 样本1预测: countryF entyas (ran onmor 6ate3 ofmion in 19
[2025-07-04 20:57:39] 样本2目标: Peggys Cove, Nova Scotia located in the administrative territorial entity Halifax Regional Municipality
[2025-07-04 20:57:39] 样本2预测: countryK adyinutr H anin,r ativeist ter ofiarit the C
[2025-07-04 20:57:39] ==================
[2025-07-04 20:57:39] Epoch 2/4, Step 2000/18020, Loss(triple): 8.634449, Loss(predicate): 9.601634, LR: 0.000181, Speed: 120663.89 tokens/sec | Epoch Time Left: 3:41:17 | Total Time Left: 11:59:18
[2025-07-04 20:58:25] Epoch 2/4, Step 2050/18020, Loss(triple): 8.308929, Loss(predicate): 8.736796, LR: 0.000181, Speed: 106057.20 tokens/sec | Epoch Time Left: 3:41:14 | Total Time Left: 11:58:50
[2025-07-04 20:59:09] Epoch 2/4, Step 2100/18020, Loss(triple): 8.979057, Loss(predicate): 8.056244, LR: 0.000181, Speed: 112691.98 tokens/sec | Epoch Time Left: 3:40:48 | Total Time Left: 11:58:14
[2025-07-04 20:59:50] Epoch 2/4, Step 2150/18020, Loss(triple): 8.554138, Loss(predicate): 9.117085, LR: 0.000181, Speed: 118798.70 tokens/sec | Epoch Time Left: 3:40:04 | Total Time Left: 11:57:32
[2025-07-04 21:00:31] Epoch 2/4, Step 2200/18020, Loss(triple): 8.803385, Loss(predicate): 10.986745, LR: 0.000181, Speed: 121099.49 tokens/sec | Epoch Time Left: 3:39:16 | Total Time Left: 11:56:48
[2025-07-04 21:01:11] Epoch 2/4, Step 2250/18020, Loss(triple): 8.231403, Loss(predicate): 10.361318, LR: 0.000181, Speed: 121042.12 tokens/sec | Epoch Time Left: 3:38:27 | Total Time Left: 11:56:05
[2025-07-04 21:01:55] Epoch 2/4, Step 2300/18020, Loss(triple): 8.534189, Loss(predicate): 11.536702, LR: 0.000181, Speed: 113830.97 tokens/sec | Epoch Time Left: 3:37:57 | Total Time Left: 11:55:27
[2025-07-04 21:02:49] Epoch 2/4, Step 2350/18020, Loss(triple): 8.058960, Loss(predicate): 8.236755, LR: 0.000180, Speed: 90119.74 tokens/sec | Epoch Time Left: 3:38:41 | Total Time Left: 11:55:19
[2025-07-04 21:03:36] Epoch 2/4, Step 2400/18020, Loss(triple): 8.644007, Loss(predicate): 8.609019, LR: 0.000180, Speed: 104736.35 tokens/sec | Epoch Time Left: 3:38:32 | Total Time Left: 11:54:51
[2025-07-04 21:04:20] Epoch 2/4, Step 2450/18020, Loss(triple): 8.937584, Loss(predicate): 14.971232, LR: 0.000180, Speed: 111967.66 tokens/sec | Epoch Time Left: 3:38:03 | Total Time Left: 11:54:16
[2025-07-04 21:05:02] === GPU性能分析 (平均每步) ===
[2025-07-04 21:05:02] 前向传播: 7.99ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 21:05:02] GPU总时间: 9.91ms, 实际迭代时间: 834.65ms, GPU利用率: 1.2%
[2025-07-04 21:05:02] ==================================================
[2025-07-04 21:05:02] === 三元组预测示例 ===
[2025-07-04 21:05:02] 样本1目标: Alexandra Sokoloff country of citizenship American
[2025-07-04 21:05:02] 样本1预测: countryK biryh (.d erk Dre Americanitiz of cide countryens
[2025-07-04 21:05:02] 样本2目标: New Lebanon, Ohio located in the administrative territorial entity Montgomery County, Ohio
[2025-07-04 21:05:02] 样本2预测: countryK entymutor H eriz,ay iality locatedmianrit, C
[2025-07-04 21:05:02] ==================
[2025-07-04 21:05:02] Epoch 2/4, Step 2500/18020, Loss(triple): 8.255405, Loss(predicate): 11.109843, LR: 0.000180, Speed: 117778.12 tokens/sec | Epoch Time Left: 3:37:19 | Total Time Left: 11:53:35
[2025-07-04 21:05:43] Epoch 2/4, Step 2550/18020, Loss(triple): 8.006861, Loss(predicate): 12.472137, LR: 0.000180, Speed: 119521.58 tokens/sec | Epoch Time Left: 3:36:32 | Total Time Left: 11:52:52
[2025-07-04 21:06:24] Epoch 2/4, Step 2600/18020, Loss(triple): 8.370079, Loss(predicate): 8.968079, LR: 0.000180, Speed: 118452.37 tokens/sec | Epoch Time Left: 3:35:47 | Total Time Left: 11:52:11
[2025-07-04 21:07:05] Epoch 2/4, Step 2650/18020, Loss(triple): 8.353691, Loss(predicate): 7.085063, LR: 0.000179, Speed: 119626.01 tokens/sec | Epoch Time Left: 3:34:59 | Total Time Left: 11:51:28
[2025-07-04 21:07:46] Epoch 2/4, Step 2700/18020, Loss(triple): 8.092991, Loss(predicate): 8.119568, LR: 0.000179, Speed: 120106.80 tokens/sec | Epoch Time Left: 3:34:12 | Total Time Left: 11:50:45
[2025-07-04 21:08:28] Epoch 2/4, Step 2750/18020, Loss(triple): 8.252014, Loss(predicate): 14.257874, LR: 0.000179, Speed: 118920.56 tokens/sec | Epoch Time Left: 3:33:26 | Total Time Left: 11:50:03
[2025-07-04 21:09:09] Epoch 2/4, Step 2800/18020, Loss(triple): 8.575520, Loss(predicate): 11.986522, LR: 0.000179, Speed: 119410.47 tokens/sec | Epoch Time Left: 3:32:40 | Total Time Left: 11:49:21
[2025-07-04 21:09:50] Epoch 2/4, Step 2850/18020, Loss(triple): 8.764040, Loss(predicate): 8.258159, LR: 0.000179, Speed: 118373.28 tokens/sec | Epoch Time Left: 3:31:56 | Total Time Left: 11:48:39
[2025-07-04 21:10:31] Epoch 2/4, Step 2900/18020, Loss(triple): 8.320721, Loss(predicate): 9.439900, LR: 0.000179, Speed: 120007.12 tokens/sec | Epoch Time Left: 3:31:09 | Total Time Left: 11:47:57
[2025-07-04 21:11:12] Epoch 2/4, Step 2950/18020, Loss(triple): 8.372698, Loss(predicate): 9.258016, LR: 0.000179, Speed: 120195.27 tokens/sec | Epoch Time Left: 3:30:22 | Total Time Left: 11:47:14
[2025-07-04 21:11:54] === GPU性能分析 (平均每步) ===
[2025-07-04 21:11:54] 前向传播: 7.97ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 21:11:54] GPU总时间: 9.89ms, 实际迭代时间: 827.48ms, GPU利用率: 1.2%
[2025-07-04 21:11:54] ==================================================
[2025-07-04 21:11:54] === 三元组预测示例 ===
[2025-07-04 21:11:54] 样本1目标: Bita Farrahi place of birth Tehran
[2025-07-04 21:11:54] 样本1预测: RB birohiaru an<61>nun upationoh of occth Pan
[2025-07-04 21:11:54] 样本2目标: 2013 World Aquatics Championships location Palau Sant Jordi
[2025-07-04 21:11:54] 样本2预测: countryI insturasaM G onA,T 2um States ofpion- A
[2025-07-04 21:11:54] ==================
[2025-07-04 21:11:54] Epoch 2/4, Step 3000/18020, Loss(triple): 8.484852, Loss(predicate): 11.520070, LR: 0.000178, Speed: 118799.77 tokens/sec | Epoch Time Left: 3:29:38 | Total Time Left: 11:46:32
[2025-07-04 21:12:35] Epoch 2/4, Step 3050/18020, Loss(triple): 8.548538, Loss(predicate): 6.266398, LR: 0.000178, Speed: 119701.76 tokens/sec | Epoch Time Left: 3:28:52 | Total Time Left: 11:45:49
[2025-07-04 21:13:16] Epoch 2/4, Step 3100/18020, Loss(triple): 8.624470, Loss(predicate): 10.461406, LR: 0.000178, Speed: 120096.84 tokens/sec | Epoch Time Left: 3:28:06 | Total Time Left: 11:45:06
[2025-07-04 21:13:56] Epoch 2/4, Step 3150/18020, Loss(triple): 8.607914, Loss(predicate): 10.775630, LR: 0.000178, Speed: 120388.02 tokens/sec | Epoch Time Left: 3:27:19 | Total Time Left: 11:44:23
[2025-07-04 21:14:41] Epoch 2/4, Step 3200/18020, Loss(triple): 8.133745, Loss(predicate): 13.339798, LR: 0.000178, Speed: 110594.91 tokens/sec | Epoch Time Left: 3:26:49 | Total Time Left: 11:43:49
[2025-07-04 21:15:23] Epoch 2/4, Step 3250/18020, Loss(triple): 8.417213, Loss(predicate): 9.901001, LR: 0.000178, Speed: 117368.34 tokens/sec | Epoch Time Left: 3:26:07 | Total Time Left: 11:43:08
[2025-07-04 21:16:04] Epoch 2/4, Step 3300/18020, Loss(triple): 8.025570, Loss(predicate): 12.910014, LR: 0.000178, Speed: 118955.16 tokens/sec | Epoch Time Left: 3:25:23 | Total Time Left: 11:42:26
[2025-07-04 21:16:45] Epoch 2/4, Step 3350/18020, Loss(triple): 8.437693, Loss(predicate): 11.229401, LR: 0.000177, Speed: 119996.77 tokens/sec | Epoch Time Left: 3:24:37 | Total Time Left: 11:41:43
[2025-07-04 21:17:26] Epoch 2/4, Step 3400/18020, Loss(triple): 8.117462, Loss(predicate): 10.227966, LR: 0.000177, Speed: 119741.01 tokens/sec | Epoch Time Left: 3:23:52 | Total Time Left: 11:41:00
[2025-07-04 21:18:08] Epoch 2/4, Step 3450/18020, Loss(triple): 8.099857, Loss(predicate): 9.501465, LR: 0.000177, Speed: 118299.98 tokens/sec | Epoch Time Left: 3:23:09 | Total Time Left: 11:40:19
[2025-07-04 21:18:49] === GPU性能分析 (平均每步) ===
[2025-07-04 21:18:49] 前向传播: 7.94ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 21:18:49] GPU总时间: 9.86ms, 实际迭代时间: 823.40ms, GPU利用率: 1.2%
[2025-07-04 21:18:49] ==================================================
[2025-07-04 21:18:49] === 三元组预测示例 ===
[2025-07-04 21:18:49] 样本1目标: Idaho Falls Idaho Temple located in the administrative territorial entity Idaho
[2025-07-04 21:18:49] 样本1预测: countryF adyhard in<69>nre ialist ter ofiaance in C
[2025-07-04 21:18:49] 样本2目标: Xi'an University of Science and Technology country China
[2025-07-04 21:18:49] 样本2预测: countryK entyhara ianiaoah ialist ter ofiarit the C
[2025-07-04 21:18:49] ==================
[2025-07-04 21:18:49] Epoch 2/4, Step 3500/18020, Loss(triple): 8.337078, Loss(predicate): 13.324738, LR: 0.000177, Speed: 119387.90 tokens/sec | Epoch Time Left: 3:22:24 | Total Time Left: 11:39:37
[2025-07-04 21:19:37] Epoch 2/4, Step 3550/18020, Loss(triple): 8.008625, Loss(predicate): 8.165172, LR: 0.000177, Speed: 101303.10 tokens/sec | Epoch Time Left: 3:22:10 | Total Time Left: 11:39:12
[2025-07-04 21:20:30] Epoch 2/4, Step 3600/18020, Loss(triple): 8.311920, Loss(predicate): 7.598724, LR: 0.000177, Speed: 93814.13 tokens/sec | Epoch Time Left: 3:22:10 | Total Time Left: 11:38:55
[2025-07-04 21:21:20] Epoch 2/4, Step 3650/18020, Loss(triple): 8.135990, Loss(predicate): 5.286845, LR: 0.000176, Speed: 98584.96 tokens/sec | Epoch Time Left: 3:21:59 | Total Time Left: 11:38:33
[2025-07-04 21:22:08] Epoch 2/4, Step 3700/18020, Loss(triple): 8.454994, Loss(predicate): 10.558594, LR: 0.000176, Speed: 100554.90 tokens/sec | Epoch Time Left: 3:21:42 | Total Time Left: 11:38:09
[2025-07-04 21:22:55] Epoch 2/4, Step 3750/18020, Loss(triple): 7.943956, Loss(predicate): 10.666809, LR: 0.000176, Speed: 104819.52 tokens/sec | Epoch Time Left: 3:21:18 | Total Time Left: 11:37:39
[2025-07-04 21:23:37] Epoch 2/4, Step 3800/18020, Loss(triple): 8.006273, Loss(predicate): 9.411479, LR: 0.000176, Speed: 119135.59 tokens/sec | Epoch Time Left: 3:20:31 | Total Time Left: 11:36:57
[2025-07-04 21:24:18] Epoch 2/4, Step 3850/18020, Loss(triple): 8.572220, Loss(predicate): 14.488739, LR: 0.000176, Speed: 119759.55 tokens/sec | Epoch Time Left: 3:19:44 | Total Time Left: 11:36:14
[2025-07-04 21:25:06] Epoch 2/4, Step 3900/18020, Loss(triple): 8.427958, Loss(predicate): 7.756348, LR: 0.000176, Speed: 102069.97 tokens/sec | Epoch Time Left: 3:19:23 | Total Time Left: 11:35:47
[2025-07-04 21:25:52] Epoch 2/4, Step 3950/18020, Loss(triple): 8.146957, Loss(predicate): 10.111969, LR: 0.000176, Speed: 105414.82 tokens/sec | Epoch Time Left: 3:18:56 | Total Time Left: 11:35:17
[2025-07-04 21:26:35] === GPU性能分析 (平均每步) ===
[2025-07-04 21:26:35] 前向传播: 8.01ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 21:26:35] GPU总时间: 9.92ms, 实际迭代时间: 847.34ms, GPU利用率: 1.2%
[2025-07-04 21:26:35] ==================================================
[2025-07-04 21:26:35] === 三元组预测示例 ===
[2025-07-04 21:26:35] 样本1目标: Rosyam Nor occupation actor
[2025-07-04 21:26:35] 样本1预测: countryS birohiaran on<6F>or upationoh of,th 2 19
[2025-07-04 21:26:35] 样本2目标: Tony Ambrose sport rally driver
[2025-07-04 21:26:35] 样本2预测: AmericanThe birfvent (.an il<69> del 7atebor of,th 2 19
[2025-07-04 21:26:35] ==================
[2025-07-04 21:26:35] Epoch 2/4, Step 4000/18020, Loss(triple): 8.632111, Loss(predicate): 13.162292, LR: 0.000175, Speed: 116014.62 tokens/sec | Epoch Time Left: 3:18:14 | Total Time Left: 11:34:37
[2025-07-04 21:27:19] Epoch 2/4, Step 4050/18020, Loss(triple): 8.927500, Loss(predicate): 8.327952, LR: 0.000175, Speed: 111372.55 tokens/sec | Epoch Time Left: 3:17:37 | Total Time Left: 11:34:01
[2025-07-04 21:28:01] Epoch 2/4, Step 4100/18020, Loss(triple): 8.794840, Loss(predicate): 12.205302, LR: 0.000175, Speed: 116192.15 tokens/sec | Epoch Time Left: 3:16:54 | Total Time Left: 11:33:21
[2025-07-04 21:28:43] Epoch 2/4, Step 4150/18020, Loss(triple): 8.865608, Loss(predicate): 10.106282, LR: 0.000175, Speed: 118386.57 tokens/sec | Epoch Time Left: 3:16:09 | Total Time Left: 11:32:39
[2025-07-04 21:29:24] Epoch 2/4, Step 4200/18020, Loss(triple): 8.213358, Loss(predicate): 13.779735, LR: 0.000175, Speed: 120354.83 tokens/sec | Epoch Time Left: 3:15:21 | Total Time Left: 11:31:56
[2025-07-04 21:30:04] Epoch 2/4, Step 4250/18020, Loss(triple): 8.454355, Loss(predicate): 7.992635, LR: 0.000175, Speed: 120543.41 tokens/sec | Epoch Time Left: 3:14:33 | Total Time Left: 11:31:12
[2025-07-04 21:30:45] Epoch 2/4, Step 4300/18020, Loss(triple): 8.372293, Loss(predicate): 6.601410, LR: 0.000174, Speed: 120205.88 tokens/sec | Epoch Time Left: 3:13:46 | Total Time Left: 11:30:29
[2025-07-04 21:31:26] Epoch 2/4, Step 4350/18020, Loss(triple): 8.468719, Loss(predicate): 13.031199, LR: 0.000174, Speed: 120422.55 tokens/sec | Epoch Time Left: 3:12:59 | Total Time Left: 11:29:46
[2025-07-04 21:32:07] Epoch 2/4, Step 4400/18020, Loss(triple): 8.920040, Loss(predicate): 12.723694, LR: 0.000174, Speed: 119403.78 tokens/sec | Epoch Time Left: 3:12:13 | Total Time Left: 11:29:03
[2025-07-04 21:32:48] Epoch 2/4, Step 4450/18020, Loss(triple): 8.462666, Loss(predicate): 9.312286, LR: 0.000174, Speed: 120582.06 tokens/sec | Epoch Time Left: 3:11:26 | Total Time Left: 11:28:19
[2025-07-04 21:33:29] === GPU性能分析 (平均每步) ===
[2025-07-04 21:33:29] 前向传播: 7.97ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 21:33:29] GPU总时间: 9.89ms, 实际迭代时间: 814.42ms, GPU利用率: 1.2%
[2025-07-04 21:33:29] ==================================================
[2025-07-04 21:33:29] === 三元组预测示例 ===
[2025-07-04 21:33:29] 样本1目标: Megacephala coerulea taxon rank species
[2025-07-04 21:33:29] 样本1预测: countryS entoonaara iciausus riton species rankaxph t
[2025-07-04 21:33:29] 样本2目标: Kimnyole ethnic group Nandi
[2025-07-04 21:33:29] 样本2预测: countryF entomgaea oninous ialance ter ofmr Ser
[2025-07-04 21:33:29] ==================
[2025-07-04 21:33:29] Epoch 2/4, Step 4500/18020, Loss(triple): 8.525742, Loss(predicate): 10.815969, LR: 0.000174, Speed: 120704.54 tokens/sec | Epoch Time Left: 3:10:39 | Total Time Left: 11:27:36
[2025-07-04 21:34:10] Epoch 2/4, Step 4550/18020, Loss(triple): 8.326700, Loss(predicate): 8.281769, LR: 0.000174, Speed: 119805.33 tokens/sec | Epoch Time Left: 3:09:53 | Total Time Left: 11:26:53
[2025-07-04 21:34:51] Epoch 2/4, Step 4600/18020, Loss(triple): 8.520350, Loss(predicate): 7.534586, LR: 0.000173, Speed: 120505.88 tokens/sec | Epoch Time Left: 3:09:06 | Total Time Left: 11:26:09
[2025-07-04 21:35:32] Epoch 2/4, Step 4650/18020, Loss(triple): 8.520273, Loss(predicate): 7.652161, LR: 0.000173, Speed: 119700.46 tokens/sec | Epoch Time Left: 3:08:20 | Total Time Left: 11:25:27
[2025-07-04 21:36:12] Epoch 2/4, Step 4700/18020, Loss(triple): 8.306551, Loss(predicate): 9.467448, LR: 0.000173, Speed: 120279.08 tokens/sec | Epoch Time Left: 3:07:34 | Total Time Left: 11:24:43
[2025-07-04 21:36:53] Epoch 2/4, Step 4750/18020, Loss(triple): 8.374012, Loss(predicate): 6.353312, LR: 0.000173, Speed: 120263.43 tokens/sec | Epoch Time Left: 3:06:48 | Total Time Left: 11:24:00
[2025-07-04 21:37:34] Epoch 2/4, Step 4800/18020, Loss(triple): 8.801388, Loss(predicate): 7.156748, LR: 0.000173, Speed: 119488.31 tokens/sec | Epoch Time Left: 3:06:03 | Total Time Left: 11:23:17
[2025-07-04 21:38:15] Epoch 2/4, Step 4850/18020, Loss(triple): 7.868347, Loss(predicate): 10.487122, LR: 0.000173, Speed: 120038.12 tokens/sec | Epoch Time Left: 3:05:17 | Total Time Left: 11:22:34
[2025-07-04 21:38:57] Epoch 2/4, Step 4900/18020, Loss(triple): 8.032501, Loss(predicate): 9.071055, LR: 0.000172, Speed: 118868.55 tokens/sec | Epoch Time Left: 3:04:32 | Total Time Left: 11:21:52
[2025-07-04 21:39:38] Epoch 2/4, Step 4950/18020, Loss(triple): 7.950357, Loss(predicate): 8.527924, LR: 0.000172, Speed: 120112.27 tokens/sec | Epoch Time Left: 3:03:47 | Total Time Left: 11:21:09
[2025-07-04 21:40:19] === GPU性能分析 (平均每步) ===
[2025-07-04 21:40:19] 前向传播: 7.97ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 21:40:19] GPU总时间: 9.89ms, 实际迭代时间: 817.18ms, GPU利用率: 1.2%
[2025-07-04 21:40:19] ==================================================
[2025-07-04 21:40:19] === 三元组预测示例 ===
[2025-07-04 21:40:19] 样本1目标: Megacyllene designata taxon rank species
[2025-07-04 21:40:19] 样本1预测: itC instusoniee anpusul axon species rankaxaris t
[2025-07-04 21:40:19] 样本2目标: Réjaumont, Gers instance of commune
[2025-07-04 21:40:19] 样本2预测: instC insttDaee oniaoay Eance commun ofance-- of
[2025-07-04 21:40:19] ==================
[2025-07-04 21:40:19] Epoch 2/4, Step 5000/18020, Loss(triple): 8.406944, Loss(predicate): 7.111033, LR: 0.000172, Speed: 120296.21 tokens/sec | Epoch Time Left: 3:03:01 | Total Time Left: 11:20:26
[2025-07-04 21:41:00] Epoch 2/4, Step 5050/18020, Loss(triple): 7.862865, Loss(predicate): 14.859599, LR: 0.000172, Speed: 119769.97 tokens/sec | Epoch Time Left: 3:02:16 | Total Time Left: 11:19:43
[2025-07-04 21:41:40] Epoch 2/4, Step 5100/18020, Loss(triple): 8.177170, Loss(predicate): 10.910268, LR: 0.000172, Speed: 120314.97 tokens/sec | Epoch Time Left: 3:01:31 | Total Time Left: 11:19:00
[2025-07-04 21:42:22] Epoch 2/4, Step 5150/18020, Loss(triple): 8.289856, Loss(predicate): 13.923787, LR: 0.000172, Speed: 119423.26 tokens/sec | Epoch Time Left: 3:00:46 | Total Time Left: 11:18:17
[2025-07-04 21:43:02] Epoch 2/4, Step 5200/18020, Loss(triple): 8.471497, Loss(predicate): 5.621287, LR: 0.000171, Speed: 120599.03 tokens/sec | Epoch Time Left: 3:00:00 | Total Time Left: 11:17:34
[2025-07-04 21:43:43] Epoch 2/4, Step 5250/18020, Loss(triple): 8.248138, Loss(predicate): 8.880452, LR: 0.000171, Speed: 120553.98 tokens/sec | Epoch Time Left: 2:59:15 | Total Time Left: 11:16:51
[2025-07-04 21:44:24] Epoch 2/4, Step 5300/18020, Loss(triple): 8.091782, Loss(predicate): 9.125854, LR: 0.000171, Speed: 119800.94 tokens/sec | Epoch Time Left: 2:58:30 | Total Time Left: 11:16:08
[2025-07-04 21:45:05] Epoch 2/4, Step 5350/18020, Loss(triple): 8.417795, Loss(predicate): 10.144847, LR: 0.000171, Speed: 120703.03 tokens/sec | Epoch Time Left: 2:57:45 | Total Time Left: 11:15:24
[2025-07-04 21:45:46] Epoch 2/4, Step 5400/18020, Loss(triple): 8.010019, Loss(predicate): 8.267517, LR: 0.000171, Speed: 119813.60 tokens/sec | Epoch Time Left: 2:57:00 | Total Time Left: 11:14:42
[2025-07-04 21:46:27] Epoch 2/4, Step 5450/18020, Loss(triple): 8.585361, Loss(predicate): 10.467641, LR: 0.000171, Speed: 120379.11 tokens/sec | Epoch Time Left: 2:56:15 | Total Time Left: 11:13:58
[2025-07-04 21:47:07] === GPU性能分析 (平均每步) ===
[2025-07-04 21:47:07] 前向传播: 7.96ms, 损失计算: 0.02ms, 反向传播: 1.95ms, 优化器: 0.00ms
[2025-07-04 21:47:07] GPU总时间: 9.92ms, 实际迭代时间: 814.69ms, GPU利用率: 1.2%
[2025-07-04 21:47:07] ==================================================
[2025-07-04 21:47:07] === 三元组预测示例 ===
[2025-07-04 21:47:07] 样本1目标: Zdeňka Vejnarová place of birth Jilemnice
[2025-07-04 21:47:07] 样本1预测: countryK biryhaeu an<61>nil upate bir of occth S 19
[2025-07-04 21:47:07] 样本2目标: Barry Wood (cricketer) place of birth Ossett, Yorkshire
[2025-07-04 21:47:07] 样本2预测: RJ birll H (rd oniz,et 7ate bir of cth 2 19
[2025-07-04 21:47:07] ==================
[2025-07-04 21:47:07] Epoch 2/4, Step 5500/18020, Loss(triple): 8.268330, Loss(predicate): 7.701864, LR: 0.000170, Speed: 120664.36 tokens/sec | Epoch Time Left: 2:55:30 | Total Time Left: 11:13:15
[2025-07-04 21:47:48] Epoch 2/4, Step 5550/18020, Loss(triple): 8.187983, Loss(predicate): 12.246857, LR: 0.000170, Speed: 119885.42 tokens/sec | Epoch Time Left: 2:54:46 | Total Time Left: 11:12:32
[2025-07-04 21:48:29] Epoch 2/4, Step 5600/18020, Loss(triple): 8.172272, Loss(predicate): 16.944529, LR: 0.000170, Speed: 120425.81 tokens/sec | Epoch Time Left: 2:54:01 | Total Time Left: 11:11:49
[2025-07-04 21:49:10] Epoch 2/4, Step 5650/18020, Loss(triple): 8.109528, Loss(predicate): 12.209859, LR: 0.000170, Speed: 119383.34 tokens/sec | Epoch Time Left: 2:53:17 | Total Time Left: 11:11:07
[2025-07-04 21:49:51] Epoch 2/4, Step 5700/18020, Loss(triple): 7.722672, Loss(predicate): 9.426178, LR: 0.000170, Speed: 120513.46 tokens/sec | Epoch Time Left: 2:52:32 | Total Time Left: 11:10:23
[2025-07-04 21:50:32] Epoch 2/4, Step 5750/18020, Loss(triple): 7.946430, Loss(predicate): 7.622660, LR: 0.000170, Speed: 120467.21 tokens/sec | Epoch Time Left: 2:51:48 | Total Time Left: 11:09:40
[2025-07-04 21:51:13] Epoch 2/4, Step 5800/18020, Loss(triple): 8.255585, Loss(predicate): 13.990509, LR: 0.000169, Speed: 119632.24 tokens/sec | Epoch Time Left: 2:51:04 | Total Time Left: 11:08:58
[2025-07-04 21:51:54] Epoch 2/4, Step 5850/18020, Loss(triple): 7.739468, Loss(predicate): 9.538300, LR: 0.000169, Speed: 120479.94 tokens/sec | Epoch Time Left: 2:50:19 | Total Time Left: 11:08:14
[2025-07-04 21:52:35] Epoch 2/4, Step 5900/18020, Loss(triple): 8.243860, Loss(predicate): 10.220764, LR: 0.000169, Speed: 119694.11 tokens/sec | Epoch Time Left: 2:49:36 | Total Time Left: 11:07:32
[2025-07-04 21:53:16] Epoch 2/4, Step 5950/18020, Loss(triple): 8.052269, Loss(predicate): 14.128489, LR: 0.000169, Speed: 120770.56 tokens/sec | Epoch Time Left: 2:48:51 | Total Time Left: 11:06:48
[2025-07-04 21:53:56] === GPU性能分析 (平均每步) ===
[2025-07-04 21:53:56] 前向传播: 7.97ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 21:53:56] GPU总时间: 9.88ms, 实际迭代时间: 815.47ms, GPU利用率: 1.2%
[2025-07-04 21:53:56] ==================================================
[2025-07-04 21:53:56] === 三元组预测示例 ===
[2025-07-04 21:53:56] 样本1目标: Ronnie Peterson date of birth 14 February 1944
[2025-07-04 21:53:56] 样本1预测: countryK biryharu aill dom 7ate bir of,th M 19
[2025-07-04 21:53:56] 样本2目标: Subdromomeryx taxon rank genus
[2025-07-04 21:53:56] 样本2预测: countryM entoonaca alatusus axonus rankax gen t
[2025-07-04 21:53:56] ==================
[2025-07-04 21:53:56] Epoch 2/4, Step 6000/18020, Loss(triple): 8.052507, Loss(predicate): 10.549977, LR: 0.000169, Speed: 120549.22 tokens/sec | Epoch Time Left: 2:48:07 | Total Time Left: 11:06:05
[2025-07-04 21:54:38] Epoch 2/4, Step 6050/18020, Loss(triple): 7.947998, Loss(predicate): 9.545868, LR: 0.000168, Speed: 119341.00 tokens/sec | Epoch Time Left: 2:47:23 | Total Time Left: 11:05:23
[2025-07-04 21:55:18] Epoch 2/4, Step 6100/18020, Loss(triple): 8.587585, Loss(predicate): 12.585979, LR: 0.000168, Speed: 120768.59 tokens/sec | Epoch Time Left: 2:46:39 | Total Time Left: 11:04:39
[2025-07-04 21:55:59] Epoch 2/4, Step 6150/18020, Loss(triple): 8.520365, Loss(predicate): 7.384817, LR: 0.000168, Speed: 119650.67 tokens/sec | Epoch Time Left: 2:45:55 | Total Time Left: 11:03:57
[2025-07-04 21:56:40] Epoch 2/4, Step 6200/18020, Loss(triple): 8.246775, Loss(predicate): 11.411754, LR: 0.000168, Speed: 120816.92 tokens/sec | Epoch Time Left: 2:45:11 | Total Time Left: 11:03:14
[2025-07-04 21:57:21] Epoch 2/4, Step 6250/18020, Loss(triple): 7.799244, Loss(predicate): 6.431081, LR: 0.000168, Speed: 120247.01 tokens/sec | Epoch Time Left: 2:44:27 | Total Time Left: 11:02:31
[2025-07-04 21:58:02] Epoch 2/4, Step 6300/18020, Loss(triple): 8.584316, Loss(predicate): 7.998240, LR: 0.000168, Speed: 119266.43 tokens/sec | Epoch Time Left: 2:43:44 | Total Time Left: 11:01:48
[2025-07-04 21:58:43] Epoch 2/4, Step 6350/18020, Loss(triple): 8.074280, Loss(predicate): 7.010376, LR: 0.000167, Speed: 120041.50 tokens/sec | Epoch Time Left: 2:43:00 | Total Time Left: 11:01:06
[2025-07-04 21:59:24] Epoch 2/4, Step 6400/18020, Loss(triple): 8.111292, Loss(predicate): 12.882050, LR: 0.000167, Speed: 119288.81 tokens/sec | Epoch Time Left: 2:42:17 | Total Time Left: 11:00:23
[2025-07-04 22:00:05] Epoch 2/4, Step 6450/18020, Loss(triple): 8.492296, Loss(predicate): 11.626332, LR: 0.000167, Speed: 120468.69 tokens/sec | Epoch Time Left: 2:41:33 | Total Time Left: 10:59:40
[2025-07-04 22:00:46] === GPU性能分析 (平均每步) ===
[2025-07-04 22:00:46] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 22:00:46] GPU总时间: 9.92ms, 实际迭代时间: 819.34ms, GPU利用率: 1.2%
[2025-07-04 22:00:46] ==================================================
[2025-07-04 22:00:46] === 三元组预测示例 ===
[2025-07-04 22:00:46] 样本1目标: Man on the Train (2011 film) director Mary McGuckian
[2025-07-04 22:00:46] 样本1预测: countryM entygaaran erill,T filin bir ofm or B)
[2025-07-04 22:00:46] 样本2目标: Aksella Luts occupation actress
[2025-07-04 22:00:46] 样本2预测: GKensond Ha.u oniz Dom upation bir of occth J 19
[2025-07-04 22:00:46] ==================
[2025-07-04 22:00:46] Epoch 2/4, Step 6500/18020, Loss(triple): 7.967758, Loss(predicate): 6.296356, LR: 0.000167, Speed: 119978.89 tokens/sec | Epoch Time Left: 2:40:49 | Total Time Left: 10:58:57
[2025-07-04 22:01:27] Epoch 2/4, Step 6550/18020, Loss(triple): 8.340937, Loss(predicate): 8.920670, LR: 0.000167, Speed: 119169.04 tokens/sec | Epoch Time Left: 2:40:06 | Total Time Left: 10:58:15
[2025-07-04 22:02:08] Epoch 2/4, Step 6600/18020, Loss(triple): 8.218981, Loss(predicate): 8.955403, LR: 0.000167, Speed: 120640.50 tokens/sec | Epoch Time Left: 2:39:23 | Total Time Left: 10:57:32
[2025-07-04 22:02:49] Epoch 2/4, Step 6650/18020, Loss(triple): 8.609011, Loss(predicate): 7.074717, LR: 0.000166, Speed: 119778.77 tokens/sec | Epoch Time Left: 2:38:39 | Total Time Left: 10:56:50
[2025-07-04 22:03:30] Epoch 2/4, Step 6700/18020, Loss(triple): 8.093994, Loss(predicate): 7.151388, LR: 0.000166, Speed: 120545.59 tokens/sec | Epoch Time Left: 2:37:56 | Total Time Left: 10:56:07
[2025-07-04 22:04:11] Epoch 2/4, Step 6750/18020, Loss(triple): 8.100895, Loss(predicate): 8.357747, LR: 0.000166, Speed: 120734.58 tokens/sec | Epoch Time Left: 2:37:12 | Total Time Left: 10:55:23
[2025-07-04 22:04:52] Epoch 2/4, Step 6800/18020, Loss(triple): 7.966522, Loss(predicate): 7.707245, LR: 0.000166, Speed: 119341.01 tokens/sec | Epoch Time Left: 2:36:29 | Total Time Left: 10:54:41
[2025-07-04 22:05:36] Epoch 2/4, Step 6850/18020, Loss(triple): 8.062540, Loss(predicate): 8.878540, LR: 0.000166, Speed: 111950.19 tokens/sec | Epoch Time Left: 2:35:50 | Total Time Left: 10:54:04
[2025-07-04 22:06:17] Epoch 2/4, Step 6900/18020, Loss(triple): 7.866695, Loss(predicate): 8.976257, LR: 0.000165, Speed: 117852.80 tokens/sec | Epoch Time Left: 2:35:08 | Total Time Left: 10:53:23
[2025-07-04 22:06:58] Epoch 2/4, Step 6950/18020, Loss(triple): 8.501055, Loss(predicate): 11.795552, LR: 0.000165, Speed: 120115.45 tokens/sec | Epoch Time Left: 2:34:25 | Total Time Left: 10:52:40
[2025-07-04 22:07:39] === GPU性能分析 (平均每步) ===
[2025-07-04 22:07:39] 前向传播: 7.97ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 22:07:39] GPU总时间: 9.89ms, 实际迭代时间: 814.86ms, GPU利用率: 1.2%
[2025-07-04 22:07:39] ==================================================
[2025-07-04 22:07:39] === 三元组预测示例 ===
[2025-07-04 22:07:39] 样本1目标: 2006 Asian Games location Doha
[2025-07-04 22:07:39] 样本1预测: country20 instisasaM G owA,ay 9ass3 ofquion- A
[2025-07-04 22:07:39] 样本2目标: Frank Cady country of citizenship American
[2025-07-04 22:07:39] 样本2预测: RJ6y Hi.am ickyom Americanitiz of chip countryens
[2025-07-04 22:07:39] ==================
[2025-07-04 22:07:39] Epoch 2/4, Step 7000/18020, Loss(triple): 8.450624, Loss(predicate): 12.168223, LR: 0.000165, Speed: 120638.71 tokens/sec | Epoch Time Left: 2:33:41 | Total Time Left: 10:51:57
[2025-07-04 22:08:20] Epoch 2/4, Step 7050/18020, Loss(triple): 8.498459, Loss(predicate): 7.040894, LR: 0.000165, Speed: 120023.24 tokens/sec | Epoch Time Left: 2:32:58 | Total Time Left: 10:51:14
[2025-07-04 22:09:01] Epoch 2/4, Step 7100/18020, Loss(triple): 8.354044, Loss(predicate): 9.014445, LR: 0.000165, Speed: 118973.70 tokens/sec | Epoch Time Left: 2:32:15 | Total Time Left: 10:50:32
[2025-07-04 22:09:42] Epoch 2/4, Step 7150/18020, Loss(triple): 8.681934, Loss(predicate): 10.832997, LR: 0.000164, Speed: 120059.23 tokens/sec | Epoch Time Left: 2:31:32 | Total Time Left: 10:49:49
[2025-07-04 22:10:23] Epoch 2/4, Step 7200/18020, Loss(triple): 8.037760, Loss(predicate): 7.479513, LR: 0.000164, Speed: 120538.41 tokens/sec | Epoch Time Left: 2:30:49 | Total Time Left: 10:49:06
[2025-07-04 22:11:04] Epoch 2/4, Step 7250/18020, Loss(triple): 8.219398, Loss(predicate): 10.181447, LR: 0.000164, Speed: 120461.15 tokens/sec | Epoch Time Left: 2:30:06 | Total Time Left: 10:48:23
[2025-07-04 22:11:45] Epoch 2/4, Step 7300/18020, Loss(triple): 8.142139, Loss(predicate): 17.086874, LR: 0.000164, Speed: 119806.29 tokens/sec | Epoch Time Left: 2:29:23 | Total Time Left: 10:47:41
[2025-07-04 22:12:26] Epoch 2/4, Step 7350/18020, Loss(triple): 8.045017, Loss(predicate): 11.698364, LR: 0.000164, Speed: 119190.31 tokens/sec | Epoch Time Left: 2:28:40 | Total Time Left: 10:46:59
[2025-07-04 22:13:07] Epoch 2/4, Step 7400/18020, Loss(triple): 7.609299, Loss(predicate): 10.508514, LR: 0.000164, Speed: 120024.12 tokens/sec | Epoch Time Left: 2:27:57 | Total Time Left: 10:46:16
[2025-07-04 22:13:48] Epoch 2/4, Step 7450/18020, Loss(triple): 8.098988, Loss(predicate): 11.879730, LR: 0.000163, Speed: 120461.79 tokens/sec | Epoch Time Left: 2:27:14 | Total Time Left: 10:45:33
[2025-07-04 22:14:28] === GPU性能分析 (平均每步) ===
[2025-07-04 22:14:28] 前向传播: 8.03ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 22:14:28] GPU总时间: 9.95ms, 实际迭代时间: 811.58ms, GPU利用率: 1.2%
[2025-07-04 22:14:28] ==================================================
[2025-07-04 22:14:28] === 三元组预测示例 ===
[2025-07-04 22:14:28] 样本1目标: Nitin Sawhney occupation composer
[2025-07-04 22:14:28] 样本1预测: countryP origoas (ro ianjzay upation bir of occth Mici
[2025-07-04 22:14:28] 样本2目标: Cagnicourt instance of commune
[2025-07-04 22:14:28] 样本2预测: instC insttun (ee ict-et (ance commun ofance- inst of
[2025-07-04 22:14:28] ==================
[2025-07-04 22:14:28] Epoch 2/4, Step 7500/18020, Loss(triple): 8.338722, Loss(predicate): 10.212708, LR: 0.000163, Speed: 121126.85 tokens/sec | Epoch Time Left: 2:26:30 | Total Time Left: 10:44:50
[2025-07-04 22:15:09] Epoch 2/4, Step 7550/18020, Loss(triple): 8.154774, Loss(predicate): 8.661885, LR: 0.000163, Speed: 120308.90 tokens/sec | Epoch Time Left: 2:25:47 | Total Time Left: 10:44:07
[2025-07-04 22:15:50] Epoch 2/4, Step 7600/18020, Loss(triple): 8.201502, Loss(predicate): 10.925679, LR: 0.000163, Speed: 119471.82 tokens/sec | Epoch Time Left: 2:25:05 | Total Time Left: 10:43:25
[2025-07-04 22:16:31] Epoch 2/4, Step 7650/18020, Loss(triple): 7.958811, Loss(predicate): 5.880808, LR: 0.000163, Speed: 120095.36 tokens/sec | Epoch Time Left: 2:24:22 | Total Time Left: 10:42:42
[2025-07-04 22:17:12] Epoch 2/4, Step 7700/18020, Loss(triple): 7.790806, Loss(predicate): 11.038716, LR: 0.000162, Speed: 120612.79 tokens/sec | Epoch Time Left: 2:23:38 | Total Time Left: 10:41:59
[2025-07-04 22:17:53] Epoch 2/4, Step 7750/18020, Loss(triple): 7.888111, Loss(predicate): 10.967163, LR: 0.000162, Speed: 121323.28 tokens/sec | Epoch Time Left: 2:22:55 | Total Time Left: 10:41:16
[2025-07-04 22:18:33] Epoch 2/4, Step 7800/18020, Loss(triple): 8.199253, Loss(predicate): 11.808309, LR: 0.000162, Speed: 120468.13 tokens/sec | Epoch Time Left: 2:22:12 | Total Time Left: 10:40:33
[2025-07-04 22:19:15] Epoch 2/4, Step 7850/18020, Loss(triple): 8.285934, Loss(predicate): 9.970683, LR: 0.000162, Speed: 118903.15 tokens/sec | Epoch Time Left: 2:21:30 | Total Time Left: 10:39:51
[2025-07-04 22:19:56] Epoch 2/4, Step 7900/18020, Loss(triple): 8.383104, Loss(predicate): 5.321503, LR: 0.000162, Speed: 119957.80 tokens/sec | Epoch Time Left: 2:20:47 | Total Time Left: 10:39:08
[2025-07-04 22:20:37] Epoch 2/4, Step 7950/18020, Loss(triple): 8.255207, Loss(predicate): 9.399231, LR: 0.000161, Speed: 119873.34 tokens/sec | Epoch Time Left: 2:20:04 | Total Time Left: 10:38:26
[2025-07-04 22:21:17] === GPU性能分析 (平均每步) ===
[2025-07-04 22:21:17] 前向传播: 7.96ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 22:21:17] GPU总时间: 9.88ms, 实际迭代时间: 813.82ms, GPU利用率: 1.2%
[2025-07-04 22:21:17] ==================================================
[2025-07-04 22:21:17] === 三元组预测示例 ===
[2025-07-04 22:21:17] 样本1目标: Allan Agar place of birth Pontefract
[2025-07-04 22:21:17] 样本1预测: placeJ birllh (rd onill Del ortall footerbth sper
[2025-07-04 22:21:17] 样本2目标: Holmes à Court Gallery instance of art
[2025-07-04 22:21:17] 样本2预测: country20 adomhialMam onill Del Americaniver States ofiaance country Can
[2025-07-04 22:21:17] ==================
[2025-07-04 22:21:17] Epoch 2/4, Step 8000/18020, Loss(triple): 8.494432, Loss(predicate): 6.344879, LR: 0.000161, Speed: 120793.70 tokens/sec | Epoch Time Left: 2:19:21 | Total Time Left: 10:37:43
[2025-07-04 22:21:58] Epoch 2/4, Step 8050/18020, Loss(triple): 8.117237, Loss(predicate): 11.126454, LR: 0.000161, Speed: 120391.63 tokens/sec | Epoch Time Left: 2:18:39 | Total Time Left: 10:37:00
[2025-07-04 22:22:40] Epoch 2/4, Step 8100/18020, Loss(triple): 8.282297, Loss(predicate): 8.741821, LR: 0.000161, Speed: 118911.21 tokens/sec | Epoch Time Left: 2:17:56 | Total Time Left: 10:36:18
[2025-07-04 22:23:20] Epoch 2/4, Step 8150/18020, Loss(triple): 8.003555, Loss(predicate): 9.161366, LR: 0.000161, Speed: 120211.31 tokens/sec | Epoch Time Left: 2:17:14 | Total Time Left: 10:35:35
[2025-07-04 22:24:02] Epoch 2/4, Step 8200/18020, Loss(triple): 8.023142, Loss(predicate): 11.180491, LR: 0.000161, Speed: 119529.24 tokens/sec | Epoch Time Left: 2:16:31 | Total Time Left: 10:34:53
[2025-07-04 22:24:54] Epoch 2/4, Step 8250/18020, Loss(triple): 8.283457, Loss(predicate): 12.748851, LR: 0.000160, Speed: 94337.00 tokens/sec | Epoch Time Left: 2:16:02 | Total Time Left: 10:34:30
[2025-07-04 22:25:47] Epoch 2/4, Step 8300/18020, Loss(triple): 7.833214, Loss(predicate): 9.514689, LR: 0.000160, Speed: 92592.33 tokens/sec | Epoch Time Left: 2:15:33 | Total Time Left: 10:34:09
[2025-07-04 22:26:37] Epoch 2/4, Step 8350/18020, Loss(triple): 8.099985, Loss(predicate): 17.359629, LR: 0.000160, Speed: 98171.50 tokens/sec | Epoch Time Left: 2:15:01 | Total Time Left: 10:33:42
[2025-07-04 22:27:26] Epoch 2/4, Step 8400/18020, Loss(triple): 7.863472, Loss(predicate): 11.186046, LR: 0.000160, Speed: 99080.77 tokens/sec | Epoch Time Left: 2:14:28 | Total Time Left: 10:33:14
[2025-07-04 22:28:09] Epoch 2/4, Step 8450/18020, Loss(triple): 8.098429, Loss(predicate): 10.348724, LR: 0.000160, Speed: 116445.77 tokens/sec | Epoch Time Left: 2:13:46 | Total Time Left: 10:32:33
[2025-07-04 22:28:50] === GPU性能分析 (平均每步) ===
[2025-07-04 22:28:50] 前向传播: 7.94ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 22:28:50] GPU总时间: 9.86ms, 实际迭代时间: 832.64ms, GPU利用率: 1.2%
[2025-07-04 22:28:50] ==================================================
[2025-07-04 22:28:50] === 三元组预测示例 ===
[2025-07-04 22:28:50] 样本1目标: Zaio country Morocco
[2025-07-04 22:28:50] 样本1预测: countryO entistgara enin,ay alityance ter oficance- of
[2025-07-04 22:28:50] 样本2目标: The Memory Keeper's Daughter country of origin American
[2025-07-04 22:28:50] 样本2预测: countryThe origanceg (ean eror Dr songin L ofgeance Mer
[2025-07-04 22:28:50] ==================
[2025-07-04 22:28:50] Epoch 2/4, Step 8500/18020, Loss(triple): 8.000183, Loss(predicate): 9.035420, LR: 0.000159, Speed: 118062.69 tokens/sec | Epoch Time Left: 2:13:04 | Total Time Left: 10:31:52
[2025-07-04 22:29:36] Epoch 2/4, Step 8550/18020, Loss(triple): 8.057587, Loss(predicate): 8.391225, LR: 0.000159, Speed: 106662.82 tokens/sec | Epoch Time Left: 2:12:27 | Total Time Left: 10:31:18
[2025-07-04 22:30:20] Epoch 2/4, Step 8600/18020, Loss(triple): 8.121286, Loss(predicate): 14.099172, LR: 0.000159, Speed: 112850.67 tokens/sec | Epoch Time Left: 2:11:46 | Total Time Left: 10:30:40
[2025-07-04 22:31:07] Epoch 2/4, Step 8650/18020, Loss(triple): 8.271515, Loss(predicate): 10.167775, LR: 0.000159, Speed: 104165.48 tokens/sec | Epoch Time Left: 2:11:10 | Total Time Left: 10:30:08
[2025-07-04 22:31:51] Epoch 2/4, Step 8700/18020, Loss(triple): 8.254005, Loss(predicate): 7.449158, LR: 0.000159, Speed: 111013.03 tokens/sec | Epoch Time Left: 2:10:31 | Total Time Left: 10:29:30
[2025-07-04 22:32:35] Epoch 2/4, Step 8750/18020, Loss(triple): 7.576557, Loss(predicate): 13.456838, LR: 0.000158, Speed: 112716.12 tokens/sec | Epoch Time Left: 2:09:50 | Total Time Left: 10:28:52
[2025-07-04 22:33:25] Epoch 2/4, Step 8800/18020, Loss(triple): 8.012300, Loss(predicate): 11.404897, LR: 0.000158, Speed: 97436.82 tokens/sec | Epoch Time Left: 2:09:17 | Total Time Left: 10:28:25
[2025-07-04 22:34:09] Epoch 2/4, Step 8850/18020, Loss(triple): 7.986557, Loss(predicate): 8.999858, LR: 0.000158, Speed: 112536.32 tokens/sec | Epoch Time Left: 2:08:37 | Total Time Left: 10:27:47
[2025-07-04 22:34:51] Epoch 2/4, Step 8900/18020, Loss(triple): 8.856043, Loss(predicate): 20.649668, LR: 0.000158, Speed: 118602.52 tokens/sec | Epoch Time Left: 2:07:54 | Total Time Left: 10:27:05
[2025-07-04 22:35:31] Epoch 2/4, Step 8950/18020, Loss(triple): 8.093033, Loss(predicate): 11.085052, LR: 0.000158, Speed: 120731.49 tokens/sec | Epoch Time Left: 2:07:10 | Total Time Left: 10:26:22
[2025-07-04 22:36:12] === GPU性能分析 (平均每步) ===
[2025-07-04 22:36:12] 前向传播: 7.95ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 22:36:12] GPU总时间: 9.87ms, 实际迭代时间: 814.22ms, GPU利用率: 1.2%
[2025-07-04 22:36:12] ==================================================
[2025-07-04 22:36:12] === 三元组预测示例 ===
[2025-07-04 22:36:12] 样本1目标: Marajul located in the administrative territorial entity Bakeshluchay Rural District
[2025-07-04 22:36:12] 样本1预测: countryM entyharan an<61> Dah ialers Proversian whole, P
[2025-07-04 22:36:12] 样本2目标: Estádio Juca Ribeiro country Brazil
[2025-07-04 22:36:12] 样本2预测: GB insttgaeu zkkak ialance ter ofiar in D
[2025-07-04 22:36:12] ==================
[2025-07-04 22:36:12] Epoch 2/4, Step 9000/18020, Loss(triple): 8.304035, Loss(predicate): 11.769450, LR: 0.000157, Speed: 120733.60 tokens/sec | Epoch Time Left: 2:06:27 | Total Time Left: 10:25:39
[2025-07-04 22:36:53] Epoch 2/4, Step 9050/18020, Loss(triple): 8.462641, Loss(predicate): 11.677562, LR: 0.000157, Speed: 119869.49 tokens/sec | Epoch Time Left: 2:05:44 | Total Time Left: 10:24:56
[2025-07-04 22:37:38] Epoch 2/4, Step 9100/18020, Loss(triple): 8.081135, Loss(predicate): 8.798920, LR: 0.000157, Speed: 109496.11 tokens/sec | Epoch Time Left: 2:05:05 | Total Time Left: 10:24:20
[2025-07-04 22:38:19] Epoch 2/4, Step 9150/18020, Loss(triple): 7.554981, Loss(predicate): 8.770009, LR: 0.000157, Speed: 118864.29 tokens/sec | Epoch Time Left: 2:04:22 | Total Time Left: 10:23:37
[2025-07-04 22:39:00] Epoch 2/4, Step 9200/18020, Loss(triple): 8.402651, Loss(predicate): 7.326508, LR: 0.000157, Speed: 120605.81 tokens/sec | Epoch Time Left: 2:03:39 | Total Time Left: 10:22:54
[2025-07-04 22:39:52] Epoch 2/4, Step 9250/18020, Loss(triple): 7.866333, Loss(predicate): 6.556895, LR: 0.000156, Speed: 94435.15 tokens/sec | Epoch Time Left: 2:03:06 | Total Time Left: 10:22:30
[2025-07-04 22:40:41] Epoch 2/4, Step 9300/18020, Loss(triple): 8.512156, Loss(predicate): 12.526225, LR: 0.000156, Speed: 100579.88 tokens/sec | Epoch Time Left: 2:02:30 | Total Time Left: 10:22:00
[2025-07-04 22:41:22] Epoch 2/4, Step 9350/18020, Loss(triple): 7.940994, Loss(predicate): 11.918762, LR: 0.000156, Speed: 119618.41 tokens/sec | Epoch Time Left: 2:01:47 | Total Time Left: 10:21:17
[2025-07-04 22:42:03] Epoch 2/4, Step 9400/18020, Loss(triple): 8.048634, Loss(predicate): 9.375478, LR: 0.000156, Speed: 120752.41 tokens/sec | Epoch Time Left: 2:01:04 | Total Time Left: 10:20:34
[2025-07-04 22:42:44] Epoch 2/4, Step 9450/18020, Loss(triple): 8.028854, Loss(predicate): 8.939860, LR: 0.000156, Speed: 119519.78 tokens/sec | Epoch Time Left: 2:00:21 | Total Time Left: 10:19:51
[2025-07-04 22:43:25] === GPU性能分析 (平均每步) ===
[2025-07-04 22:43:25] 前向传播: 7.94ms, 损失计算: 0.02ms, 反向传播: 1.95ms, 优化器: 0.00ms
[2025-07-04 22:43:25] GPU总时间: 9.90ms, 实际迭代时间: 816.54ms, GPU利用率: 1.2%
[2025-07-04 22:43:25] ==================================================
[2025-07-04 22:43:25] === 三元组预测示例 ===
[2025-07-04 22:43:25] 样本1目标: Neftchi Baku league or competition Azerbaijan Premier League
[2025-07-04 22:43:25] 样本1预测: countryThe<68>omhiMu onk-ak ortort teradiar Ber
[2025-07-04 22:43:25] 样本2目标: Urth 4 author Peter Stone
[2025-07-04 22:43:25] 样本2预测: countryI instyil (rd ert,et songance bir ofbth Ser
[2025-07-04 22:43:25] ==================
[2025-07-04 22:43:25] Epoch 2/4, Step 9500/18020, Loss(triple): 7.590509, Loss(predicate): 8.242554, LR: 0.000155, Speed: 120391.22 tokens/sec | Epoch Time Left: 1:59:37 | Total Time Left: 10:19:08
[2025-07-04 22:44:05] Epoch 2/4, Step 9550/18020, Loss(triple): 7.699036, Loss(predicate): 6.447367, LR: 0.000155, Speed: 120967.17 tokens/sec | Epoch Time Left: 1:58:54 | Total Time Left: 10:18:25
[2025-07-04 22:44:46] Epoch 2/4, Step 9600/18020, Loss(triple): 8.089432, Loss(predicate): 5.771098, LR: 0.000155, Speed: 121401.52 tokens/sec | Epoch Time Left: 1:58:10 | Total Time Left: 10:17:41
[2025-07-04 22:45:26] Epoch 2/4, Step 9650/18020, Loss(triple): 8.201698, Loss(predicate): 10.185506, LR: 0.000155, Speed: 121078.29 tokens/sec | Epoch Time Left: 1:57:27 | Total Time Left: 10:16:58
[2025-07-04 22:46:07] Epoch 2/4, Step 9700/18020, Loss(triple): 8.065027, Loss(predicate): 8.409637, LR: 0.000155, Speed: 119672.77 tokens/sec | Epoch Time Left: 1:56:44 | Total Time Left: 10:16:15
[2025-07-04 22:46:48] Epoch 2/4, Step 9750/18020, Loss(triple): 8.124405, Loss(predicate): 10.067769, LR: 0.000154, Speed: 120312.23 tokens/sec | Epoch Time Left: 1:56:01 | Total Time Left: 10:15:32
[2025-07-04 22:47:29] Epoch 2/4, Step 9800/18020, Loss(triple): 7.700100, Loss(predicate): 9.331981, LR: 0.000154, Speed: 120977.96 tokens/sec | Epoch Time Left: 1:55:17 | Total Time Left: 10:14:49
[2025-07-04 22:48:09] Epoch 2/4, Step 9850/18020, Loss(triple): 8.026321, Loss(predicate): 13.852916, LR: 0.000154, Speed: 121205.07 tokens/sec | Epoch Time Left: 1:54:34 | Total Time Left: 10:14:05
[2025-07-04 22:48:50] Epoch 2/4, Step 9900/18020, Loss(triple): 8.057404, Loss(predicate): 11.541809, LR: 0.000154, Speed: 121039.12 tokens/sec | Epoch Time Left: 1:53:51 | Total Time Left: 10:13:22
[2025-07-04 22:49:31] Epoch 2/4, Step 9950/18020, Loss(triple): 7.947105, Loss(predicate): 12.664388, LR: 0.000154, Speed: 119633.00 tokens/sec | Epoch Time Left: 1:53:08 | Total Time Left: 10:12:39
[2025-07-04 22:50:12] === GPU性能分析 (平均每步) ===
[2025-07-04 22:50:12] 前向传播: 7.97ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 22:50:12] GPU总时间: 9.89ms, 实际迭代时间: 814.62ms, GPU利用率: 1.2%
[2025-07-04 22:50:12] ==================================================
[2025-07-04 22:50:12] === 三元组预测示例 ===
[2025-07-04 22:50:12] 样本1目标: Abbey, Saskatchewan country Canada
[2025-07-04 22:50:12] 样本1预测: countryK adyasaran aninnun ialist locatedorativer the O
[2025-07-04 22:50:12] 样本2目标: Tractor Sazi headquarters location Tabriz
[2025-07-04 22:50:12] 样本2预测: countryJensyhaed ankvil ortall footbb sp sper
[2025-07-04 22:50:12] ==================
[2025-07-04 22:50:12] Epoch 2/4, Step 10000/18020, Loss(triple): 7.657108, Loss(predicate): 8.410706, LR: 0.000153, Speed: 120674.96 tokens/sec | Epoch Time Left: 1:52:25 | Total Time Left: 10:11:56
[2025-07-04 22:50:53] Epoch 2/4, Step 10050/18020, Loss(triple): 7.863647, Loss(predicate): 10.777568, LR: 0.000153, Speed: 121053.84 tokens/sec | Epoch Time Left: 1:51:42 | Total Time Left: 10:11:13
[2025-07-04 22:51:33] Epoch 2/4, Step 10100/18020, Loss(triple): 7.709438, Loss(predicate): 10.726140, LR: 0.000153, Speed: 121041.91 tokens/sec | Epoch Time Left: 1:50:58 | Total Time Left: 10:10:30
[2025-07-04 22:52:14] Epoch 2/4, Step 10150/18020, Loss(triple): 7.889843, Loss(predicate): 12.712845, LR: 0.000153, Speed: 121055.43 tokens/sec | Epoch Time Left: 1:50:15 | Total Time Left: 10:09:46
[2025-07-04 22:52:55] Epoch 2/4, Step 10200/18020, Loss(triple): 7.883869, Loss(predicate): 12.483856, LR: 0.000153, Speed: 119580.72 tokens/sec | Epoch Time Left: 1:49:33 | Total Time Left: 10:09:04
[2025-07-04 22:53:36] Epoch 2/4, Step 10250/18020, Loss(triple): 7.894627, Loss(predicate): 10.819142, LR: 0.000152, Speed: 120457.35 tokens/sec | Epoch Time Left: 1:48:50 | Total Time Left: 10:08:21
[2025-07-04 22:54:16] Epoch 2/4, Step 10300/18020, Loss(triple): 8.241922, Loss(predicate): 16.848755, LR: 0.000152, Speed: 121218.87 tokens/sec | Epoch Time Left: 1:48:06 | Total Time Left: 10:07:37
[2025-07-04 22:54:57] Epoch 2/4, Step 10350/18020, Loss(triple): 8.191399, Loss(predicate): 11.562184, LR: 0.000152, Speed: 121151.98 tokens/sec | Epoch Time Left: 1:47:23 | Total Time Left: 10:06:54
[2025-07-04 22:55:37] Epoch 2/4, Step 10400/18020, Loss(triple): 7.864723, Loss(predicate): 9.373494, LR: 0.000152, Speed: 121170.41 tokens/sec | Epoch Time Left: 1:46:40 | Total Time Left: 10:06:11
[2025-07-04 22:56:18] Epoch 2/4, Step 10450/18020, Loss(triple): 8.475662, Loss(predicate): 13.732320, LR: 0.000152, Speed: 120023.94 tokens/sec | Epoch Time Left: 1:45:58 | Total Time Left: 10:05:28
[2025-07-04 22:56:59] === GPU性能分析 (平均每步) ===
[2025-07-04 22:56:59] 前向传播: 8.01ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 22:56:59] GPU总时间: 9.93ms, 实际迭代时间: 813.85ms, GPU利用率: 1.2%
[2025-07-04 22:56:59] ==================================================
[2025-07-04 22:56:59] === 三元组预测示例 ===
[2025-07-04 22:56:59] 样本1目标: Unisławice, Kuyavian-Pomeranian Voivodeship country Poland
[2025-07-04 22:56:59] 样本1预测: countryF entymares olzoand ialist locatedminar in P
[2025-07-04 22:56:59] 样本2目标: Rochelle School of the Arts instance of art school
[2025-07-04 22:56:59] 样本2预测: countryK entyhaeam onob Hil ialist Statesorger the C
[2025-07-04 22:56:59] ==================
[2025-07-04 22:56:59] Epoch 2/4, Step 10500/18020, Loss(triple): 7.796810, Loss(predicate): 10.516978, LR: 0.000151, Speed: 120789.21 tokens/sec | Epoch Time Left: 1:45:15 | Total Time Left: 10:04:45
[2025-07-04 22:57:40] Epoch 2/4, Step 10550/18020, Loss(triple): 8.187946, Loss(predicate): 9.880595, LR: 0.000151, Speed: 120137.38 tokens/sec | Epoch Time Left: 1:44:32 | Total Time Left: 10:04:02
[2025-07-04 22:58:20] Epoch 2/4, Step 10600/18020, Loss(triple): 8.065042, Loss(predicate): 6.518860, LR: 0.000151, Speed: 121397.03 tokens/sec | Epoch Time Left: 1:43:49 | Total Time Left: 10:03:19
[2025-07-04 22:59:01] Epoch 2/4, Step 10650/18020, Loss(triple): 8.207420, Loss(predicate): 7.264771, LR: 0.000151, Speed: 121255.21 tokens/sec | Epoch Time Left: 1:43:06 | Total Time Left: 10:02:35
[2025-07-04 22:59:42] Epoch 2/4, Step 10700/18020, Loss(triple): 7.763597, Loss(predicate): 12.655803, LR: 0.000150, Speed: 119747.87 tokens/sec | Epoch Time Left: 1:42:23 | Total Time Left: 10:01:53
[2025-07-04 23:00:23] Epoch 2/4, Step 10750/18020, Loss(triple): 8.258379, Loss(predicate): 6.890564, LR: 0.000150, Speed: 121059.19 tokens/sec | Epoch Time Left: 1:41:40 | Total Time Left: 10:01:10
[2025-07-04 23:01:04] Epoch 2/4, Step 10800/18020, Loss(triple): 7.922874, Loss(predicate): 9.743378, LR: 0.000150, Speed: 120042.12 tokens/sec | Epoch Time Left: 1:40:58 | Total Time Left: 10:00:27
[2025-07-04 23:01:45] Epoch 2/4, Step 10850/18020, Loss(triple): 7.736689, Loss(predicate): 11.308716, LR: 0.000150, Speed: 119026.83 tokens/sec | Epoch Time Left: 1:40:15 | Total Time Left: 9:59:45
[2025-07-04 23:02:31] Epoch 2/4, Step 10900/18020, Loss(triple): 7.873240, Loss(predicate): 9.949727, LR: 0.000150, Speed: 106494.05 tokens/sec | Epoch Time Left: 1:39:36 | Total Time Left: 9:59:10
[2025-07-04 23:03:20] Epoch 2/4, Step 10950/18020, Loss(triple): 7.667736, Loss(predicate): 7.073944, LR: 0.000149, Speed: 100775.81 tokens/sec | Epoch Time Left: 1:38:59 | Total Time Left: 9:58:39
[2025-07-04 23:04:04] === GPU性能分析 (平均每步) ===
[2025-07-04 23:04:04] 前向传播: 7.97ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 23:04:04] GPU总时间: 9.89ms, 实际迭代时间: 887.30ms, GPU利用率: 1.1%
[2025-07-04 23:04:04] ==================================================
[2025-07-04 23:04:04] === 三元组预测示例 ===
[2025-07-04 23:04:04] 样本1目标: Miguel Rimba place of birth Riberalta
[2025-07-04 23:04:04] 样本1预测: SMensyasa ofu z<>kak ortall foot ofbth sp 19
[2025-07-04 23:04:04] 样本2目标: Trout River (Quebec) located in the administrative territorial entity Quebec
[2025-07-04 23:04:04] 样本2预测: countryG entyhiram anillyy ialiver located ofiverance inst C
[2025-07-04 23:04:04] ==================
[2025-07-04 23:04:04] Epoch 2/4, Step 11000/18020, Loss(triple): 8.034172, Loss(predicate): 8.921275, LR: 0.000149, Speed: 110790.43 tokens/sec | Epoch Time Left: 1:38:18 | Total Time Left: 9:58:01
[2025-07-04 23:04:46] Epoch 2/4, Step 11050/18020, Loss(triple): 8.005802, Loss(predicate): 11.195038, LR: 0.000149, Speed: 117714.41 tokens/sec | Epoch Time Left: 1:37:36 | Total Time Left: 9:57:20
[2025-07-04 23:05:27] Epoch 2/4, Step 11100/18020, Loss(triple): 8.108360, Loss(predicate): 10.464946, LR: 0.000149, Speed: 119198.22 tokens/sec | Epoch Time Left: 1:36:53 | Total Time Left: 9:56:37
[2025-07-04 23:06:08] Epoch 2/4, Step 11150/18020, Loss(triple): 8.226244, Loss(predicate): 7.971334, LR: 0.000149, Speed: 120711.01 tokens/sec | Epoch Time Left: 1:36:11 | Total Time Left: 9:55:54
[2025-07-04 23:06:49] Epoch 2/4, Step 11200/18020, Loss(triple): 7.811922, Loss(predicate): 6.767538, LR: 0.000148, Speed: 120067.21 tokens/sec | Epoch Time Left: 1:35:28 | Total Time Left: 9:55:12
[2025-07-04 23:07:30] Epoch 2/4, Step 11250/18020, Loss(triple): 7.609619, Loss(predicate): 6.115479, LR: 0.000148, Speed: 119958.05 tokens/sec | Epoch Time Left: 1:34:45 | Total Time Left: 9:54:29
[2025-07-04 23:08:11] Epoch 2/4, Step 11300/18020, Loss(triple): 7.954014, Loss(predicate): 11.839284, LR: 0.000148, Speed: 119253.81 tokens/sec | Epoch Time Left: 1:34:03 | Total Time Left: 9:53:47
[2025-07-04 23:08:52] Epoch 2/4, Step 11350/18020, Loss(triple): 8.189713, Loss(predicate): 7.862650, LR: 0.000148, Speed: 119616.56 tokens/sec | Epoch Time Left: 1:33:20 | Total Time Left: 9:53:04
[2025-07-04 23:09:33] Epoch 2/4, Step 11400/18020, Loss(triple): 7.686579, Loss(predicate): 9.705211, LR: 0.000148, Speed: 120879.31 tokens/sec | Epoch Time Left: 1:32:38 | Total Time Left: 9:52:21
[2025-07-04 23:10:14] Epoch 2/4, Step 11450/18020, Loss(triple): 7.864155, Loss(predicate): 8.209361, LR: 0.000147, Speed: 120309.56 tokens/sec | Epoch Time Left: 1:31:55 | Total Time Left: 9:51:38
[2025-07-04 23:10:55] === GPU性能分析 (平均每步) ===
[2025-07-04 23:10:55] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 23:10:55] GPU总时间: 9.92ms, 实际迭代时间: 819.41ms, GPU利用率: 1.2%
[2025-07-04 23:10:55] ==================================================
[2025-07-04 23:10:55] === 三元组预测示例 ===
[2025-07-04 23:10:55] 样本1目标: Frederick Luther Fowke country of citizenship Canada
[2025-07-04 23:10:55] 样本1预测: GJ6y Hren. H onm Net 4ate bir of dth J 18
[2025-07-04 23:10:55] 样本2目标: Jean-Guy Talbot sport ice hockey
[2025-07-04 23:10:55] 样本2预测: GJ birrglel erkyel 7ate bir of,th J 19
[2025-07-04 23:10:55] ==================
[2025-07-04 23:10:55] Epoch 2/4, Step 11500/18020, Loss(triple): 7.565683, Loss(predicate): 12.593160, LR: 0.000147, Speed: 119969.72 tokens/sec | Epoch Time Left: 1:31:12 | Total Time Left: 9:50:55
[2025-07-04 23:11:39] Epoch 2/4, Step 11550/18020, Loss(triple): 8.345154, Loss(predicate): 9.135590, LR: 0.000147, Speed: 109686.98 tokens/sec | Epoch Time Left: 1:30:32 | Total Time Left: 9:50:18
[2025-07-04 23:12:24] Epoch 2/4, Step 11600/18020, Loss(triple): 8.083948, Loss(predicate): 13.580770, LR: 0.000147, Speed: 111043.86 tokens/sec | Epoch Time Left: 1:29:51 | Total Time Left: 9:49:40
[2025-07-04 23:13:06] Epoch 2/4, Step 11650/18020, Loss(triple): 8.361141, Loss(predicate): 6.838328, LR: 0.000146, Speed: 115555.21 tokens/sec | Epoch Time Left: 1:29:10 | Total Time Left: 9:49:00
[2025-07-04 23:13:48] Epoch 2/4, Step 11700/18020, Loss(triple): 7.577911, Loss(predicate): 6.789551, LR: 0.000146, Speed: 117045.43 tokens/sec | Epoch Time Left: 1:28:28 | Total Time Left: 9:48:19
[2025-07-04 23:14:29] Epoch 2/4, Step 11750/18020, Loss(triple): 8.691294, Loss(predicate): 10.824574, LR: 0.000146, Speed: 119490.65 tokens/sec | Epoch Time Left: 1:27:45 | Total Time Left: 9:47:36
[2025-07-04 23:15:10] Epoch 2/4, Step 11800/18020, Loss(triple): 7.821850, Loss(predicate): 10.115468, LR: 0.000146, Speed: 120640.95 tokens/sec | Epoch Time Left: 1:27:03 | Total Time Left: 9:46:53
[2025-07-04 23:15:58] Epoch 2/4, Step 11850/18020, Loss(triple): 7.982014, Loss(predicate): 11.798676, LR: 0.000146, Speed: 102176.51 tokens/sec | Epoch Time Left: 1:26:24 | Total Time Left: 9:46:21
[2025-07-04 23:16:40] Epoch 2/4, Step 11900/18020, Loss(triple): 7.257889, Loss(predicate): 5.500305, LR: 0.000145, Speed: 116084.76 tokens/sec | Epoch Time Left: 1:25:42 | Total Time Left: 9:45:40
[2025-07-04 23:17:22] Epoch 2/4, Step 11950/18020, Loss(triple): 7.830774, Loss(predicate): 12.371572, LR: 0.000145, Speed: 117800.93 tokens/sec | Epoch Time Left: 1:25:00 | Total Time Left: 9:44:59
[2025-07-04 23:18:03] === GPU性能分析 (平均每步) ===
[2025-07-04 23:18:03] 前向传播: 7.96ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 23:18:03] GPU总时间: 9.88ms, 实际迭代时间: 826.02ms, GPU利用率: 1.2%
[2025-07-04 23:18:03] ==================================================
[2025-07-04 23:18:03] === 三元组预测示例 ===
[2025-07-04 23:18:03] 样本1目标: Allan H. Dougall date of birth July 17, 1836
[2025-07-04 23:18:03] 样本1预测: GB6y H.rd oniz,ay 4ate bir of dth 2 18
[2025-07-04 23:18:03] 样本2目标: Dragon Zakura instance of manga
[2025-07-04 23:18:03] 样本2预测: countryDppohstenon on<6F>kak upationz of occ language inst In
[2025-07-04 23:18:03] ==================
[2025-07-04 23:18:03] Epoch 2/4, Step 12000/18020, Loss(triple): 8.091021, Loss(predicate): 13.565125, LR: 0.000145, Speed: 119008.57 tokens/sec | Epoch Time Left: 1:24:17 | Total Time Left: 9:44:16
[2025-07-04 23:18:44] Epoch 2/4, Step 12050/18020, Loss(triple): 7.582424, Loss(predicate): 8.231273, LR: 0.000145, Speed: 119815.08 tokens/sec | Epoch Time Left: 1:23:35 | Total Time Left: 9:43:34
[2025-07-04 23:19:25] Epoch 2/4, Step 12100/18020, Loss(triple): 8.024155, Loss(predicate): 9.295949, LR: 0.000145, Speed: 119972.45 tokens/sec | Epoch Time Left: 1:22:52 | Total Time Left: 9:42:51
[2025-07-04 23:20:07] Epoch 2/4, Step 12150/18020, Loss(triple): 7.729485, Loss(predicate): 7.713755, LR: 0.000144, Speed: 119742.29 tokens/sec | Epoch Time Left: 1:22:10 | Total Time Left: 9:42:09
[2025-07-04 23:20:48] Epoch 2/4, Step 12200/18020, Loss(triple): 8.077518, Loss(predicate): 7.813802, LR: 0.000144, Speed: 117810.19 tokens/sec | Epoch Time Left: 1:21:28 | Total Time Left: 9:41:27
[2025-07-04 23:21:34] Epoch 2/4, Step 12250/18020, Loss(triple): 7.663889, Loss(predicate): 7.333491, LR: 0.000144, Speed: 107792.79 tokens/sec | Epoch Time Left: 1:20:47 | Total Time Left: 9:40:51
[2025-07-04 23:22:22] Epoch 2/4, Step 12300/18020, Loss(triple): 7.782146, Loss(predicate): 7.166199, LR: 0.000144, Speed: 101539.80 tokens/sec | Epoch Time Left: 1:20:08 | Total Time Left: 9:40:18
[2025-07-04 23:23:07] Epoch 2/4, Step 12350/18020, Loss(triple): 8.040382, Loss(predicate): 9.618999, LR: 0.000143, Speed: 108934.05 tokens/sec | Epoch Time Left: 1:19:28 | Total Time Left: 9:39:41
[2025-07-04 23:23:54] Epoch 2/4, Step 12400/18020, Loss(triple): 8.060242, Loss(predicate): 10.059036, LR: 0.000143, Speed: 106191.57 tokens/sec | Epoch Time Left: 1:18:48 | Total Time Left: 9:39:06
[2025-07-04 23:24:40] Epoch 2/4, Step 12450/18020, Loss(triple): 7.997080, Loss(predicate): 8.217418, LR: 0.000143, Speed: 106245.67 tokens/sec | Epoch Time Left: 1:18:08 | Total Time Left: 9:38:30
[2025-07-04 23:25:22] === GPU性能分析 (平均每步) ===
[2025-07-04 23:25:22] 前向传播: 7.93ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 23:25:22] GPU总时间: 9.85ms, 实际迭代时间: 834.55ms, GPU利用率: 1.2%
[2025-07-04 23:25:22] ==================================================
[2025-07-04 23:25:22] === 三元组预测示例 ===
[2025-07-04 23:25:22] 样本1目标: Apex Hill located in the administrative territorial entity Nunavut
[2025-07-04 23:25:22] 样本1预测: countryH entyasaores éjkak ativeity locatedadictr the D
[2025-07-04 23:25:22] 样本2目标: Cnesia taxon rank genus
[2025-07-04 23:25:22] 样本2预测: genC instosonisalmore iciausus axonus rankax gen t
[2025-07-04 23:25:22] ==================
[2025-07-04 23:25:22] Epoch 2/4, Step 12500/18020, Loss(triple): 7.846018, Loss(predicate): 7.979167, LR: 0.000143, Speed: 117793.09 tokens/sec | Epoch Time Left: 1:17:25 | Total Time Left: 9:37:49
[2025-07-04 23:26:03] Epoch 2/4, Step 12550/18020, Loss(triple): 7.791775, Loss(predicate): 8.768107, LR: 0.000143, Speed: 119495.77 tokens/sec | Epoch Time Left: 1:16:43 | Total Time Left: 9:37:06
[2025-07-04 23:26:44] Epoch 2/4, Step 12600/18020, Loss(triple): 8.528873, Loss(predicate): 9.820964, LR: 0.000142, Speed: 120445.65 tokens/sec | Epoch Time Left: 1:16:00 | Total Time Left: 9:36:23
[2025-07-04 23:27:25] Epoch 2/4, Step 12650/18020, Loss(triple): 8.121965, Loss(predicate): 12.211548, LR: 0.000142, Speed: 119671.78 tokens/sec | Epoch Time Left: 1:15:18 | Total Time Left: 9:35:41
[2025-07-04 23:28:06] Epoch 2/4, Step 12700/18020, Loss(triple): 7.609772, Loss(predicate): 11.199391, LR: 0.000142, Speed: 118540.83 tokens/sec | Epoch Time Left: 1:14:35 | Total Time Left: 9:34:59
[2025-07-04 23:28:47] Epoch 2/4, Step 12750/18020, Loss(triple): 7.665354, Loss(predicate): 8.646617, LR: 0.000142, Speed: 119892.67 tokens/sec | Epoch Time Left: 1:13:53 | Total Time Left: 9:34:16
[2025-07-04 23:29:28] Epoch 2/4, Step 12800/18020, Loss(triple): 8.291912, Loss(predicate): 11.670929, LR: 0.000141, Speed: 120044.33 tokens/sec | Epoch Time Left: 1:13:10 | Total Time Left: 9:33:33
[2025-07-04 23:30:09] Epoch 2/4, Step 12850/18020, Loss(triple): 8.066141, Loss(predicate): 7.161051, LR: 0.000141, Speed: 121091.13 tokens/sec | Epoch Time Left: 1:12:28 | Total Time Left: 9:32:50
[2025-07-04 23:30:50] Epoch 2/4, Step 12900/18020, Loss(triple): 8.019222, Loss(predicate): 9.912892, LR: 0.000141, Speed: 119571.32 tokens/sec | Epoch Time Left: 1:11:45 | Total Time Left: 9:32:08
[2025-07-04 23:31:31] Epoch 2/4, Step 12950/18020, Loss(triple): 7.539806, Loss(predicate): 13.086497, LR: 0.000141, Speed: 118989.02 tokens/sec | Epoch Time Left: 1:11:03 | Total Time Left: 9:31:25
[2025-07-04 23:32:12] === GPU性能分析 (平均每步) ===
[2025-07-04 23:32:12] 前向传播: 7.97ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 23:32:12] GPU总时间: 9.89ms, 实际迭代时间: 821.70ms, GPU利用率: 1.2%
[2025-07-04 23:32:12] ==================================================
[2025-07-04 23:32:12] === 三元组预测示例 ===
[2025-07-04 23:32:12] 样本1目标: Nannacara aureocephalus taxon rank species
[2025-07-04 23:32:12] 样本1预测: mP entoonaea alia-us iumon species rankaxes t
[2025-07-04 23:32:12] 样本2目标: Volga tributary Kama
[2025-07-04 23:32:12] 样本2预测: countryO entoasaMa alinoun ialist ter ofiaance B M
[2025-07-04 23:32:12] ==================
[2025-07-04 23:32:12] Epoch 2/4, Step 13000/18020, Loss(triple): 7.514309, Loss(predicate): 8.429688, LR: 0.000141, Speed: 119635.23 tokens/sec | Epoch Time Left: 1:10:20 | Total Time Left: 9:30:43
[2025-07-04 23:32:53] Epoch 2/4, Step 13050/18020, Loss(triple): 8.277439, Loss(predicate): 13.291260, LR: 0.000140, Speed: 119812.76 tokens/sec | Epoch Time Left: 1:09:38 | Total Time Left: 9:30:00
[2025-07-04 23:33:34] Epoch 2/4, Step 13100/18020, Loss(triple): 8.143707, Loss(predicate): 10.558044, LR: 0.000140, Speed: 120541.26 tokens/sec | Epoch Time Left: 1:08:56 | Total Time Left: 9:29:17
[2025-07-04 23:34:15] Epoch 2/4, Step 13150/18020, Loss(triple): 7.735485, Loss(predicate): 13.237208, LR: 0.000140, Speed: 120177.82 tokens/sec | Epoch Time Left: 1:08:13 | Total Time Left: 9:28:35
[2025-07-04 23:34:56] Epoch 2/4, Step 13200/18020, Loss(triple): 7.956226, Loss(predicate): 9.569631, LR: 0.000140, Speed: 119472.25 tokens/sec | Epoch Time Left: 1:07:31 | Total Time Left: 9:27:52
[2025-07-04 23:35:37] Epoch 2/4, Step 13250/18020, Loss(triple): 7.695751, Loss(predicate): 7.839050, LR: 0.000139, Speed: 120145.88 tokens/sec | Epoch Time Left: 1:06:48 | Total Time Left: 9:27:10
[2025-07-04 23:36:18] Epoch 2/4, Step 13300/18020, Loss(triple): 7.649317, Loss(predicate): 9.812317, LR: 0.000139, Speed: 119914.63 tokens/sec | Epoch Time Left: 1:06:06 | Total Time Left: 9:26:27
[2025-07-04 23:36:58] Epoch 2/4, Step 13350/18020, Loss(triple): 7.776787, Loss(predicate): 9.139873, LR: 0.000139, Speed: 121106.15 tokens/sec | Epoch Time Left: 1:05:23 | Total Time Left: 9:25:44
[2025-07-04 23:37:39] Epoch 2/4, Step 13400/18020, Loss(triple): 7.029007, Loss(predicate): 9.495931, LR: 0.000139, Speed: 120455.84 tokens/sec | Epoch Time Left: 1:04:41 | Total Time Left: 9:25:01
[2025-07-04 23:38:20] Epoch 2/4, Step 13450/18020, Loss(triple): 7.655466, Loss(predicate): 5.345469, LR: 0.000139, Speed: 120309.19 tokens/sec | Epoch Time Left: 1:03:59 | Total Time Left: 9:24:18
[2025-07-04 23:39:01] === GPU性能分析 (平均每步) ===
[2025-07-04 23:39:01] 前向传播: 7.98ms, 损失计算: 0.02ms, 反向传播: 1.95ms, 优化器: 0.00ms
[2025-07-04 23:39:01] GPU总时间: 9.95ms, 实际迭代时间: 818.95ms, GPU利用率: 1.2%
[2025-07-04 23:39:01] ==================================================
[2025-07-04 23:39:01] === 三元组预测示例 ===
[2025-07-04 23:39:01] 样本1目标: Copelatus striaticollis taxon rank species
[2025-07-04 23:39:01] 样本1预测: mM entyonaales ilisusus boon species rankaxes t
[2025-07-04 23:39:01] 样本2目标: Oued Rhiou instance of commune
[2025-07-04 23:39:01] 样本2预测: countryL instlhiaru ania,ay upance country ofitancea R
[2025-07-04 23:39:01] ==================
[2025-07-04 23:39:01] Epoch 2/4, Step 13500/18020, Loss(triple): 7.511158, Loss(predicate): 9.802063, LR: 0.000138, Speed: 120037.27 tokens/sec | Epoch Time Left: 1:03:16 | Total Time Left: 9:23:36
[2025-07-04 23:39:42] Epoch 2/4, Step 13550/18020, Loss(triple): 7.749260, Loss(predicate): 7.594543, LR: 0.000138, Speed: 119201.07 tokens/sec | Epoch Time Left: 1:02:34 | Total Time Left: 9:22:53
[2025-07-04 23:40:23] Epoch 2/4, Step 13600/18020, Loss(triple): 8.314156, Loss(predicate): 10.932454, LR: 0.000138, Speed: 120790.08 tokens/sec | Epoch Time Left: 1:01:52 | Total Time Left: 9:22:10
[2025-07-04 23:41:04] Epoch 2/4, Step 13650/18020, Loss(triple): 8.033493, Loss(predicate): 10.761078, LR: 0.000138, Speed: 120609.72 tokens/sec | Epoch Time Left: 1:01:09 | Total Time Left: 9:21:27
[2025-07-04 23:41:44] Epoch 2/4, Step 13700/18020, Loss(triple): 8.195343, Loss(predicate): 9.267568, LR: 0.000137, Speed: 120688.36 tokens/sec | Epoch Time Left: 1:00:27 | Total Time Left: 9:20:45
[2025-07-04 23:42:25] Epoch 2/4, Step 13750/18020, Loss(triple): 7.922405, Loss(predicate): 8.356587, LR: 0.000137, Speed: 119833.93 tokens/sec | Epoch Time Left: 0:59:44 | Total Time Left: 9:20:02
[2025-07-04 23:43:07] Epoch 2/4, Step 13800/18020, Loss(triple): 7.496399, Loss(predicate): 8.070577, LR: 0.000137, Speed: 118770.28 tokens/sec | Epoch Time Left: 0:59:02 | Total Time Left: 9:19:20
[2025-07-04 23:43:48] Epoch 2/4, Step 13850/18020, Loss(triple): 8.387598, Loss(predicate): 12.032887, LR: 0.000137, Speed: 120164.70 tokens/sec | Epoch Time Left: 0:58:20 | Total Time Left: 9:18:37
[2025-07-04 23:44:29] Epoch 2/4, Step 13900/18020, Loss(triple): 7.985039, Loss(predicate): 12.092072, LR: 0.000137, Speed: 119930.30 tokens/sec | Epoch Time Left: 0:57:38 | Total Time Left: 9:17:55
[2025-07-04 23:45:10] Epoch 2/4, Step 13950/18020, Loss(triple): 8.372314, Loss(predicate): 12.644470, LR: 0.000136, Speed: 120462.13 tokens/sec | Epoch Time Left: 0:56:55 | Total Time Left: 9:17:12
[2025-07-04 23:45:51] === GPU性能分析 (平均每步) ===
[2025-07-04 23:45:51] 前向传播: 7.98ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 23:45:51] GPU总时间: 9.90ms, 实际迭代时间: 819.18ms, GPU利用率: 1.2%
[2025-07-04 23:45:51] ==================================================
[2025-07-04 23:45:51] === 三元组预测示例 ===
[2025-07-04 23:45:51] 样本1目标: Kenesa part of Karaite
[2025-07-04 23:45:51] 样本1预测: countryK entistonaara alkhr filon species ofcl ora t
[2025-07-04 23:45:51] 样本2目标: HMS Express (1896) instance of torpedo boat destroyer
[2025-07-04 23:45:51] 样本2预测: GH entyin (mon enP-re 3ist3adcS- A
[2025-07-04 23:45:51] ==================
[2025-07-04 23:45:51] Epoch 2/4, Step 14000/18020, Loss(triple): 7.514154, Loss(predicate): 8.636821, LR: 0.000136, Speed: 120002.88 tokens/sec | Epoch Time Left: 0:56:13 | Total Time Left: 9:16:29
[2025-07-04 23:46:32] Epoch 2/4, Step 14050/18020, Loss(triple): 8.068256, Loss(predicate): 11.103302, LR: 0.000136, Speed: 118742.80 tokens/sec | Epoch Time Left: 0:55:31 | Total Time Left: 9:15:47
[2025-07-04 23:47:13] Epoch 2/4, Step 14100/18020, Loss(triple): 7.832493, Loss(predicate): 8.284404, LR: 0.000136, Speed: 120141.51 tokens/sec | Epoch Time Left: 0:54:49 | Total Time Left: 9:15:05
[2025-07-04 23:47:54] Epoch 2/4, Step 14150/18020, Loss(triple): 8.262905, Loss(predicate): 7.330399, LR: 0.000135, Speed: 119885.13 tokens/sec | Epoch Time Left: 0:54:07 | Total Time Left: 9:14:22
[2025-07-04 23:48:35] Epoch 2/4, Step 14200/18020, Loss(triple): 7.443470, Loss(predicate): 8.113912, LR: 0.000135, Speed: 119887.48 tokens/sec | Epoch Time Left: 0:53:24 | Total Time Left: 9:13:40
[2025-07-04 23:49:16] Epoch 2/4, Step 14250/18020, Loss(triple): 7.593729, Loss(predicate): 10.220317, LR: 0.000135, Speed: 120259.49 tokens/sec | Epoch Time Left: 0:52:42 | Total Time Left: 9:12:57
[2025-07-04 23:49:57] Epoch 2/4, Step 14300/18020, Loss(triple): 7.439579, Loss(predicate): 10.430211, LR: 0.000135, Speed: 119568.10 tokens/sec | Epoch Time Left: 0:52:00 | Total Time Left: 9:12:15
[2025-07-04 23:50:37] Epoch 2/4, Step 14350/18020, Loss(triple): 8.155693, Loss(predicate): 7.090551, LR: 0.000135, Speed: 120783.57 tokens/sec | Epoch Time Left: 0:51:18 | Total Time Left: 9:11:32
[2025-07-04 23:51:18] Epoch 2/4, Step 14400/18020, Loss(triple): 7.615465, Loss(predicate): 8.513875, LR: 0.000134, Speed: 120523.97 tokens/sec | Epoch Time Left: 0:50:36 | Total Time Left: 9:10:49
[2025-07-04 23:51:59] Epoch 2/4, Step 14450/18020, Loss(triple): 7.961060, Loss(predicate): 9.439769, LR: 0.000134, Speed: 120858.49 tokens/sec | Epoch Time Left: 0:49:53 | Total Time Left: 9:10:06
[2025-07-04 23:52:40] === GPU性能分析 (平均每步) ===
[2025-07-04 23:52:40] 前向传播: 7.96ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 23:52:40] GPU总时间: 9.88ms, 实际迭代时间: 819.41ms, GPU利用率: 1.2%
[2025-07-04 23:52:40] ==================================================
[2025-07-04 23:52:40] === 三元组预测示例 ===
[2025-07-04 23:52:40] 样本1目标: IntraHealth International instance of non-profit organization
[2025-07-04 23:52:40] 样本1预测: countryI electuras (man ékyov Americanize States ofiaational country In
[2025-07-04 23:52:40] 样本2目标: Lucy Woodward country of citizenship American
[2025-07-04 23:52:40] 样本2预测: placeD7ondritasu enmyre Americanitiz of chip countryens
[2025-07-04 23:52:40] ==================
[2025-07-04 23:52:40] Epoch 2/4, Step 14500/18020, Loss(triple): 7.731236, Loss(predicate): 10.009155, LR: 0.000134, Speed: 119969.79 tokens/sec | Epoch Time Left: 0:49:11 | Total Time Left: 9:09:24
[2025-07-04 23:53:21] Epoch 2/4, Step 14550/18020, Loss(triple): 7.924221, Loss(predicate): 9.111867, LR: 0.000134, Speed: 119289.72 tokens/sec | Epoch Time Left: 0:48:29 | Total Time Left: 9:08:42
[2025-07-04 23:54:02] Epoch 2/4, Step 14600/18020, Loss(triple): 7.801149, Loss(predicate): 10.879750, LR: 0.000133, Speed: 120233.26 tokens/sec | Epoch Time Left: 0:47:47 | Total Time Left: 9:07:59
[2025-07-04 23:54:43] Epoch 2/4, Step 14650/18020, Loss(triple): 7.571888, Loss(predicate): 9.971608, LR: 0.000133, Speed: 120547.84 tokens/sec | Epoch Time Left: 0:47:05 | Total Time Left: 9:07:16
[2025-07-04 23:55:23] Epoch 2/4, Step 14700/18020, Loss(triple): 8.046452, Loss(predicate): 10.975891, LR: 0.000133, Speed: 120972.27 tokens/sec | Epoch Time Left: 0:46:22 | Total Time Left: 9:06:33
[2025-07-04 23:56:05] Epoch 2/4, Step 14750/18020, Loss(triple): 7.943714, Loss(predicate): 7.772003, LR: 0.000133, Speed: 119302.29 tokens/sec | Epoch Time Left: 0:45:40 | Total Time Left: 9:05:51
[2025-07-04 23:56:46] Epoch 2/4, Step 14800/18020, Loss(triple): 7.844486, Loss(predicate): 7.354614, LR: 0.000132, Speed: 119042.91 tokens/sec | Epoch Time Left: 0:44:58 | Total Time Left: 9:05:09
[2025-07-04 23:57:27] Epoch 2/4, Step 14850/18020, Loss(triple): 7.796793, Loss(predicate): 8.363007, LR: 0.000132, Speed: 119968.92 tokens/sec | Epoch Time Left: 0:44:16 | Total Time Left: 9:04:26
[2025-07-04 23:58:08] Epoch 2/4, Step 14900/18020, Loss(triple): 7.514994, Loss(predicate): 7.295003, LR: 0.000132, Speed: 120156.05 tokens/sec | Epoch Time Left: 0:43:34 | Total Time Left: 9:03:44
[2025-07-04 23:58:49] Epoch 2/4, Step 14950/18020, Loss(triple): 7.685940, Loss(predicate): 11.771179, LR: 0.000132, Speed: 119983.42 tokens/sec | Epoch Time Left: 0:42:52 | Total Time Left: 9:03:01
[2025-07-04 23:59:35] === GPU性能分析 (平均每步) ===
[2025-07-04 23:59:35] 前向传播: 8.06ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-04 23:59:35] GPU总时间: 9.98ms, 实际迭代时间: 930.38ms, GPU利用率: 1.1%
[2025-07-04 23:59:35] ==================================================
[2025-07-04 23:59:35] === 三元组预测示例 ===
[2025-07-04 23:59:35] 样本1目标: Richard P. Binzel employer MIT
[2025-07-04 23:59:35] 样本1预测: countryMensyelaea erillyet Americanit bir of cth countryens
[2025-07-04 23:59:35] 样本2目标: Epic: The Poetry of War instance of studio album
[2025-07-04 23:59:35] 样本2预测: placeTptyas (rd ict,om umance al ofb stud instio
[2025-07-04 23:59:35] ==================
[2025-07-04 23:59:35] Epoch 2/4, Step 15000/18020, Loss(triple): 7.544062, Loss(predicate): 8.281403, LR: 0.000132, Speed: 105659.89 tokens/sec | Epoch Time Left: 0:42:11 | Total Time Left: 9:02:26
[2025-07-05 00:00:28] Epoch 2/4, Step 15050/18020, Loss(triple): 7.612118, Loss(predicate): 12.502004, LR: 0.000131, Speed: 92436.05 tokens/sec | Epoch Time Left: 0:41:31 | Total Time Left: 9:01:57
[2025-07-05 00:01:13] Epoch 2/4, Step 15100/18020, Loss(triple): 7.971729, Loss(predicate): 8.608521, LR: 0.000131, Speed: 110563.30 tokens/sec | Epoch Time Left: 0:40:50 | Total Time Left: 9:01:19
[2025-07-05 00:01:54] Epoch 2/4, Step 15150/18020, Loss(triple): 8.064777, Loss(predicate): 7.482819, LR: 0.000131, Speed: 119369.10 tokens/sec | Epoch Time Left: 0:40:08 | Total Time Left: 9:00:37
[2025-07-05 00:02:35] Epoch 2/4, Step 15200/18020, Loss(triple): 7.966888, Loss(predicate): 10.170395, LR: 0.000131, Speed: 120422.46 tokens/sec | Epoch Time Left: 0:39:26 | Total Time Left: 8:59:54
[2025-07-05 00:03:16] Epoch 2/4, Step 15250/18020, Loss(triple): 7.686213, Loss(predicate): 11.402608, LR: 0.000130, Speed: 120148.25 tokens/sec | Epoch Time Left: 0:38:43 | Total Time Left: 8:59:12
[2025-07-05 00:03:57] Epoch 2/4, Step 15300/18020, Loss(triple): 8.119442, Loss(predicate): 12.471334, LR: 0.000130, Speed: 120516.93 tokens/sec | Epoch Time Left: 0:38:01 | Total Time Left: 8:58:29
[2025-07-05 00:04:37] Epoch 2/4, Step 15350/18020, Loss(triple): 7.921381, Loss(predicate): 8.028046, LR: 0.000130, Speed: 121362.15 tokens/sec | Epoch Time Left: 0:37:19 | Total Time Left: 8:57:46
[2025-07-05 00:05:18] Epoch 2/4, Step 15400/18020, Loss(triple): 8.528217, Loss(predicate): 14.383087, LR: 0.000130, Speed: 121288.19 tokens/sec | Epoch Time Left: 0:36:37 | Total Time Left: 8:57:03
[2025-07-05 00:05:58] Epoch 2/4, Step 15450/18020, Loss(triple): 7.767677, Loss(predicate): 9.336060, LR: 0.000129, Speed: 120779.23 tokens/sec | Epoch Time Left: 0:35:55 | Total Time Left: 8:56:20
[2025-07-05 00:06:39] === GPU性能分析 (平均每步) ===
[2025-07-05 00:06:39] 前向传播: 8.03ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 00:06:39] GPU总时间: 9.95ms, 实际迭代时间: 818.58ms, GPU利用率: 1.2%
[2025-07-05 00:06:39] ==================================================
[2025-07-05 00:06:39] === 三元组预测示例 ===
[2025-07-05 00:06:39] 样本1目标: Northern Ireland Assembly (1982) applies to jurisdiction Northern Ireland
[2025-07-05 00:06:39] 样本1预测: mThe instyil (Mm inkyak 6ia ter oflandion S C
[2025-07-05 00:06:39] 样本2目标: Hebden Bridge located in the administrative territorial entity England
[2025-07-05 00:06:39] 样本2预测: SH origyg (rb alt,es upation composre occ language inster
[2025-07-05 00:06:39] ==================
[2025-07-05 00:06:39] Epoch 2/4, Step 15500/18020, Loss(triple): 7.834194, Loss(predicate): 7.901733, LR: 0.000129, Speed: 120091.39 tokens/sec | Epoch Time Left: 0:35:13 | Total Time Left: 8:55:37
[2025-07-05 00:07:20] Epoch 2/4, Step 15550/18020, Loss(triple): 8.076288, Loss(predicate): 12.119868, LR: 0.000129, Speed: 120380.61 tokens/sec | Epoch Time Left: 0:34:31 | Total Time Left: 8:54:55
[2025-07-05 00:08:01] Epoch 2/4, Step 15600/18020, Loss(triple): 8.390747, Loss(predicate): 10.448354, LR: 0.000129, Speed: 120481.67 tokens/sec | Epoch Time Left: 0:33:49 | Total Time Left: 8:54:12
[2025-07-05 00:08:41] Epoch 2/4, Step 15650/18020, Loss(triple): 8.004587, Loss(predicate): 9.647450, LR: 0.000129, Speed: 121025.90 tokens/sec | Epoch Time Left: 0:33:06 | Total Time Left: 8:53:29
[2025-07-05 00:09:22] Epoch 2/4, Step 15700/18020, Loss(triple): 7.921543, Loss(predicate): 9.485504, LR: 0.000128, Speed: 120935.93 tokens/sec | Epoch Time Left: 0:32:24 | Total Time Left: 8:52:46
[2025-07-05 00:10:03] Epoch 2/4, Step 15750/18020, Loss(triple): 7.545536, Loss(predicate): 8.981669, LR: 0.000128, Speed: 119956.30 tokens/sec | Epoch Time Left: 0:31:42 | Total Time Left: 8:52:04
[2025-07-05 00:10:44] Epoch 2/4, Step 15800/18020, Loss(triple): 7.600677, Loss(predicate): 9.619415, LR: 0.000128, Speed: 120739.73 tokens/sec | Epoch Time Left: 0:31:00 | Total Time Left: 8:51:21
[2025-07-05 00:11:25] Epoch 2/4, Step 15850/18020, Loss(triple): 7.520197, Loss(predicate): 5.952444, LR: 0.000128, Speed: 120758.20 tokens/sec | Epoch Time Left: 0:30:18 | Total Time Left: 8:50:38
[2025-07-05 00:12:05] Epoch 2/4, Step 15900/18020, Loss(triple): 7.675272, Loss(predicate): 9.347310, LR: 0.000127, Speed: 121274.62 tokens/sec | Epoch Time Left: 0:29:36 | Total Time Left: 8:49:56
[2025-07-05 00:12:46] Epoch 2/4, Step 15950/18020, Loss(triple): 7.757998, Loss(predicate): 9.519414, LR: 0.000127, Speed: 120974.49 tokens/sec | Epoch Time Left: 0:28:54 | Total Time Left: 8:49:13
[2025-07-05 00:13:27] === GPU性能分析 (平均每步) ===
[2025-07-05 00:13:27] 前向传播: 8.01ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 00:13:27] GPU总时间: 9.93ms, 实际迭代时间: 819.94ms, GPU利用率: 1.2%
[2025-07-05 00:13:27] ==================================================
[2025-07-05 00:13:27] === 三元组预测示例 ===
[2025-07-05 00:13:27] 样本1目标: Venango Township, Crawford County, Pennsylvania located in the administrative territorial entity Crawford County, Pennsylvania
[2025-07-05 00:13:27] 样本1预测: GA entymaord owm,out ativeistountinnsrit, C
[2025-07-05 00:13:27] 样本2目标: Del Webb Explosion genre pop
[2025-07-05 00:13:27] 样本2预测: PoPensyil (aran erillyle upation bir of occth S 19
[2025-07-05 00:13:27] ==================
[2025-07-05 00:13:27] Epoch 2/4, Step 16000/18020, Loss(triple): 7.421558, Loss(predicate): 10.665538, LR: 0.000127, Speed: 119891.03 tokens/sec | Epoch Time Left: 0:28:12 | Total Time Left: 8:48:30
[2025-07-05 00:14:07] Epoch 2/4, Step 16050/18020, Loss(triple): 7.603165, Loss(predicate): 6.656138, LR: 0.000127, Speed: 120833.26 tokens/sec | Epoch Time Left: 0:27:30 | Total Time Left: 8:47:48
[2025-07-05 00:14:48] Epoch 2/4, Step 16100/18020, Loss(triple): 7.949320, Loss(predicate): 12.416911, LR: 0.000126, Speed: 120135.60 tokens/sec | Epoch Time Left: 0:26:48 | Total Time Left: 8:47:05
[2025-07-05 00:15:29] Epoch 2/4, Step 16150/18020, Loss(triple): 8.181160, Loss(predicate): 12.110026, LR: 0.000126, Speed: 120973.90 tokens/sec | Epoch Time Left: 0:26:06 | Total Time Left: 8:46:22
[2025-07-05 00:16:09] Epoch 2/4, Step 16200/18020, Loss(triple): 7.701927, Loss(predicate): 7.921570, LR: 0.000126, Speed: 121007.22 tokens/sec | Epoch Time Left: 0:25:24 | Total Time Left: 8:45:39
[2025-07-05 00:16:50] Epoch 2/4, Step 16250/18020, Loss(triple): 8.052013, Loss(predicate): 8.288524, LR: 0.000126, Speed: 120379.22 tokens/sec | Epoch Time Left: 0:24:42 | Total Time Left: 8:44:57
[2025-07-05 00:17:31] Epoch 2/4, Step 16300/18020, Loss(triple): 7.988703, Loss(predicate): 11.710521, LR: 0.000125, Speed: 121169.20 tokens/sec | Epoch Time Left: 0:24:00 | Total Time Left: 8:44:14
[2025-07-05 00:18:12] Epoch 2/4, Step 16350/18020, Loss(triple): 7.705505, Loss(predicate): 9.802165, LR: 0.000125, Speed: 120297.37 tokens/sec | Epoch Time Left: 0:23:18 | Total Time Left: 8:43:32
[2025-07-05 00:18:52] Epoch 2/4, Step 16400/18020, Loss(triple): 8.022923, Loss(predicate): 8.584137, LR: 0.000125, Speed: 120803.99 tokens/sec | Epoch Time Left: 0:22:36 | Total Time Left: 8:42:49
[2025-07-05 00:19:33] Epoch 2/4, Step 16450/18020, Loss(triple): 7.686981, Loss(predicate): 10.028931, LR: 0.000125, Speed: 120894.46 tokens/sec | Epoch Time Left: 0:21:54 | Total Time Left: 8:42:06
[2025-07-05 00:20:14] === GPU性能分析 (平均每步) ===
[2025-07-05 00:20:14] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 00:20:14] GPU总时间: 9.92ms, 实际迭代时间: 816.25ms, GPU利用率: 1.2%
[2025-07-05 00:20:14] ==================================================
[2025-07-05 00:20:14] === 三元组预测示例 ===
[2025-07-05 00:20:14] 样本1目标: Reyshawn Terry country of citizenship American
[2025-07-05 00:20:14] 样本1预测: GD biryhberel en<65>yay Americanitiz of chip countryens
[2025-07-05 00:20:14] 样本2目标: Luka Žorić sport professional basketball player
[2025-07-05 00:20:14] 样本2预测: SLensyki.u an<61>yak 4ate bir of dth S 19
[2025-07-05 00:20:14] ==================
[2025-07-05 00:20:14] Epoch 2/4, Step 16500/18020, Loss(triple): 7.831501, Loss(predicate): 8.903432, LR: 0.000125, Speed: 120433.83 tokens/sec | Epoch Time Left: 0:21:12 | Total Time Left: 8:41:24
[2025-07-05 00:20:55] Epoch 2/4, Step 16550/18020, Loss(triple): 7.704432, Loss(predicate): 8.520314, LR: 0.000124, Speed: 120519.59 tokens/sec | Epoch Time Left: 0:20:30 | Total Time Left: 8:40:41
[2025-07-05 00:21:36] Epoch 2/4, Step 16600/18020, Loss(triple): 8.040812, Loss(predicate): 11.511622, LR: 0.000124, Speed: 119726.21 tokens/sec | Epoch Time Left: 0:19:48 | Total Time Left: 8:39:59
[2025-07-05 00:22:17] Epoch 2/4, Step 16650/18020, Loss(triple): 7.770401, Loss(predicate): 9.979645, LR: 0.000124, Speed: 120492.77 tokens/sec | Epoch Time Left: 0:19:06 | Total Time Left: 8:39:16
[2025-07-05 00:22:57] Epoch 2/4, Step 16700/18020, Loss(triple): 8.068531, Loss(predicate): 5.650095, LR: 0.000124, Speed: 121037.22 tokens/sec | Epoch Time Left: 0:18:24 | Total Time Left: 8:38:33
[2025-07-05 00:23:38] Epoch 2/4, Step 16750/18020, Loss(triple): 7.812708, Loss(predicate): 5.962179, LR: 0.000123, Speed: 121226.12 tokens/sec | Epoch Time Left: 0:17:42 | Total Time Left: 8:37:51
[2025-07-05 00:24:18] Epoch 2/4, Step 16800/18020, Loss(triple): 8.064869, Loss(predicate): 7.518117, LR: 0.000123, Speed: 120987.89 tokens/sec | Epoch Time Left: 0:17:00 | Total Time Left: 8:37:08
[2025-07-05 00:24:59] Epoch 2/4, Step 16850/18020, Loss(triple): 7.977564, Loss(predicate): 12.711568, LR: 0.000123, Speed: 119690.24 tokens/sec | Epoch Time Left: 0:16:18 | Total Time Left: 8:36:26
[2025-07-05 00:25:40] Epoch 2/4, Step 16900/18020, Loss(triple): 8.289507, Loss(predicate): 7.593302, LR: 0.000123, Speed: 120468.15 tokens/sec | Epoch Time Left: 0:15:37 | Total Time Left: 8:35:43
[2025-07-05 00:26:21] Epoch 2/4, Step 16950/18020, Loss(triple): 7.739807, Loss(predicate): 9.303752, LR: 0.000122, Speed: 120351.42 tokens/sec | Epoch Time Left: 0:14:55 | Total Time Left: 8:35:01
[2025-07-05 00:27:02] === GPU性能分析 (平均每步) ===
[2025-07-05 00:27:02] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 00:27:02] GPU总时间: 9.92ms, 实际迭代时间: 812.05ms, GPU利用率: 1.2%
[2025-07-05 00:27:02] ==================================================
[2025-07-05 00:27:02] === 三元组预测示例 ===
[2025-07-05 00:27:02] 样本1目标: João Nunes (footballer, born 1995) sport footballer
[2025-07-05 00:27:02] 样本1预测: placeJensoelaeno on<6F>nak ortall footerb sp spim
[2025-07-05 00:27:02] 样本2目标: Lennie Bush place of birth London
[2025-07-05 00:27:02] 样本2预测: placeDensyh (eon onob Met 4ate bir of dth 2 19
[2025-07-05 00:27:02] ==================
[2025-07-05 00:27:02] Epoch 2/4, Step 17000/18020, Loss(triple): 7.874474, Loss(predicate): 11.438893, LR: 0.000122, Speed: 121055.89 tokens/sec | Epoch Time Left: 0:14:13 | Total Time Left: 8:34:18
[2025-07-05 00:27:42] Epoch 2/4, Step 17050/18020, Loss(triple): 7.525713, Loss(predicate): 15.762441, LR: 0.000122, Speed: 120905.18 tokens/sec | Epoch Time Left: 0:13:31 | Total Time Left: 8:33:35
[2025-07-05 00:28:23] Epoch 2/4, Step 17100/18020, Loss(triple): 8.001438, Loss(predicate): 9.401326, LR: 0.000122, Speed: 119691.73 tokens/sec | Epoch Time Left: 0:12:49 | Total Time Left: 8:32:53
[2025-07-05 00:29:04] Epoch 2/4, Step 17150/18020, Loss(triple): 7.690424, Loss(predicate): 9.021525, LR: 0.000121, Speed: 120937.88 tokens/sec | Epoch Time Left: 0:12:07 | Total Time Left: 8:32:10
[2025-07-05 00:29:45] Epoch 2/4, Step 17200/18020, Loss(triple): 7.861801, Loss(predicate): 13.436981, LR: 0.000121, Speed: 119801.16 tokens/sec | Epoch Time Left: 0:11:25 | Total Time Left: 8:31:28
[2025-07-05 00:30:26] Epoch 2/4, Step 17250/18020, Loss(triple): 7.341709, Loss(predicate): 13.806691, LR: 0.000121, Speed: 121042.20 tokens/sec | Epoch Time Left: 0:10:43 | Total Time Left: 8:30:45
[2025-07-05 00:31:06] Epoch 2/4, Step 17300/18020, Loss(triple): 8.313717, Loss(predicate): 6.730291, LR: 0.000121, Speed: 121067.69 tokens/sec | Epoch Time Left: 0:10:02 | Total Time Left: 8:30:03
[2025-07-05 00:31:47] Epoch 2/4, Step 17350/18020, Loss(triple): 7.826641, Loss(predicate): 7.093414, LR: 0.000121, Speed: 120736.90 tokens/sec | Epoch Time Left: 0:09:20 | Total Time Left: 8:29:20
[2025-07-05 00:32:28] Epoch 2/4, Step 17400/18020, Loss(triple): 7.802551, Loss(predicate): 12.014648, LR: 0.000120, Speed: 120451.00 tokens/sec | Epoch Time Left: 0:08:38 | Total Time Left: 8:28:38
[2025-07-05 00:33:09] Epoch 2/4, Step 17450/18020, Loss(triple): 7.875462, Loss(predicate): 7.731425, LR: 0.000120, Speed: 120043.11 tokens/sec | Epoch Time Left: 0:07:56 | Total Time Left: 8:27:55
[2025-07-05 00:33:49] === GPU性能分析 (平均每步) ===
[2025-07-05 00:33:49] 前向传播: 8.02ms, 损失计算: 0.02ms, 反向传播: 1.95ms, 优化器: 0.00ms
[2025-07-05 00:33:49] GPU总时间: 9.98ms, 实际迭代时间: 815.85ms, GPU利用率: 1.2%
[2025-07-05 00:33:49] ==================================================
[2025-07-05 00:33:49] === 三元组预测示例 ===
[2025-07-05 00:33:49] 样本1目标: Mantronik place of birth Jamaica
[2025-07-05 00:33:49] 样本1预测: countryBensyh (end ick Mom Americanitiz of chip countryens
[2025-07-05 00:33:49] 样本2目标: Margical History Tour part of the series The Simpsons
[2025-07-05 00:33:49] 样本2预测: LThe participosery (aran ent Des songing L ofgeance Mer
[2025-07-05 00:33:49] ==================
[2025-07-05 00:33:49] Epoch 2/4, Step 17500/18020, Loss(triple): 7.727058, Loss(predicate): 13.745534, LR: 0.000120, Speed: 120493.46 tokens/sec | Epoch Time Left: 0:07:14 | Total Time Left: 8:27:13
[2025-07-05 00:34:30] Epoch 2/4, Step 17550/18020, Loss(triple): 7.498562, Loss(predicate): 6.582774, LR: 0.000120, Speed: 121182.30 tokens/sec | Epoch Time Left: 0:06:32 | Total Time Left: 8:26:30
[2025-07-05 00:35:11] Epoch 2/4, Step 17600/18020, Loss(triple): 7.906548, Loss(predicate): 13.615001, LR: 0.000119, Speed: 121135.46 tokens/sec | Epoch Time Left: 0:05:51 | Total Time Left: 8:25:47
[2025-07-05 00:35:51] Epoch 2/4, Step 17650/18020, Loss(triple): 8.291437, Loss(predicate): 8.351298, LR: 0.000119, Speed: 121068.83 tokens/sec | Epoch Time Left: 0:05:09 | Total Time Left: 8:25:05
[2025-07-05 00:36:32] Epoch 2/4, Step 17700/18020, Loss(triple): 7.513285, Loss(predicate): 10.183736, LR: 0.000119, Speed: 120134.02 tokens/sec | Epoch Time Left: 0:04:27 | Total Time Left: 8:24:22
[2025-07-05 00:37:13] Epoch 2/4, Step 17750/18020, Loss(triple): 7.237061, Loss(predicate): 8.899800, LR: 0.000119, Speed: 120734.53 tokens/sec | Epoch Time Left: 0:03:45 | Total Time Left: 8:23:40
[2025-07-05 00:37:54] Epoch 2/4, Step 17800/18020, Loss(triple): 7.962360, Loss(predicate): 7.820760, LR: 0.000118, Speed: 120610.97 tokens/sec | Epoch Time Left: 0:03:03 | Total Time Left: 8:22:57
[2025-07-05 00:38:34] Epoch 2/4, Step 17850/18020, Loss(triple): 7.619013, Loss(predicate): 9.827972, LR: 0.000118, Speed: 120808.85 tokens/sec | Epoch Time Left: 0:02:22 | Total Time Left: 8:22:15
[2025-07-05 00:39:15] Epoch 2/4, Step 17900/18020, Loss(triple): 7.273239, Loss(predicate): 8.308766, LR: 0.000118, Speed: 121086.28 tokens/sec | Epoch Time Left: 0:01:40 | Total Time Left: 8:21:32
[2025-07-05 00:39:55] Epoch 2/4, Step 17950/18020, Loss(triple): 7.653469, Loss(predicate): 11.286427, LR: 0.000118, Speed: 120998.64 tokens/sec | Epoch Time Left: 0:00:58 | Total Time Left: 8:20:50
[2025-07-05 00:40:36] === GPU性能分析 (平均每步) ===
[2025-07-05 00:40:36] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 00:40:36] GPU总时间: 9.92ms, 实际迭代时间: 815.08ms, GPU利用率: 1.2%
[2025-07-05 00:40:36] ==================================================
[2025-07-05 00:40:36] === 三元组预测示例 ===
[2025-07-05 00:40:36] 样本1目标: Live for Loving You performer Gloria Estefan
[2025-07-05 00:40:36] 样本1预测: AmericanThe origory ()o erM,T songin performerm T Mer
[2025-07-05 00:40:36] 样本2目标: Israil Gurung sport footballer
[2025-07-05 00:40:36] 样本2预测: GCh entyilstenl erknov ortall footerb sp sp<73>
[2025-07-05 00:40:36] ==================
[2025-07-05 00:40:36] Epoch 2/4, Step 18000/18020, Loss(triple): 7.440418, Loss(predicate): 7.280324, LR: 0.000117, Speed: 120607.28 tokens/sec | Epoch Time Left: 0:00:16 | Total Time Left: 8:20:07
[2025-07-05 00:40:56] 第2轮训练完成进行内存清理
[2025-07-05 00:40:58] [Memory Monitor] Epoch 2 completed - System RSS: 27059.48MB, CUDA allocated: 550.62MB, CUDA reserved: 1310.00MB
[2025-07-05 00:40:58] 开始第3轮训练
[2025-07-05 00:40:58] Set freeze_embedding=True for epoch 2, step 0
[2025-07-05 00:40:58] 三元组提取训练模式
[2025-07-05 00:40:58] 使用预tokenized三元组目标数据
[2025-07-05 00:41:00] Model saved to out/pretrain_cls512.pth
[2025-07-05 00:41:39] Epoch 3/4, Step 50/18020, Loss(triple): 7.863266, Loss(predicate): 11.413544, LR: 0.000117, Speed: 117893.78 tokens/sec | Epoch Time Left: 4:09:44 | Total Time Left: 8:19:14
[2025-07-05 00:42:20] Epoch 3/4, Step 100/18020, Loss(triple): 7.298143, Loss(predicate): 9.506307, LR: 0.000117, Speed: 120301.16 tokens/sec | Epoch Time Left: 4:06:32 | Total Time Left: 8:18:31
[2025-07-05 00:42:53] Model saved to out/pretrain_cls512.pth
[2025-07-05 00:43:02] Epoch 3/4, Step 150/18020, Loss(triple): 7.634363, Loss(predicate): 5.154765, LR: 0.000117, Speed: 117897.04 tokens/sec | Epoch Time Left: 4:06:41 | Total Time Left: 8:17:50
[2025-07-05 00:43:43] Epoch 3/4, Step 200/18020, Loss(triple): 7.704468, Loss(predicate): 10.366506, LR: 0.000116, Speed: 120901.80 tokens/sec | Epoch Time Left: 4:04:52 | Total Time Left: 8:17:07
[2025-07-05 00:44:23] Epoch 3/4, Step 250/18020, Loss(triple): 7.983997, Loss(predicate): 11.306987, LR: 0.000116, Speed: 121388.73 tokens/sec | Epoch Time Left: 4:03:18 | Total Time Left: 8:16:25
[2025-07-05 00:45:04] Epoch 3/4, Step 300/18020, Loss(triple): 7.751877, Loss(predicate): 9.779103, LR: 0.000116, Speed: 121199.88 tokens/sec | Epoch Time Left: 4:02:06 | Total Time Left: 8:15:42
[2025-07-05 00:45:45] Epoch 3/4, Step 350/18020, Loss(triple): 7.450825, Loss(predicate): 8.671733, LR: 0.000116, Speed: 120032.57 tokens/sec | Epoch Time Left: 4:01:23 | Total Time Left: 8:15:00
[2025-07-05 00:46:25] Epoch 3/4, Step 400/18020, Loss(triple): 7.664288, Loss(predicate): 7.947459, LR: 0.000115, Speed: 121188.31 tokens/sec | Epoch Time Left: 4:00:24 | Total Time Left: 8:14:17
[2025-07-05 00:47:06] Epoch 3/4, Step 450/18020, Loss(triple): 7.394943, Loss(predicate): 10.299759, LR: 0.000115, Speed: 120513.50 tokens/sec | Epoch Time Left: 3:59:37 | Total Time Left: 8:13:35
[2025-07-05 00:47:47] === GPU性能分析 (平均每步) ===
[2025-07-05 00:47:47] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.91ms, 优化器: 0.00ms
[2025-07-05 00:47:47] GPU总时间: 9.93ms, 实际迭代时间: 812.30ms, GPU利用率: 1.2%
[2025-07-05 00:47:47] ==================================================
[2025-07-05 00:47:47] === 三元组预测示例 ===
[2025-07-05 00:47:47] 样本1目标: Harpalus apache taxon rank species
[2025-07-05 00:47:47] 样本1预测: mH adramisarr idpusus (on species rankax gen t
[2025-07-05 00:47:47] 样本2目标: Alex Goude place of birth Neuilly-sur-Seine
[2025-07-05 00:47:47] 样本2预测: GB biryryael onk-ov upation bir of occth Bor
[2025-07-05 00:47:47] ==================
[2025-07-05 00:47:47] Epoch 3/4, Step 500/18020, Loss(triple): 7.757477, Loss(predicate): 12.714192, LR: 0.000115, Speed: 121019.77 tokens/sec | Epoch Time Left: 3:58:46 | Total Time Left: 8:12:52
[2025-07-05 00:48:27] Epoch 3/4, Step 550/18020, Loss(triple): 8.129456, Loss(predicate): 6.590566, LR: 0.000115, Speed: 121106.44 tokens/sec | Epoch Time Left: 3:57:55 | Total Time Left: 8:12:10
[2025-07-05 00:48:34] Model saved to out/pretrain_cls512.pth
[2025-07-05 00:49:09] Epoch 3/4, Step 600/18020, Loss(triple): 7.360239, Loss(predicate): 8.906230, LR: 0.000114, Speed: 117928.20 tokens/sec | Epoch Time Left: 3:57:38 | Total Time Left: 8:11:28
[2025-07-05 00:49:50] Epoch 3/4, Step 650/18020, Loss(triple): 7.699226, Loss(predicate): 11.280660, LR: 0.000114, Speed: 120779.77 tokens/sec | Epoch Time Left: 3:56:51 | Total Time Left: 8:10:46
[2025-07-05 00:50:30] Epoch 3/4, Step 700/18020, Loss(triple): 7.474915, Loss(predicate): 10.960317, LR: 0.000114, Speed: 120298.85 tokens/sec | Epoch Time Left: 3:56:09 | Total Time Left: 8:10:03
[2025-07-05 00:51:11] Epoch 3/4, Step 750/18020, Loss(triple): 8.191460, Loss(predicate): 10.494222, LR: 0.000114, Speed: 120817.28 tokens/sec | Epoch Time Left: 3:55:23 | Total Time Left: 8:09:21
[2025-07-05 00:51:52] Epoch 3/4, Step 800/18020, Loss(triple): 7.190292, Loss(predicate): 12.814555, LR: 0.000114, Speed: 121047.37 tokens/sec | Epoch Time Left: 3:54:36 | Total Time Left: 8:08:38
[2025-07-05 00:52:32] Epoch 3/4, Step 850/18020, Loss(triple): 7.627954, Loss(predicate): 9.557628, LR: 0.000113, Speed: 120903.37 tokens/sec | Epoch Time Left: 3:53:51 | Total Time Left: 8:07:56
[2025-07-05 00:53:13] Epoch 3/4, Step 900/18020, Loss(triple): 7.594570, Loss(predicate): 8.305766, LR: 0.000113, Speed: 120342.98 tokens/sec | Epoch Time Left: 3:53:09 | Total Time Left: 8:07:13
[2025-07-05 00:53:54] Epoch 3/4, Step 950/18020, Loss(triple): 7.636948, Loss(predicate): 7.551508, LR: 0.000113, Speed: 120375.68 tokens/sec | Epoch Time Left: 3:52:28 | Total Time Left: 8:06:31
[2025-07-05 00:54:35] === GPU性能分析 (平均每步) ===
[2025-07-05 00:54:35] 前向传播: 7.98ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 00:54:35] GPU总时间: 9.90ms, 实际迭代时间: 815.36ms, GPU利用率: 1.2%
[2025-07-05 00:54:35] ==================================================
[2025-07-05 00:54:35] === 三元组预测示例 ===
[2025-07-05 00:54:35] 样本1目标: R v Beaulac applies to jurisdiction Canada
[2025-07-05 00:54:35] 样本1预测: SR entyilaall inM Ire Fionance ofcS S A
[2025-07-05 00:54:35] 样本2目标: Eija Krogerus place of birth Helsinki
[2025-07-05 00:54:35] 样本2预测: placeKensukiara ank,ay 4ate bir of dth 2 19
[2025-07-05 00:54:35] ==================
[2025-07-05 00:54:35] Epoch 3/4, Step 1000/18020, Loss(triple): 7.855988, Loss(predicate): 9.252869, LR: 0.000113, Speed: 120564.52 tokens/sec | Epoch Time Left: 3:51:46 | Total Time Left: 8:05:49
[2025-07-05 00:55:15] Epoch 3/4, Step 1050/18020, Loss(triple): 7.304949, Loss(predicate): 15.632507, LR: 0.000112, Speed: 120967.22 tokens/sec | Epoch Time Left: 3:51:01 | Total Time Left: 8:05:06
[2025-07-05 00:55:56] Epoch 3/4, Step 1100/18020, Loss(triple): 7.563259, Loss(predicate): 10.233989, LR: 0.000112, Speed: 121297.56 tokens/sec | Epoch Time Left: 3:50:16 | Total Time Left: 8:04:24
[2025-07-05 00:56:37] Epoch 3/4, Step 1150/18020, Loss(triple): 8.061487, Loss(predicate): 4.627279, LR: 0.000112, Speed: 120732.78 tokens/sec | Epoch Time Left: 3:49:33 | Total Time Left: 8:03:41
[2025-07-05 00:57:18] Epoch 3/4, Step 1200/18020, Loss(triple): 7.631809, Loss(predicate): 12.142741, LR: 0.000112, Speed: 119926.54 tokens/sec | Epoch Time Left: 3:48:54 | Total Time Left: 8:02:59
[2025-07-05 00:57:59] Epoch 3/4, Step 1250/18020, Loss(triple): 7.332247, Loss(predicate): 8.951457, LR: 0.000111, Speed: 119979.22 tokens/sec | Epoch Time Left: 3:48:16 | Total Time Left: 8:02:17
[2025-07-05 00:58:39] Epoch 3/4, Step 1300/18020, Loss(triple): 7.463503, Loss(predicate): 11.425792, LR: 0.000111, Speed: 121122.34 tokens/sec | Epoch Time Left: 3:47:31 | Total Time Left: 8:01:34
[2025-07-05 00:59:20] Epoch 3/4, Step 1350/18020, Loss(triple): 7.453012, Loss(predicate): 10.312912, LR: 0.000111, Speed: 121157.61 tokens/sec | Epoch Time Left: 3:46:47 | Total Time Left: 8:00:52
[2025-07-05 01:00:00] Epoch 3/4, Step 1400/18020, Loss(triple): 7.818134, Loss(predicate): 10.849010, LR: 0.000111, Speed: 120965.31 tokens/sec | Epoch Time Left: 3:46:04 | Total Time Left: 8:00:09
[2025-07-05 01:00:41] Epoch 3/4, Step 1450/18020, Loss(triple): 7.929598, Loss(predicate): 12.057770, LR: 0.000110, Speed: 119999.30 tokens/sec | Epoch Time Left: 3:45:25 | Total Time Left: 7:59:27
[2025-07-05 01:01:22] === GPU性能分析 (平均每步) ===
[2025-07-05 01:01:22] 前向传播: 8.08ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 01:01:22] GPU总时间: 10.00ms, 实际迭代时间: 814.65ms, GPU利用率: 1.2%
[2025-07-05 01:01:22] ==================================================
[2025-07-05 01:01:22] === 三元组预测示例 ===
[2025-07-05 01:01:22] 样本1目标: Show Low located in the administrative territorial entity Navajo County, Arizona
[2025-07-05 01:01:22] 样本1预测: countryS adyhaalan on<6F>,ay ialist Statesorityr, C
[2025-07-05 01:01:22] 样本2目标: Yuki Shimizu occupation manga artist
[2025-07-05 01:01:22] 样本2预测: countryThe<68>ukiiu aniezay filance orig ofitth inst Pro
[2025-07-05 01:01:22] ==================
[2025-07-05 01:01:22] Epoch 3/4, Step 1500/18020, Loss(triple): 7.616734, Loss(predicate): 9.620300, LR: 0.000110, Speed: 120670.23 tokens/sec | Epoch Time Left: 3:44:44 | Total Time Left: 7:58:45
[2025-07-05 01:02:03] Epoch 3/4, Step 1550/18020, Loss(triple): 7.941622, Loss(predicate): 8.747182, LR: 0.000110, Speed: 120225.12 tokens/sec | Epoch Time Left: 3:44:04 | Total Time Left: 7:58:03
[2025-07-05 01:02:44] Epoch 3/4, Step 1600/18020, Loss(triple): 7.883350, Loss(predicate): 8.705383, LR: 0.000110, Speed: 121218.33 tokens/sec | Epoch Time Left: 3:43:20 | Total Time Left: 7:57:20
[2025-07-05 01:03:24] Epoch 3/4, Step 1650/18020, Loss(triple): 7.752230, Loss(predicate): 8.291860, LR: 0.000109, Speed: 121160.03 tokens/sec | Epoch Time Left: 3:42:37 | Total Time Left: 7:56:37
[2025-07-05 01:04:05] Epoch 3/4, Step 1700/18020, Loss(triple): 7.968653, Loss(predicate): 10.731730, LR: 0.000109, Speed: 120261.55 tokens/sec | Epoch Time Left: 3:41:57 | Total Time Left: 7:55:55
[2025-07-05 01:04:46] Epoch 3/4, Step 1750/18020, Loss(triple): 7.557671, Loss(predicate): 9.414876, LR: 0.000109, Speed: 120965.74 tokens/sec | Epoch Time Left: 3:41:14 | Total Time Left: 7:55:13
[2025-07-05 01:05:26] Epoch 3/4, Step 1800/18020, Loss(triple): 7.911936, Loss(predicate): 7.959671, LR: 0.000109, Speed: 120322.21 tokens/sec | Epoch Time Left: 3:40:34 | Total Time Left: 7:54:31
[2025-07-05 01:06:07] Epoch 3/4, Step 1850/18020, Loss(triple): 7.368202, Loss(predicate): 9.612956, LR: 0.000108, Speed: 120695.92 tokens/sec | Epoch Time Left: 3:39:53 | Total Time Left: 7:53:48
[2025-07-05 01:06:48] Epoch 3/4, Step 1900/18020, Loss(triple): 7.904743, Loss(predicate): 8.824463, LR: 0.000108, Speed: 121015.36 tokens/sec | Epoch Time Left: 3:39:10 | Total Time Left: 7:53:06
[2025-07-05 01:07:29] Epoch 3/4, Step 1950/18020, Loss(triple): 7.248446, Loss(predicate): 7.134776, LR: 0.000108, Speed: 120597.80 tokens/sec | Epoch Time Left: 3:38:29 | Total Time Left: 7:52:24
[2025-07-05 01:08:09] === GPU性能分析 (平均每步) ===
[2025-07-05 01:08:09] 前向传播: 8.01ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 01:08:09] GPU总时间: 9.93ms, 实际迭代时间: 814.93ms, GPU利用率: 1.2%
[2025-07-05 01:08:09] ==================================================
[2025-07-05 01:08:09] === 三元组预测示例 ===
[2025-07-05 01:08:09] 样本1目标: Geelong located in the administrative territorial entity Victoria, Australia
[2025-07-05 01:08:09] 样本1预测: countryO instanceilstem onill-et iality teroriarit the v
[2025-07-05 01:08:09] 样本2目标: Mo Hussein place of birth Hackney
[2025-07-05 01:08:09] 样本2预测: placeM signog (aro onm Met izate bir of dth M 19
[2025-07-05 01:08:09] ==================
[2025-07-05 01:08:09] Epoch 3/4, Step 2000/18020, Loss(triple): 7.740993, Loss(predicate): 10.247009, LR: 0.000108, Speed: 120628.34 tokens/sec | Epoch Time Left: 3:37:48 | Total Time Left: 7:51:41
[2025-07-05 01:08:50] Epoch 3/4, Step 2050/18020, Loss(triple): 7.765945, Loss(predicate): 10.890605, LR: 0.000108, Speed: 120338.83 tokens/sec | Epoch Time Left: 3:37:08 | Total Time Left: 7:50:59
[2025-07-05 01:09:31] Epoch 3/4, Step 2100/18020, Loss(triple): 7.639664, Loss(predicate): 9.403534, LR: 0.000107, Speed: 120549.95 tokens/sec | Epoch Time Left: 3:36:27 | Total Time Left: 7:50:17
[2025-07-05 01:10:12] Epoch 3/4, Step 2150/18020, Loss(triple): 8.121918, Loss(predicate): 10.415477, LR: 0.000107, Speed: 121062.70 tokens/sec | Epoch Time Left: 3:35:45 | Total Time Left: 7:49:34
[2025-07-05 01:10:52] Epoch 3/4, Step 2200/18020, Loss(triple): 7.545364, Loss(predicate): 6.301824, LR: 0.000107, Speed: 120618.23 tokens/sec | Epoch Time Left: 3:35:04 | Total Time Left: 7:48:52
[2025-07-05 01:11:33] Epoch 3/4, Step 2250/18020, Loss(triple): 7.541048, Loss(predicate): 7.354167, LR: 0.000107, Speed: 120016.80 tokens/sec | Epoch Time Left: 3:34:24 | Total Time Left: 7:48:10
[2025-07-05 01:12:14] Epoch 3/4, Step 2300/18020, Loss(triple): 8.319031, Loss(predicate): 12.617640, LR: 0.000106, Speed: 119204.73 tokens/sec | Epoch Time Left: 3:33:46 | Total Time Left: 7:47:28
[2025-07-05 01:12:56] Epoch 3/4, Step 2350/18020, Loss(triple): 7.730831, Loss(predicate): 11.100057, LR: 0.000106, Speed: 119743.30 tokens/sec | Epoch Time Left: 3:33:07 | Total Time Left: 7:46:46
[2025-07-05 01:13:44] Epoch 3/4, Step 2400/18020, Loss(triple): 7.897448, Loss(predicate): 8.734650, LR: 0.000106, Speed: 101321.85 tokens/sec | Epoch Time Left: 3:33:17 | Total Time Left: 7:46:11
[2025-07-05 01:14:25] Epoch 3/4, Step 2450/18020, Loss(triple): 7.740786, Loss(predicate): 6.017965, LR: 0.000106, Speed: 118960.77 tokens/sec | Epoch Time Left: 3:32:38 | Total Time Left: 7:45:29
[2025-07-05 01:15:14] === GPU性能分析 (平均每步) ===
[2025-07-05 01:15:14] 前向传播: 7.98ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 01:15:14] GPU总时间: 9.90ms, 实际迭代时间: 967.86ms, GPU利用率: 1.0%
[2025-07-05 01:15:14] ==================================================
[2025-07-05 01:15:14] === 三元组预测示例 ===
[2025-07-05 01:15:14] 样本1目标: Babrius languages spoken, written or signed Greek
[2025-07-05 01:15:14] 样本1预测: countryThe partyas (ron inol Ius ritist L ofgeance Mer
[2025-07-05 01:15:14] 样本2目标: Mridula Sinha date of birth 27 November 1942
[2025-07-05 01:15:14] 样本2预测: countryMensthaara alatores upation bir of occth B 19
[2025-07-05 01:15:14] ==================
[2025-07-05 01:15:14] Epoch 3/4, Step 2500/18020, Loss(triple): 7.791239, Loss(predicate): 8.804993, LR: 0.000105, Speed: 101568.21 tokens/sec | Epoch Time Left: 3:32:43 | Total Time Left: 7:44:53
[2025-07-05 01:16:01] Epoch 3/4, Step 2550/18020, Loss(triple): 7.642288, Loss(predicate): 8.978749, LR: 0.000105, Speed: 102961.32 tokens/sec | Epoch Time Left: 3:32:42 | Total Time Left: 7:44:17
[2025-07-05 01:16:43] Epoch 3/4, Step 2600/18020, Loss(triple): 7.665146, Loss(predicate): 8.497040, LR: 0.000105, Speed: 119215.89 tokens/sec | Epoch Time Left: 3:32:01 | Total Time Left: 7:43:35
[2025-07-05 01:17:25] Epoch 3/4, Step 2650/18020, Loss(triple): 8.294504, Loss(predicate): 10.453003, LR: 0.000105, Speed: 115159.74 tokens/sec | Epoch Time Left: 3:31:28 | Total Time Left: 7:42:54
[2025-07-05 01:18:12] Epoch 3/4, Step 2700/18020, Loss(triple): 7.957659, Loss(predicate): 8.634552, LR: 0.000104, Speed: 105545.64 tokens/sec | Epoch Time Left: 3:31:16 | Total Time Left: 7:42:17
[2025-07-05 01:18:56] Epoch 3/4, Step 2750/18020, Loss(triple): 7.503223, Loss(predicate): 10.800624, LR: 0.000104, Speed: 112777.53 tokens/sec | Epoch Time Left: 3:30:47 | Total Time Left: 7:41:37
[2025-07-05 01:19:36] Epoch 3/4, Step 2800/18020, Loss(triple): 7.517351, Loss(predicate): 12.189957, LR: 0.000104, Speed: 120912.51 tokens/sec | Epoch Time Left: 3:30:02 | Total Time Left: 7:40:55
[2025-07-05 01:20:17] Epoch 3/4, Step 2850/18020, Loss(triple): 7.232981, Loss(predicate): 7.377706, LR: 0.000104, Speed: 119960.43 tokens/sec | Epoch Time Left: 3:29:18 | Total Time Left: 7:40:13
[2025-07-05 01:20:58] Epoch 3/4, Step 2900/18020, Loss(triple): 7.841204, Loss(predicate): 8.920888, LR: 0.000103, Speed: 120855.69 tokens/sec | Epoch Time Left: 3:28:33 | Total Time Left: 7:39:30
[2025-07-05 01:21:39] Epoch 3/4, Step 2950/18020, Loss(triple): 7.752213, Loss(predicate): 12.267944, LR: 0.000103, Speed: 119872.91 tokens/sec | Epoch Time Left: 3:27:50 | Total Time Left: 7:38:48
[2025-07-05 01:22:19] === GPU性能分析 (平均每步) ===
[2025-07-05 01:22:19] 前向传播: 8.01ms, 损失计算: 0.02ms, 反向传播: 1.95ms, 优化器: 0.00ms
[2025-07-05 01:22:19] GPU总时间: 9.97ms, 实际迭代时间: 811.23ms, GPU利用率: 1.2%
[2025-07-05 01:22:19] ==================================================
[2025-07-05 01:22:19] === 三元组预测示例 ===
[2025-07-05 01:22:19] 样本1目标: Rhabdomantis taxon rank genus
[2025-07-05 01:22:19] 样本1预测: imP dyhihd opisusom axonus rankax gen t
[2025-07-05 01:22:19] 样本2目标: P. Ranganath Shenoy occupation politician
[2025-07-05 01:22:19] 样本2预测: countryL adelicha ofu ania Pov upation politan occhip countryici
[2025-07-05 01:22:19] ==================
[2025-07-05 01:22:19] Epoch 3/4, Step 3000/18020, Loss(triple): 7.456995, Loss(predicate): 9.545654, LR: 0.000103, Speed: 121179.03 tokens/sec | Epoch Time Left: 3:27:04 | Total Time Left: 7:38:06
[2025-07-05 01:23:00] Epoch 3/4, Step 3050/18020, Loss(triple): 7.654345, Loss(predicate): 6.280263, LR: 0.000103, Speed: 120857.83 tokens/sec | Epoch Time Left: 3:26:19 | Total Time Left: 7:37:23
[2025-07-05 01:23:41] Epoch 3/4, Step 3100/18020, Loss(triple): 7.811867, Loss(predicate): 6.436340, LR: 0.000102, Speed: 119822.71 tokens/sec | Epoch Time Left: 3:25:37 | Total Time Left: 7:36:41
[2025-07-05 01:24:22] Epoch 3/4, Step 3150/18020, Loss(triple): 7.253643, Loss(predicate): 8.476003, LR: 0.000102, Speed: 120222.90 tokens/sec | Epoch Time Left: 3:24:53 | Total Time Left: 7:35:59
[2025-07-05 01:25:03] Epoch 3/4, Step 3200/18020, Loss(triple): 7.624474, Loss(predicate): 11.424469, LR: 0.000102, Speed: 120636.22 tokens/sec | Epoch Time Left: 3:24:09 | Total Time Left: 7:35:17
[2025-07-05 01:25:43] Epoch 3/4, Step 3250/18020, Loss(triple): 7.238461, Loss(predicate): 10.430969, LR: 0.000102, Speed: 121285.51 tokens/sec | Epoch Time Left: 3:23:24 | Total Time Left: 7:34:34
[2025-07-05 01:26:24] Epoch 3/4, Step 3300/18020, Loss(triple): 7.739857, Loss(predicate): 12.021901, LR: 0.000101, Speed: 120894.73 tokens/sec | Epoch Time Left: 3:22:40 | Total Time Left: 7:33:52
[2025-07-05 01:27:05] Epoch 3/4, Step 3350/18020, Loss(triple): 7.658184, Loss(predicate): 9.079021, LR: 0.000101, Speed: 119432.95 tokens/sec | Epoch Time Left: 3:21:58 | Total Time Left: 7:33:10
[2025-07-05 01:27:46] Epoch 3/4, Step 3400/18020, Loss(triple): 7.268055, Loss(predicate): 10.681682, LR: 0.000101, Speed: 120115.90 tokens/sec | Epoch Time Left: 3:21:15 | Total Time Left: 7:32:28
[2025-07-05 01:28:27] Epoch 3/4, Step 3450/18020, Loss(triple): 7.064732, Loss(predicate): 8.482646, LR: 0.000101, Speed: 120754.30 tokens/sec | Epoch Time Left: 3:20:31 | Total Time Left: 7:31:45
[2025-07-05 01:29:07] === GPU性能分析 (平均每步) ===
[2025-07-05 01:29:07] 前向传播: 8.01ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 01:29:07] GPU总时间: 9.93ms, 实际迭代时间: 813.38ms, GPU利用率: 1.2%
[2025-07-05 01:29:07] ==================================================
[2025-07-05 01:29:07] === 三元组预测示例 ===
[2025-07-05 01:29:07] 样本1目标: Simona de Silvestro country of citizenship Swiss
[2025-07-05 01:29:07] 样本1预测: SS entoonaalon ilknir 9ate bir of dth B 19
[2025-07-05 01:29:07] 样本2目标: Town Hill, Bermuda located in the administrative territorial entity Bermuda
[2025-07-05 01:29:07] 样本2预测: countryR entistonam K owk,ov ustrent States ofiaance country United
[2025-07-05 01:29:07] ==================
[2025-07-05 01:29:07] Epoch 3/4, Step 3500/18020, Loss(triple): 7.487009, Loss(predicate): 8.136485, LR: 0.000101, Speed: 120857.91 tokens/sec | Epoch Time Left: 3:19:47 | Total Time Left: 7:31:03
[2025-07-05 01:29:48] Epoch 3/4, Step 3550/18020, Loss(triple): 7.751060, Loss(predicate): 9.274983, LR: 0.000100, Speed: 120301.73 tokens/sec | Epoch Time Left: 3:19:04 | Total Time Left: 7:30:21
[2025-07-05 01:30:29] Epoch 3/4, Step 3600/18020, Loss(triple): 7.658543, Loss(predicate): 10.434184, LR: 0.000100, Speed: 119558.21 tokens/sec | Epoch Time Left: 3:18:22 | Total Time Left: 7:29:39
[2025-07-05 01:31:10] Epoch 3/4, Step 3650/18020, Loss(triple): 7.635777, Loss(predicate): 7.556498, LR: 0.000100, Speed: 120581.51 tokens/sec | Epoch Time Left: 3:17:39 | Total Time Left: 7:28:57
[2025-07-05 01:31:23] Model saved to out/pretrain_cls512.pth
[2025-07-05 01:31:52] Epoch 3/4, Step 3700/18020, Loss(triple): 7.319849, Loss(predicate): 11.299489, LR: 0.000100, Speed: 118434.19 tokens/sec | Epoch Time Left: 3:16:59 | Total Time Left: 7:28:15
[2025-07-05 01:32:32] Epoch 3/4, Step 3750/18020, Loss(triple): 7.337112, Loss(predicate): 10.317871, LR: 0.000099, Speed: 121020.46 tokens/sec | Epoch Time Left: 3:16:15 | Total Time Left: 7:27:33
[2025-07-05 01:33:13] Model saved to out/pretrain_cls512.pth
[2025-07-05 01:33:14] Epoch 3/4, Step 3800/18020, Loss(triple): 7.852848, Loss(predicate): 6.015829, LR: 0.000099, Speed: 117809.93 tokens/sec | Epoch Time Left: 3:15:35 | Total Time Left: 7:26:51
[2025-07-05 01:33:55] Epoch 3/4, Step 3850/18020, Loss(triple): 7.725748, Loss(predicate): 5.981842, LR: 0.000099, Speed: 119637.42 tokens/sec | Epoch Time Left: 3:14:53 | Total Time Left: 7:26:09
[2025-07-05 01:34:36] Epoch 3/4, Step 3900/18020, Loss(triple): 7.760180, Loss(predicate): 10.975372, LR: 0.000099, Speed: 120722.21 tokens/sec | Epoch Time Left: 3:14:10 | Total Time Left: 7:25:27
[2025-07-05 01:35:16] Epoch 3/4, Step 3950/18020, Loss(triple): 7.266924, Loss(predicate): 8.359212, LR: 0.000098, Speed: 120837.13 tokens/sec | Epoch Time Left: 3:13:27 | Total Time Left: 7:24:45
[2025-07-05 01:35:57] === GPU性能分析 (平均每步) ===
[2025-07-05 01:35:57] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.91ms, 优化器: 0.00ms
[2025-07-05 01:35:57] GPU总时间: 9.93ms, 实际迭代时间: 815.98ms, GPU利用率: 1.2%
[2025-07-05 01:35:57] ==================================================
[2025-07-05 01:35:57] === 三元组预测示例 ===
[2025-07-05 01:35:57] 样本1目标: Harry Pickett date of birth 26 March 1862
[2025-07-05 01:35:57] 样本1预测: GD6yelael erk Mom 4ate bir of dth 2 19
[2025-07-05 01:35:57] 样本2目标: Blue Front Cafe located in the administrative territorial entity Mississippi
[2025-07-05 01:35:57] 样本2预测: countryCh entom Haeu erk Hay iality teroriarit the C
[2025-07-05 01:35:57] ==================
[2025-07-05 01:35:57] Epoch 3/4, Step 4000/18020, Loss(triple): 7.203583, Loss(predicate): 10.284343, LR: 0.000098, Speed: 120473.60 tokens/sec | Epoch Time Left: 3:12:44 | Total Time Left: 7:24:02
[2025-07-05 01:36:38] Epoch 3/4, Step 4050/18020, Loss(triple): 8.334499, Loss(predicate): 10.777659, LR: 0.000098, Speed: 120597.48 tokens/sec | Epoch Time Left: 3:12:01 | Total Time Left: 7:23:20
[2025-07-05 01:37:19] Epoch 3/4, Step 4100/18020, Loss(triple): 7.765713, Loss(predicate): 8.813751, LR: 0.000098, Speed: 120056.36 tokens/sec | Epoch Time Left: 3:11:19 | Total Time Left: 7:22:38
[2025-07-05 01:38:00] Epoch 3/4, Step 4150/18020, Loss(triple): 7.816029, Loss(predicate): 9.460744, LR: 0.000097, Speed: 121009.62 tokens/sec | Epoch Time Left: 3:10:36 | Total Time Left: 7:21:56
[2025-07-05 01:38:40] Epoch 3/4, Step 4200/18020, Loss(triple): 7.646183, Loss(predicate): 9.875702, LR: 0.000097, Speed: 121029.33 tokens/sec | Epoch Time Left: 3:09:52 | Total Time Left: 7:21:13
[2025-07-05 01:39:21] Epoch 3/4, Step 4250/18020, Loss(triple): 7.243958, Loss(predicate): 9.734100, LR: 0.000097, Speed: 119827.06 tokens/sec | Epoch Time Left: 3:09:10 | Total Time Left: 7:20:31
[2025-07-05 01:40:02] Epoch 3/4, Step 4300/18020, Loss(triple): 7.691301, Loss(predicate): 4.494604, LR: 0.000097, Speed: 121099.47 tokens/sec | Epoch Time Left: 3:08:27 | Total Time Left: 7:19:49
[2025-07-05 01:40:43] Epoch 3/4, Step 4350/18020, Loss(triple): 7.584068, Loss(predicate): 7.833476, LR: 0.000096, Speed: 119918.17 tokens/sec | Epoch Time Left: 3:07:45 | Total Time Left: 7:19:07
[2025-07-05 01:41:23] Epoch 3/4, Step 4400/18020, Loss(triple): 7.232653, Loss(predicate): 7.384725, LR: 0.000096, Speed: 121314.61 tokens/sec | Epoch Time Left: 3:07:02 | Total Time Left: 7:18:25
[2025-07-05 01:42:04] Epoch 3/4, Step 4450/18020, Loss(triple): 7.592621, Loss(predicate): 12.106730, LR: 0.000096, Speed: 121126.24 tokens/sec | Epoch Time Left: 3:06:19 | Total Time Left: 7:17:42
[2025-07-05 01:42:45] === GPU性能分析 (平均每步) ===
[2025-07-05 01:42:45] 前向传播: 8.05ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 01:42:45] GPU总时间: 9.97ms, 实际迭代时间: 819.07ms, GPU利用率: 1.2%
[2025-07-05 01:42:45] ==================================================
[2025-07-05 01:42:45] === 三元组预测示例 ===
[2025-07-05 01:42:45] 样本1目标: Frank Cacciatore date of birth April 25, 1955
[2025-07-05 01:42:45] 样本1预测: countryO enturasard inknil izate bir of,th Sens
[2025-07-05 01:42:45] 样本2目标: 2006 Africa Cup of Nations Final location Cairo International Stadium
[2025-07-05 01:42:45] 样本2预测: country20 basy 200aean erI Cay ortall footbb19 S<>
[2025-07-05 01:42:45] ==================
[2025-07-05 01:42:45] Epoch 3/4, Step 4500/18020, Loss(triple): 7.489326, Loss(predicate): 11.421819, LR: 0.000096, Speed: 120019.68 tokens/sec | Epoch Time Left: 3:05:37 | Total Time Left: 7:17:00
[2025-07-05 01:43:26] Epoch 3/4, Step 4550/18020, Loss(triple): 7.414871, Loss(predicate): 5.963094, LR: 0.000095, Speed: 120493.10 tokens/sec | Epoch Time Left: 3:04:55 | Total Time Left: 7:16:18
[2025-07-05 01:44:06] Epoch 3/4, Step 4600/18020, Loss(triple): 7.783417, Loss(predicate): 10.520518, LR: 0.000095, Speed: 120788.68 tokens/sec | Epoch Time Left: 3:04:12 | Total Time Left: 7:15:36
[2025-07-05 01:44:47] Epoch 3/4, Step 4650/18020, Loss(triple): 7.413513, Loss(predicate): 7.769506, LR: 0.000095, Speed: 121456.01 tokens/sec | Epoch Time Left: 3:03:29 | Total Time Left: 7:14:53
[2025-07-05 01:45:27] Epoch 3/4, Step 4700/18020, Loss(triple): 7.224716, Loss(predicate): 9.806560, LR: 0.000095, Speed: 120993.44 tokens/sec | Epoch Time Left: 3:02:46 | Total Time Left: 7:14:11
[2025-07-05 01:46:08] Epoch 3/4, Step 4750/18020, Loss(triple): 7.873400, Loss(predicate): 7.213969, LR: 0.000094, Speed: 120214.16 tokens/sec | Epoch Time Left: 3:02:04 | Total Time Left: 7:13:29
[2025-07-05 01:46:49] Epoch 3/4, Step 4800/18020, Loss(triple): 7.625492, Loss(predicate): 5.394409, LR: 0.000094, Speed: 120692.30 tokens/sec | Epoch Time Left: 3:01:22 | Total Time Left: 7:12:47
[2025-07-05 01:47:30] Epoch 3/4, Step 4850/18020, Loss(triple): 7.712082, Loss(predicate): 10.673889, LR: 0.000094, Speed: 121051.89 tokens/sec | Epoch Time Left: 3:00:39 | Total Time Left: 7:12:05
[2025-07-05 01:48:10] Epoch 3/4, Step 4900/18020, Loss(triple): 7.980644, Loss(predicate): 7.161936, LR: 0.000094, Speed: 121267.47 tokens/sec | Epoch Time Left: 2:59:56 | Total Time Left: 7:11:22
[2025-07-05 01:48:51] Epoch 3/4, Step 4950/18020, Loss(triple): 7.866302, Loss(predicate): 10.937637, LR: 0.000093, Speed: 120940.53 tokens/sec | Epoch Time Left: 2:59:14 | Total Time Left: 7:10:40
[2025-07-05 01:49:32] === GPU性能分析 (平均每步) ===
[2025-07-05 01:49:32] 前向传播: 7.99ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 01:49:32] GPU总时间: 9.91ms, 实际迭代时间: 818.20ms, GPU利用率: 1.2%
[2025-07-05 01:49:32] ==================================================
[2025-07-05 01:49:32] === 三元组预测示例 ===
[2025-07-05 01:49:32] 样本1目标: Peeter Sauter place of birth Tallinn
[2025-07-05 01:49:32] 样本1预测: countryLensether (eer eror,ay 4ate bir of dth M 19
[2025-07-05 01:49:32] 样本2目标: Anna Rüh place of birth Greifswald
[2025-07-05 01:49:32] 样本2预测: countryCh entulhadam an<61>nun 6ate bir of dth J 1
[2025-07-05 01:49:32] ==================
[2025-07-05 01:49:32] Epoch 3/4, Step 5000/18020, Loss(triple): 7.313736, Loss(predicate): 10.591350, LR: 0.000093, Speed: 120146.20 tokens/sec | Epoch Time Left: 2:58:32 | Total Time Left: 7:09:58
[2025-07-05 01:50:12] Epoch 3/4, Step 5050/18020, Loss(triple): 7.462969, Loss(predicate): 10.199391, LR: 0.000093, Speed: 120667.86 tokens/sec | Epoch Time Left: 2:57:50 | Total Time Left: 7:09:16
[2025-07-05 01:50:53] Epoch 3/4, Step 5100/18020, Loss(triple): 7.254246, Loss(predicate): 14.128407, LR: 0.000093, Speed: 120576.26 tokens/sec | Epoch Time Left: 2:57:08 | Total Time Left: 7:08:34
[2025-07-05 01:51:34] Epoch 3/4, Step 5150/18020, Loss(triple): 7.955555, Loss(predicate): 6.666311, LR: 0.000093, Speed: 121447.55 tokens/sec | Epoch Time Left: 2:56:25 | Total Time Left: 7:07:51
[2025-07-05 01:52:14] Epoch 3/4, Step 5200/18020, Loss(triple): 8.004669, Loss(predicate): 9.587341, LR: 0.000092, Speed: 121044.91 tokens/sec | Epoch Time Left: 2:55:43 | Total Time Left: 7:07:09
[2025-07-05 01:52:55] Epoch 3/4, Step 5250/18020, Loss(triple): 7.386559, Loss(predicate): 6.970006, LR: 0.000092, Speed: 119991.63 tokens/sec | Epoch Time Left: 2:55:01 | Total Time Left: 7:06:27
[2025-07-05 01:53:36] Epoch 3/4, Step 5300/18020, Loss(triple): 7.937683, Loss(predicate): 14.769002, LR: 0.000092, Speed: 120787.10 tokens/sec | Epoch Time Left: 2:54:19 | Total Time Left: 7:05:45
[2025-07-05 01:54:17] Epoch 3/4, Step 5350/18020, Loss(triple): 7.594044, Loss(predicate): 7.377309, LR: 0.000092, Speed: 120646.50 tokens/sec | Epoch Time Left: 2:53:37 | Total Time Left: 7:05:03
[2025-07-05 01:54:57] Epoch 3/4, Step 5400/18020, Loss(triple): 7.360035, Loss(predicate): 7.606628, LR: 0.000091, Speed: 121350.50 tokens/sec | Epoch Time Left: 2:52:54 | Total Time Left: 7:04:20
[2025-07-05 01:55:38] Epoch 3/4, Step 5450/18020, Loss(triple): 8.005432, Loss(predicate): 10.940460, LR: 0.000091, Speed: 120966.65 tokens/sec | Epoch Time Left: 2:52:12 | Total Time Left: 7:03:38
[2025-07-05 01:56:19] === GPU性能分析 (平均每步) ===
[2025-07-05 01:56:19] 前向传播: 7.98ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 01:56:19] GPU总时间: 9.91ms, 实际迭代时间: 820.39ms, GPU利用率: 1.2%
[2025-07-05 01:56:19] ==================================================
[2025-07-05 01:56:19] === 三元组预测示例 ===
[2025-07-05 01:56:19] 样本1目标: Saint Petersburg twinned administrative body Saint Petersburg, Florida
[2025-07-05 01:56:19] 样本1预测: countryC entyinaarb erill Cir ialist locatedoriverance the C
[2025-07-05 01:56:19] 样本2目标: Robert Kendall (poet) country of citizenship United States
[2025-07-05 01:56:19] 样本2预测: GRensetry (ser ink Aes Americanitiz of chip countryens
[2025-07-05 01:56:19] ==================
[2025-07-05 01:56:19] Epoch 3/4, Step 5500/18020, Loss(triple): 7.247797, Loss(predicate): 6.897298, LR: 0.000091, Speed: 119825.68 tokens/sec | Epoch Time Left: 2:51:31 | Total Time Left: 7:02:56
[2025-07-05 01:56:32] Model saved to out/pretrain_cls512.pth
[2025-07-05 01:57:01] Epoch 3/4, Step 5550/18020, Loss(triple): 7.264294, Loss(predicate): 8.187210, LR: 0.000091, Speed: 117781.23 tokens/sec | Epoch Time Left: 2:50:51 | Total Time Left: 7:02:15
[2025-07-05 01:57:41] Epoch 3/4, Step 5600/18020, Loss(triple): 7.827484, Loss(predicate): 11.220856, LR: 0.000090, Speed: 121021.16 tokens/sec | Epoch Time Left: 2:50:09 | Total Time Left: 7:01:32
[2025-07-05 01:58:22] Epoch 3/4, Step 5650/18020, Loss(triple): 7.216026, Loss(predicate): 13.455841, LR: 0.000090, Speed: 121291.48 tokens/sec | Epoch Time Left: 2:49:27 | Total Time Left: 7:00:50
[2025-07-05 01:59:07] Epoch 3/4, Step 5700/18020, Loss(triple): 7.261200, Loss(predicate): 10.330098, LR: 0.000090, Speed: 107700.47 tokens/sec | Epoch Time Left: 2:48:55 | Total Time Left: 7:00:12
[2025-07-05 01:59:50] Epoch 3/4, Step 5750/18020, Loss(triple): 7.834351, Loss(predicate): 14.985168, LR: 0.000090, Speed: 115832.11 tokens/sec | Epoch Time Left: 2:48:17 | Total Time Left: 6:59:31
[2025-07-05 02:00:32] Epoch 3/4, Step 5800/18020, Loss(triple): 8.116213, Loss(predicate): 9.438619, LR: 0.000089, Speed: 116739.96 tokens/sec | Epoch Time Left: 2:47:38 | Total Time Left: 6:58:50
[2025-07-05 02:01:15] Epoch 3/4, Step 5850/18020, Loss(triple): 7.865152, Loss(predicate): 3.936737, LR: 0.000089, Speed: 112850.06 tokens/sec | Epoch Time Left: 2:47:02 | Total Time Left: 6:58:09
[2025-07-05 02:01:56] Epoch 3/4, Step 5900/18020, Loss(triple): 7.588633, Loss(predicate): 8.505321, LR: 0.000089, Speed: 119679.29 tokens/sec | Epoch Time Left: 2:46:20 | Total Time Left: 6:57:28
[2025-07-05 02:02:37] Epoch 3/4, Step 5950/18020, Loss(triple): 7.421284, Loss(predicate): 11.577403, LR: 0.000089, Speed: 120941.34 tokens/sec | Epoch Time Left: 2:45:38 | Total Time Left: 6:56:45
[2025-07-05 02:03:18] === GPU性能分析 (平均每步) ===
[2025-07-05 02:03:18] 前向传播: 7.99ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 02:03:18] GPU总时间: 9.91ms, 实际迭代时间: 818.42ms, GPU利用率: 1.2%
[2025-07-05 02:03:18] ==================================================
[2025-07-05 02:03:18] === 三元组预测示例 ===
[2025-07-05 02:03:18] 样本1目标: Adolf Schiffer instrument cellist
[2025-07-05 02:03:18] 样本1预测: GCh biryg (cd erch Met upation bir of occth Mici
[2025-07-05 02:03:18] 样本2目标: Bulbophyllum louisiadum parent taxon Bulbophyllum
[2025-07-05 02:03:18] 样本2预测: STptyllumcb opisusus boon speciesonankaxph t
[2025-07-05 02:03:18] ==================
[2025-07-05 02:03:18] Epoch 3/4, Step 6000/18020, Loss(triple): 8.435398, Loss(predicate): 11.926005, LR: 0.000088, Speed: 120113.85 tokens/sec | Epoch Time Left: 2:44:56 | Total Time Left: 6:56:03
[2025-07-05 02:03:59] Epoch 3/4, Step 6050/18020, Loss(triple): 7.356251, Loss(predicate): 8.608826, LR: 0.000088, Speed: 120393.17 tokens/sec | Epoch Time Left: 2:44:15 | Total Time Left: 6:55:21
[2025-07-05 02:04:39] Epoch 3/4, Step 6100/18020, Loss(triple): 8.249638, Loss(predicate): 9.484904, LR: 0.000088, Speed: 121069.03 tokens/sec | Epoch Time Left: 2:43:32 | Total Time Left: 6:54:39
[2025-07-05 02:05:20] Epoch 3/4, Step 6150/18020, Loss(triple): 7.822681, Loss(predicate): 6.912058, LR: 0.000088, Speed: 121309.32 tokens/sec | Epoch Time Left: 2:42:50 | Total Time Left: 6:53:57
[2025-07-05 02:06:01] Epoch 3/4, Step 6200/18020, Loss(triple): 7.529428, Loss(predicate): 9.917953, LR: 0.000087, Speed: 120085.26 tokens/sec | Epoch Time Left: 2:42:08 | Total Time Left: 6:53:15
[2025-07-05 02:06:42] Epoch 3/4, Step 6250/18020, Loss(triple): 7.441029, Loss(predicate): 6.703695, LR: 0.000087, Speed: 119645.67 tokens/sec | Epoch Time Left: 2:41:27 | Total Time Left: 6:52:33
[2025-07-05 02:07:23] Epoch 3/4, Step 6300/18020, Loss(triple): 7.318270, Loss(predicate): 7.028636, LR: 0.000087, Speed: 120308.87 tokens/sec | Epoch Time Left: 2:40:45 | Total Time Left: 6:51:51
[2025-07-05 02:08:05] Epoch 3/4, Step 6350/18020, Loss(triple): 7.499249, Loss(predicate): 9.540751, LR: 0.000087, Speed: 117375.54 tokens/sec | Epoch Time Left: 2:40:06 | Total Time Left: 6:51:10
[2025-07-05 02:08:48] Epoch 3/4, Step 6400/18020, Loss(triple): 7.376068, Loss(predicate): 11.114858, LR: 0.000087, Speed: 114320.27 tokens/sec | Epoch Time Left: 2:39:28 | Total Time Left: 6:50:29
[2025-07-05 02:09:29] Epoch 3/4, Step 6450/18020, Loss(triple): 7.534164, Loss(predicate): 9.134868, LR: 0.000086, Speed: 119276.03 tokens/sec | Epoch Time Left: 2:38:47 | Total Time Left: 6:49:47
[2025-07-05 02:10:10] === GPU性能分析 (平均每步) ===
[2025-07-05 02:10:10] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 02:10:10] GPU总时间: 9.92ms, 实际迭代时间: 822.29ms, GPU利用率: 1.2%
[2025-07-05 02:10:10] ==================================================
[2025-07-05 02:10:10] === 三元组预测示例 ===
[2025-07-05 02:10:10] 样本1目标: Bulbophyllum marginatum parent taxon Bulbophyllum
[2025-07-05 02:10:10] 样本1预测: SDptyllum ofer ialisusus boon speciesonankaxph t
[2025-07-05 02:10:10] 样本2目标: Charles Alexander, Duke of Württemberg date of birth 24 May 1684
[2025-07-05 02:10:10] 样本2预测: GCh adoryisharan en<65>nun 7ate bir of dth J 1
[2025-07-05 02:10:10] ==================
[2025-07-05 02:10:10] Epoch 3/4, Step 6500/18020, Loss(triple): 7.509144, Loss(predicate): 12.274608, LR: 0.000086, Speed: 119549.66 tokens/sec | Epoch Time Left: 2:38:05 | Total Time Left: 6:49:05
[2025-07-05 02:10:51] Epoch 3/4, Step 6550/18020, Loss(triple): 7.770100, Loss(predicate): 9.637013, LR: 0.000086, Speed: 119460.03 tokens/sec | Epoch Time Left: 2:37:24 | Total Time Left: 6:48:24
[2025-07-05 02:11:32] Epoch 3/4, Step 6600/18020, Loss(triple): 7.811792, Loss(predicate): 7.914973, LR: 0.000086, Speed: 121333.07 tokens/sec | Epoch Time Left: 2:36:42 | Total Time Left: 6:47:41
[2025-07-05 02:12:12] Epoch 3/4, Step 6650/18020, Loss(triple): 7.465015, Loss(predicate): 7.954651, LR: 0.000085, Speed: 121154.76 tokens/sec | Epoch Time Left: 2:36:00 | Total Time Left: 6:46:59
[2025-07-05 02:12:53] Epoch 3/4, Step 6700/18020, Loss(triple): 7.432281, Loss(predicate): 12.801564, LR: 0.000085, Speed: 119936.84 tokens/sec | Epoch Time Left: 2:35:18 | Total Time Left: 6:46:17
[2025-07-05 02:13:34] Epoch 3/4, Step 6750/18020, Loss(triple): 7.325113, Loss(predicate): 8.537190, LR: 0.000085, Speed: 121290.02 tokens/sec | Epoch Time Left: 2:34:36 | Total Time Left: 6:45:35
[2025-07-05 02:14:15] Epoch 3/4, Step 6800/18020, Loss(triple): 7.526657, Loss(predicate): 10.823578, LR: 0.000085, Speed: 119835.51 tokens/sec | Epoch Time Left: 2:33:55 | Total Time Left: 6:44:53
[2025-07-05 02:14:55] Epoch 3/4, Step 6850/18020, Loss(triple): 7.360935, Loss(predicate): 9.616689, LR: 0.000084, Speed: 120820.72 tokens/sec | Epoch Time Left: 2:33:13 | Total Time Left: 6:44:11
[2025-07-05 02:15:36] Epoch 3/4, Step 6900/18020, Loss(triple): 7.337078, Loss(predicate): 8.940669, LR: 0.000084, Speed: 120363.10 tokens/sec | Epoch Time Left: 2:32:31 | Total Time Left: 6:43:29
[2025-07-05 02:16:18] Epoch 3/4, Step 6950/18020, Loss(triple): 7.415985, Loss(predicate): 7.596176, LR: 0.000084, Speed: 119141.23 tokens/sec | Epoch Time Left: 2:31:50 | Total Time Left: 6:42:47
[2025-07-05 02:16:59] === GPU性能分析 (平均每步) ===
[2025-07-05 02:16:59] 前向传播: 8.01ms, 损失计算: 0.02ms, 反向传播: 1.95ms, 优化器: 0.00ms
[2025-07-05 02:16:59] GPU总时间: 9.97ms, 实际迭代时间: 819.84ms, GPU利用率: 1.2%
[2025-07-05 02:16:59] ==================================================
[2025-07-05 02:16:59] === 三元组预测示例 ===
[2025-07-05 02:16:59] 样本1目标: A. K. Gopalan place of death India
[2025-07-05 02:16:59] 样本1预测: GTensygienan itist Mom 4ate bir of dth 2 19
[2025-07-05 02:16:59] 样本2目标: Jakob Denzinger date of birth June 29, 1924
[2025-07-05 02:16:59] 样本2预测: countryJensish.ener erie Day 3ate States of dth country 19
[2025-07-05 02:16:59] ==================
[2025-07-05 02:16:59] Epoch 3/4, Step 7000/18020, Loss(triple): 7.381241, Loss(predicate): 6.021261, LR: 0.000084, Speed: 119906.02 tokens/sec | Epoch Time Left: 2:31:09 | Total Time Left: 6:42:05
[2025-07-05 02:17:41] Epoch 3/4, Step 7050/18020, Loss(triple): 7.383904, Loss(predicate): 4.526474, LR: 0.000083, Speed: 115133.93 tokens/sec | Epoch Time Left: 2:30:30 | Total Time Left: 6:41:24
[2025-07-05 02:18:23] Epoch 3/4, Step 7100/18020, Loss(triple): 7.935829, Loss(predicate): 11.332774, LR: 0.000083, Speed: 116461.76 tokens/sec | Epoch Time Left: 2:29:50 | Total Time Left: 6:40:43
[2025-07-05 02:19:05] Epoch 3/4, Step 7150/18020, Loss(triple): 7.296938, Loss(predicate): 7.381083, LR: 0.000083, Speed: 119435.54 tokens/sec | Epoch Time Left: 2:29:09 | Total Time Left: 6:40:02
[2025-07-05 02:19:45] Epoch 3/4, Step 7200/18020, Loss(triple): 7.352798, Loss(predicate): 5.430277, LR: 0.000083, Speed: 120828.60 tokens/sec | Epoch Time Left: 2:28:27 | Total Time Left: 6:39:19
[2025-07-05 02:20:30] Epoch 3/4, Step 7250/18020, Loss(triple): 7.608238, Loss(predicate): 10.247711, LR: 0.000082, Speed: 110408.54 tokens/sec | Epoch Time Left: 2:27:51 | Total Time Left: 6:38:40
[2025-07-05 02:21:17] Epoch 3/4, Step 7300/18020, Loss(triple): 7.701981, Loss(predicate): 6.366760, LR: 0.000082, Speed: 103721.58 tokens/sec | Epoch Time Left: 2:27:19 | Total Time Left: 6:38:02
[2025-07-05 02:21:59] Epoch 3/4, Step 7350/18020, Loss(triple): 7.799828, Loss(predicate): 13.665324, LR: 0.000082, Speed: 118024.19 tokens/sec | Epoch Time Left: 2:26:38 | Total Time Left: 6:37:21
[2025-07-05 02:22:39] Epoch 3/4, Step 7400/18020, Loss(triple): 7.577137, Loss(predicate): 6.160080, LR: 0.000082, Speed: 120861.84 tokens/sec | Epoch Time Left: 2:25:56 | Total Time Left: 6:36:39
[2025-07-05 02:23:20] Epoch 3/4, Step 7450/18020, Loss(triple): 7.326111, Loss(predicate): 7.889587, LR: 0.000081, Speed: 119962.96 tokens/sec | Epoch Time Left: 2:25:15 | Total Time Left: 6:35:57
[2025-07-05 02:24:01] === GPU性能分析 (平均每步) ===
[2025-07-05 02:24:01] 前向传播: 8.04ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 02:24:01] GPU总时间: 9.96ms, 实际迭代时间: 815.58ms, GPU利用率: 1.2%
[2025-07-05 02:24:01] ==================================================
[2025-07-05 02:24:01] === 三元组预测示例 ===
[2025-07-05 02:24:01] 样本1目标: New France named after France
[2025-07-05 02:24:01] 样本1预测: countryI entyasaean onm Ist ialist countryadiaion the Can
[2025-07-05 02:24:01] 样本2目标: Ryue Nishizawa occupation architect
[2025-07-05 02:24:01] 样本2预测: placeRensyicha.a ian<61>yov upation bir of occth insted
[2025-07-05 02:24:01] ==================
[2025-07-05 02:24:01] Epoch 3/4, Step 7500/18020, Loss(triple): 7.390827, Loss(predicate): 12.461223, LR: 0.000081, Speed: 120532.39 tokens/sec | Epoch Time Left: 2:24:33 | Total Time Left: 6:35:15
[2025-07-05 02:24:42] Epoch 3/4, Step 7550/18020, Loss(triple): 7.248285, Loss(predicate): 7.664703, LR: 0.000081, Speed: 119524.59 tokens/sec | Epoch Time Left: 2:23:51 | Total Time Left: 6:34:33
[2025-07-05 02:25:23] Epoch 3/4, Step 7600/18020, Loss(triple): 7.213709, Loss(predicate): 7.781982, LR: 0.000081, Speed: 121218.38 tokens/sec | Epoch Time Left: 2:23:09 | Total Time Left: 6:33:51
[2025-07-05 02:26:03] Epoch 3/4, Step 7650/18020, Loss(triple): 7.854647, Loss(predicate): 8.862473, LR: 0.000081, Speed: 121042.07 tokens/sec | Epoch Time Left: 2:22:27 | Total Time Left: 6:33:08
[2025-07-05 02:26:44] Epoch 3/4, Step 7700/18020, Loss(triple): 7.317926, Loss(predicate): 6.089610, LR: 0.000080, Speed: 120654.42 tokens/sec | Epoch Time Left: 2:21:45 | Total Time Left: 6:32:26
[2025-07-05 02:27:25] Epoch 3/4, Step 7750/18020, Loss(triple): 7.677830, Loss(predicate): 8.179738, LR: 0.000080, Speed: 120788.01 tokens/sec | Epoch Time Left: 2:21:04 | Total Time Left: 6:31:44
[2025-07-05 02:28:06] Epoch 3/4, Step 7800/18020, Loss(triple): 7.030643, Loss(predicate): 10.451350, LR: 0.000080, Speed: 119825.23 tokens/sec | Epoch Time Left: 2:20:22 | Total Time Left: 6:31:02
[2025-07-05 02:28:47] Epoch 3/4, Step 7850/18020, Loss(triple): 7.506516, Loss(predicate): 9.781880, LR: 0.000080, Speed: 121011.38 tokens/sec | Epoch Time Left: 2:19:40 | Total Time Left: 6:30:20
[2025-07-05 02:29:27] Epoch 3/4, Step 7900/18020, Loss(triple): 7.629196, Loss(predicate): 7.802602, LR: 0.000079, Speed: 120640.65 tokens/sec | Epoch Time Left: 2:18:58 | Total Time Left: 6:29:38
[2025-07-05 02:30:08] Epoch 3/4, Step 7950/18020, Loss(triple): 7.436535, Loss(predicate): 11.439301, LR: 0.000079, Speed: 119791.94 tokens/sec | Epoch Time Left: 2:18:17 | Total Time Left: 6:28:56
[2025-07-05 02:30:49] === GPU性能分析 (平均每步) ===
[2025-07-05 02:30:49] 前向传播: 8.05ms, 损失计算: 0.02ms, 反向传播: 1.91ms, 优化器: 0.00ms
[2025-07-05 02:30:49] GPU总时间: 9.97ms, 实际迭代时间: 816.10ms, GPU利用率: 1.2%
[2025-07-05 02:30:49] ==================================================
[2025-07-05 02:30:49] === 三元组预测示例 ===
[2025-07-05 02:30:49] 样本1目标: Heliopolis (Scudamore novel) author James Scudamore
[2025-07-05 02:30:49] 样本1预测: countryH instyelicb anill Pak fil with country ofz language Ser
[2025-07-05 02:30:49] 样本2目标: Mayamalavagowla part of melakarta
[2025-07-05 02:30:49] 样本2预测: placeM entlgaea anab-ov Oance country ofanceort inst of
[2025-07-05 02:30:49] ==================
[2025-07-05 02:30:49] Epoch 3/4, Step 8000/18020, Loss(triple): 7.302195, Loss(predicate): 10.067769, LR: 0.000079, Speed: 120455.58 tokens/sec | Epoch Time Left: 2:17:35 | Total Time Left: 6:28:14
[2025-07-05 02:31:30] Epoch 3/4, Step 8050/18020, Loss(triple): 7.505365, Loss(predicate): 9.850067, LR: 0.000079, Speed: 120017.53 tokens/sec | Epoch Time Left: 2:16:54 | Total Time Left: 6:27:32
[2025-07-05 02:32:11] Epoch 3/4, Step 8100/18020, Loss(triple): 7.378160, Loss(predicate): 7.957662, LR: 0.000078, Speed: 121149.32 tokens/sec | Epoch Time Left: 2:16:12 | Total Time Left: 6:26:50
[2025-07-05 02:32:51] Epoch 3/4, Step 8150/18020, Loss(triple): 7.446381, Loss(predicate): 10.746404, LR: 0.000078, Speed: 121025.57 tokens/sec | Epoch Time Left: 2:15:30 | Total Time Left: 6:26:08
[2025-07-05 02:33:32] Epoch 3/4, Step 8200/18020, Loss(triple): 7.273523, Loss(predicate): 7.277120, LR: 0.000078, Speed: 119710.17 tokens/sec | Epoch Time Left: 2:14:49 | Total Time Left: 6:25:26
[2025-07-05 02:34:13] Epoch 3/4, Step 8250/18020, Loss(triple): 7.764458, Loss(predicate): 10.619618, LR: 0.000078, Speed: 121017.08 tokens/sec | Epoch Time Left: 2:14:07 | Total Time Left: 6:24:44
[2025-07-05 02:34:54] Epoch 3/4, Step 8300/18020, Loss(triple): 7.726954, Loss(predicate): 5.056534, LR: 0.000077, Speed: 119991.71 tokens/sec | Epoch Time Left: 2:13:25 | Total Time Left: 6:24:02
[2025-07-05 02:35:34] Epoch 3/4, Step 8350/18020, Loss(triple): 7.201832, Loss(predicate): 5.951243, LR: 0.000077, Speed: 121332.48 tokens/sec | Epoch Time Left: 2:12:43 | Total Time Left: 6:23:20
[2025-07-05 02:36:15] Epoch 3/4, Step 8400/18020, Loss(triple): 7.203646, Loss(predicate): 6.639547, LR: 0.000077, Speed: 120742.61 tokens/sec | Epoch Time Left: 2:12:02 | Total Time Left: 6:22:38
[2025-07-05 02:36:56] Epoch 3/4, Step 8450/18020, Loss(triple): 7.185928, Loss(predicate): 10.918635, LR: 0.000077, Speed: 119574.73 tokens/sec | Epoch Time Left: 2:11:20 | Total Time Left: 6:21:56
[2025-07-05 02:37:37] === GPU性能分析 (平均每步) ===
[2025-07-05 02:37:37] 前向传播: 8.06ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 02:37:37] GPU总时间: 9.98ms, 实际迭代时间: 816.86ms, GPU利用率: 1.2%
[2025-07-05 02:37:37] ==================================================
[2025-07-05 02:37:37] === 三元组预测示例 ===
[2025-07-05 02:37:37] 样本1目标: You've Got a Friend in Me performer Randy Newman
[2025-07-05 02:37:37] 样本1预测: GTheockyrit (e L manames Gay songight perform ofetame Mer
[2025-07-05 02:37:37] 样本2目标: Shama Sikander occupation actress
[2025-07-05 02:37:37] 样本2预测: GS signelhabam ank Pay upation act of occress Bor
[2025-07-05 02:37:37] ==================
[2025-07-05 02:37:37] Epoch 3/4, Step 8500/18020, Loss(triple): 7.252228, Loss(predicate): 14.169952, LR: 0.000077, Speed: 120343.78 tokens/sec | Epoch Time Left: 2:10:39 | Total Time Left: 6:21:14
[2025-07-05 02:38:18] Epoch 3/4, Step 8550/18020, Loss(triple): 7.400818, Loss(predicate): 4.906413, LR: 0.000076, Speed: 120524.81 tokens/sec | Epoch Time Left: 2:09:57 | Total Time Left: 6:20:32
[2025-07-05 02:38:58] Epoch 3/4, Step 8600/18020, Loss(triple): 7.383066, Loss(predicate): 11.695796, LR: 0.000076, Speed: 121387.66 tokens/sec | Epoch Time Left: 2:09:15 | Total Time Left: 6:19:50
[2025-07-05 02:39:39] Epoch 3/4, Step 8650/18020, Loss(triple): 7.610371, Loss(predicate): 9.044571, LR: 0.000076, Speed: 120600.54 tokens/sec | Epoch Time Left: 2:08:34 | Total Time Left: 6:19:08
[2025-07-05 02:40:20] Epoch 3/4, Step 8700/18020, Loss(triple): 7.655350, Loss(predicate): 11.188405, LR: 0.000076, Speed: 119362.75 tokens/sec | Epoch Time Left: 2:07:52 | Total Time Left: 6:18:26
[2025-07-05 02:41:01] Epoch 3/4, Step 8750/18020, Loss(triple): 7.531357, Loss(predicate): 8.737569, LR: 0.000075, Speed: 120694.72 tokens/sec | Epoch Time Left: 2:07:11 | Total Time Left: 6:17:44
[2025-07-05 02:41:42] Epoch 3/4, Step 8800/18020, Loss(triple): 8.150238, Loss(predicate): 10.587077, LR: 0.000075, Speed: 121068.18 tokens/sec | Epoch Time Left: 2:06:29 | Total Time Left: 6:17:02
[2025-07-05 02:42:22] Epoch 3/4, Step 8850/18020, Loss(triple): 8.115883, Loss(predicate): 10.764201, LR: 0.000075, Speed: 121341.85 tokens/sec | Epoch Time Left: 2:05:47 | Total Time Left: 6:16:20
[2025-07-05 02:43:03] Epoch 3/4, Step 8900/18020, Loss(triple): 7.164158, Loss(predicate): 8.918010, LR: 0.000075, Speed: 120634.29 tokens/sec | Epoch Time Left: 2:05:06 | Total Time Left: 6:15:38
[2025-07-05 02:43:44] Epoch 3/4, Step 8950/18020, Loss(triple): 7.543808, Loss(predicate): 8.204448, LR: 0.000074, Speed: 119564.53 tokens/sec | Epoch Time Left: 2:04:24 | Total Time Left: 6:14:56
[2025-07-05 02:44:34] === GPU性能分析 (平均每步) ===
[2025-07-05 02:44:34] 前向传播: 7.96ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 02:44:34] GPU总时间: 9.88ms, 实际迭代时间: 1009.17ms, GPU利用率: 1.0%
[2025-07-05 02:44:34] ==================================================
[2025-07-05 02:44:34] === 三元组预测示例 ===
[2025-07-05 02:44:34] 样本1目标: Philyra (plant) taxon rank species
[2025-07-05 02:44:34] 样本1预测: mPptygiaeb alisusus axonus rankax gen t
[2025-07-05 02:44:34] 样本2目标: Casper Asbjornson member of sports team Boston Red Sox
[2025-07-05 02:44:34] 样本2预测: GRensyil (sd onill,ak 7ate bir of dth 2 19
[2025-07-05 02:44:34] ==================
[2025-07-05 02:44:34] Epoch 3/4, Step 9000/18020, Loss(triple): 7.828110, Loss(predicate): 11.073649, LR: 0.000074, Speed: 97410.99 tokens/sec | Epoch Time Left: 2:03:53 | Total Time Left: 6:14:20
[2025-07-05 02:45:28] Epoch 3/4, Step 9050/18020, Loss(triple): 7.478359, Loss(predicate): 13.398656, LR: 0.000074, Speed: 92384.51 tokens/sec | Epoch Time Left: 2:03:23 | Total Time Left: 6:13:46
[2025-07-05 02:46:20] Epoch 3/4, Step 9100/18020, Loss(triple): 7.473841, Loss(predicate): 6.615438, LR: 0.000074, Speed: 93054.27 tokens/sec | Epoch Time Left: 2:02:53 | Total Time Left: 6:13:11
[2025-07-05 02:47:05] Epoch 3/4, Step 9150/18020, Loss(triple): 7.321939, Loss(predicate): 12.520203, LR: 0.000073, Speed: 109933.42 tokens/sec | Epoch Time Left: 2:02:15 | Total Time Left: 6:12:31
[2025-07-05 02:47:07] Model saved to out/pretrain_cls512.pth
[2025-07-05 02:47:48] Epoch 3/4, Step 9200/18020, Loss(triple): 7.386345, Loss(predicate): 7.321152, LR: 0.000073, Speed: 113591.88 tokens/sec | Epoch Time Left: 2:01:36 | Total Time Left: 6:11:51
[2025-07-05 02:48:29] Epoch 3/4, Step 9250/18020, Loss(triple): 7.755924, Loss(predicate): 6.169556, LR: 0.000073, Speed: 120690.81 tokens/sec | Epoch Time Left: 2:00:54 | Total Time Left: 6:11:09
[2025-07-05 02:49:10] Epoch 3/4, Step 9300/18020, Loss(triple): 7.542915, Loss(predicate): 11.486247, LR: 0.000073, Speed: 121391.46 tokens/sec | Epoch Time Left: 2:00:12 | Total Time Left: 6:10:26
[2025-07-05 02:49:50] Epoch 3/4, Step 9350/18020, Loss(triple): 7.581324, Loss(predicate): 12.960643, LR: 0.000073, Speed: 121531.26 tokens/sec | Epoch Time Left: 1:59:29 | Total Time Left: 6:09:44
[2025-07-05 02:50:31] Epoch 3/4, Step 9400/18020, Loss(triple): 7.406649, Loss(predicate): 8.373485, LR: 0.000072, Speed: 120951.30 tokens/sec | Epoch Time Left: 1:58:47 | Total Time Left: 6:09:02
[2025-07-05 02:51:12] Epoch 3/4, Step 9450/18020, Loss(triple): 7.507889, Loss(predicate): 7.998896, LR: 0.000072, Speed: 119830.28 tokens/sec | Epoch Time Left: 1:58:06 | Total Time Left: 6:08:20
[2025-07-05 02:51:53] === GPU性能分析 (平均每步) ===
[2025-07-05 02:51:53] 前向传播: 8.00ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 02:51:53] GPU总时间: 9.92ms, 实际迭代时间: 816.34ms, GPU利用率: 1.2%
[2025-07-05 02:51:53] ==================================================
[2025-07-05 02:51:53] === 三元组预测示例 ===
[2025-07-05 02:51:53] 样本1目标: Yariminai Station instance of railway station
[2025-07-05 02:51:53] 样本1预测: countryH entalilianaran ick-ov wayance dam ofationation ra St
[2025-07-05 02:51:53] 样本2目标: Ga'ash instance of kibbutz
[2025-07-05 02:51:53] 样本2预测: countryM entthaara alk Mov izance bir of occth Sed
[2025-07-05 02:51:53] ==================
[2025-07-05 02:51:53] Epoch 3/4, Step 9500/18020, Loss(triple): 7.667580, Loss(predicate): 7.914953, LR: 0.000072, Speed: 120420.30 tokens/sec | Epoch Time Left: 1:57:24 | Total Time Left: 6:07:38
[2025-07-05 02:52:33] Epoch 3/4, Step 9550/18020, Loss(triple): 7.488754, Loss(predicate): 6.691106, LR: 0.000072, Speed: 121033.01 tokens/sec | Epoch Time Left: 1:56:42 | Total Time Left: 6:06:56
[2025-07-05 02:53:14] Epoch 3/4, Step 9600/18020, Loss(triple): 7.800287, Loss(predicate): 9.819285, LR: 0.000071, Speed: 120894.50 tokens/sec | Epoch Time Left: 1:56:00 | Total Time Left: 6:06:14
[2025-07-05 02:53:55] Epoch 3/4, Step 9650/18020, Loss(triple): 7.391773, Loss(predicate): 8.519420, LR: 0.000071, Speed: 120515.95 tokens/sec | Epoch Time Left: 1:55:18 | Total Time Left: 6:05:32
[2025-07-05 02:54:36] Epoch 3/4, Step 9700/18020, Loss(triple): 7.152185, Loss(predicate): 14.611440, LR: 0.000071, Speed: 120135.16 tokens/sec | Epoch Time Left: 1:54:37 | Total Time Left: 6:04:50
[2025-07-05 02:55:16] Epoch 3/4, Step 9750/18020, Loss(triple): 7.542490, Loss(predicate): 9.777537, LR: 0.000071, Speed: 121306.24 tokens/sec | Epoch Time Left: 1:53:55 | Total Time Left: 6:04:08
[2025-07-05 02:55:57] Epoch 3/4, Step 9800/18020, Loss(triple): 7.824640, Loss(predicate): 6.050568, LR: 0.000070, Speed: 121228.35 tokens/sec | Epoch Time Left: 1:53:13 | Total Time Left: 6:03:26
[2025-07-05 02:56:38] Epoch 3/4, Step 9850/18020, Loss(triple): 7.254665, Loss(predicate): 8.705276, LR: 0.000070, Speed: 120103.37 tokens/sec | Epoch Time Left: 1:52:31 | Total Time Left: 6:02:44
[2025-07-05 02:57:18] Epoch 3/4, Step 9900/18020, Loss(triple): 7.341614, Loss(predicate): 8.558162, LR: 0.000070, Speed: 121121.17 tokens/sec | Epoch Time Left: 1:51:49 | Total Time Left: 6:02:02
[2025-07-05 02:57:59] Epoch 3/4, Step 9950/18020, Loss(triple): 7.329967, Loss(predicate): 9.990799, LR: 0.000070, Speed: 120575.78 tokens/sec | Epoch Time Left: 1:51:07 | Total Time Left: 6:01:20
[2025-07-05 02:58:39] === GPU性能分析 (平均每步) ===
[2025-07-05 02:58:39] 前向传播: 8.07ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 02:58:39] GPU总时间: 9.99ms, 实际迭代时间: 808.66ms, GPU利用率: 1.2%
[2025-07-05 02:58:39] ==================================================
[2025-07-05 02:58:39] === 三元组预测示例 ===
[2025-07-05 02:58:39] 样本1目标: Swimming at the 1988 Summer Olympics part of 1988 Summer Olympics
[2025-07-05 02:58:39] 样本1预测: country20 ent ofhaenan onm Net 9lyerpm5 S O
[2025-07-05 02:58:39] 样本2目标: Beche Blade instance of ridge
[2025-07-05 02:58:39] 样本2预测: countryB ent ofilberarl ick-ir ialance located oflandance M A
[2025-07-05 02:58:39] ==================
[2025-07-05 02:58:39] Epoch 3/4, Step 10000/18020, Loss(triple): 7.528559, Loss(predicate): 12.275105, LR: 0.000070, Speed: 121563.38 tokens/sec | Epoch Time Left: 1:50:25 | Total Time Left: 6:00:38
[2025-07-05 02:59:20] Epoch 3/4, Step 10050/18020, Loss(triple): 7.146503, Loss(predicate): 9.108586, LR: 0.000069, Speed: 121337.88 tokens/sec | Epoch Time Left: 1:49:43 | Total Time Left: 5:59:56
[2025-07-05 03:00:01] Epoch 3/4, Step 10100/18020, Loss(triple): 6.942230, Loss(predicate): 5.716680, LR: 0.000069, Speed: 120171.35 tokens/sec | Epoch Time Left: 1:49:02 | Total Time Left: 5:59:14
[2025-07-05 03:00:41] Epoch 3/4, Step 10150/18020, Loss(triple): 7.260401, Loss(predicate): 7.678136, LR: 0.000069, Speed: 120995.25 tokens/sec | Epoch Time Left: 1:48:20 | Total Time Left: 5:58:32
[2025-07-05 03:01:22] Epoch 3/4, Step 10200/18020, Loss(triple): 7.063831, Loss(predicate): 10.956329, LR: 0.000069, Speed: 120621.81 tokens/sec | Epoch Time Left: 1:47:38 | Total Time Left: 5:57:50
[2025-07-05 03:02:06] Epoch 3/4, Step 10250/18020, Loss(triple): 7.644199, Loss(predicate): 8.342316, LR: 0.000068, Speed: 111732.06 tokens/sec | Epoch Time Left: 1:46:59 | Total Time Left: 5:57:09
[2025-07-05 03:02:50] Epoch 3/4, Step 10300/18020, Loss(triple): 7.846828, Loss(predicate): 10.213852, LR: 0.000068, Speed: 112533.82 tokens/sec | Epoch Time Left: 1:46:19 | Total Time Left: 5:56:29
[2025-07-05 03:03:31] Epoch 3/4, Step 10350/18020, Loss(triple): 7.572657, Loss(predicate): 11.200775, LR: 0.000068, Speed: 119239.40 tokens/sec | Epoch Time Left: 1:45:38 | Total Time Left: 5:55:47
[2025-07-05 03:04:12] Epoch 3/4, Step 10400/18020, Loss(triple): 8.092728, Loss(predicate): 7.601969, LR: 0.000068, Speed: 120950.38 tokens/sec | Epoch Time Left: 1:44:56 | Total Time Left: 5:55:05
[2025-07-05 03:04:52] Epoch 3/4, Step 10450/18020, Loss(triple): 7.108868, Loss(predicate): 11.363912, LR: 0.000067, Speed: 120348.79 tokens/sec | Epoch Time Left: 1:44:14 | Total Time Left: 5:54:23
[2025-07-05 03:05:33] === GPU性能分析 (平均每步) ===
[2025-07-05 03:05:33] 前向传播: 8.03ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 03:05:33] GPU总时间: 9.95ms, 实际迭代时间: 813.48ms, GPU利用率: 1.2%
[2025-07-05 03:05:33] ==================================================
[2025-07-05 03:05:33] === 三元组预测示例 ===
[2025-07-05 03:05:33] 样本1目标: Albania official language Albanian
[2025-07-05 03:05:33] 样本1预测: countryCh<43> ofgisrb an<61>nas ialist country ofiath inst D
[2025-07-05 03:05:33] 样本2目标: Kwon You-ri country of citizenship South Korean
[2025-07-05 03:05:33] 样本2预测: GTensohaenon onk-ay Americanance bir ofmth Mer
[2025-07-05 03:05:33] ==================
[2025-07-05 03:05:33] Epoch 3/4, Step 10500/18020, Loss(triple): 7.765854, Loss(predicate): 6.029932, LR: 0.000067, Speed: 120843.69 tokens/sec | Epoch Time Left: 1:43:33 | Total Time Left: 5:53:41
[2025-07-05 03:06:14] Epoch 3/4, Step 10550/18020, Loss(triple): 7.267513, Loss(predicate): 8.164653, LR: 0.000067, Speed: 120397.39 tokens/sec | Epoch Time Left: 1:42:51 | Total Time Left: 5:52:59
[2025-07-05 03:06:55] Epoch 3/4, Step 10600/18020, Loss(triple): 7.452488, Loss(predicate): 11.827495, LR: 0.000067, Speed: 119880.50 tokens/sec | Epoch Time Left: 1:42:10 | Total Time Left: 5:52:18
[2025-07-05 03:07:36] Epoch 3/4, Step 10650/18020, Loss(triple): 7.791203, Loss(predicate): 8.117401, LR: 0.000067, Speed: 120826.84 tokens/sec | Epoch Time Left: 1:41:28 | Total Time Left: 5:51:36
[2025-07-05 03:08:16] Epoch 3/4, Step 10700/18020, Loss(triple): 7.667795, Loss(predicate): 9.278712, LR: 0.000066, Speed: 121304.28 tokens/sec | Epoch Time Left: 1:40:46 | Total Time Left: 5:50:53
[2025-07-05 03:08:57] Epoch 3/4, Step 10750/18020, Loss(triple): 7.240923, Loss(predicate): 8.846954, LR: 0.000066, Speed: 121649.22 tokens/sec | Epoch Time Left: 1:40:04 | Total Time Left: 5:50:11
[2025-07-05 03:09:37] Epoch 3/4, Step 10800/18020, Loss(triple): 7.239456, Loss(predicate): 7.327408, LR: 0.000066, Speed: 121003.15 tokens/sec | Epoch Time Left: 1:39:22 | Total Time Left: 5:49:29
[2025-07-05 03:10:18] Epoch 3/4, Step 10850/18020, Loss(triple): 7.572075, Loss(predicate): 12.630778, LR: 0.000066, Speed: 119951.59 tokens/sec | Epoch Time Left: 1:38:41 | Total Time Left: 5:48:47
[2025-07-05 03:10:59] Epoch 3/4, Step 10900/18020, Loss(triple): 7.314186, Loss(predicate): 12.327347, LR: 0.000065, Speed: 120691.22 tokens/sec | Epoch Time Left: 1:37:59 | Total Time Left: 5:48:05
[2025-07-05 03:11:39] Epoch 3/4, Step 10950/18020, Loss(triple): 7.267071, Loss(predicate): 15.121556, LR: 0.000065, Speed: 121290.93 tokens/sec | Epoch Time Left: 1:37:17 | Total Time Left: 5:47:23
[2025-07-05 03:12:20] === GPU性能分析 (平均每步) ===
[2025-07-05 03:12:20] 前向传播: 8.22ms, 损失计算: 0.02ms, 反向传播: 1.95ms, 优化器: 0.00ms
[2025-07-05 03:12:20] GPU总时间: 10.19ms, 实际迭代时间: 810.93ms, GPU利用率: 1.3%
[2025-07-05 03:12:20] ==================================================
[2025-07-05 03:12:20] === 三元组预测示例 ===
[2025-07-05 03:12:20] 样本1目标: T. J. Simers country of citizenship American
[2025-07-05 03:12:20] 样本1预测: GB6yich..on itist,et Americanitiz of chip countryens
[2025-07-05 03:12:20] 样本2目标: Aviateca Flight 901 point in time 9 August 1995
[2025-07-05 03:12:20] 样本2预测: LB entoinacan onor-ir 6ate3 of7S N 19
[2025-07-05 03:12:20] ==================
[2025-07-05 03:12:20] Epoch 3/4, Step 11000/18020, Loss(triple): 8.074656, Loss(predicate): 10.270142, LR: 0.000065, Speed: 121223.71 tokens/sec | Epoch Time Left: 1:36:36 | Total Time Left: 5:46:41
[2025-07-05 03:13:01] Epoch 3/4, Step 11050/18020, Loss(triple): 7.419849, Loss(predicate): 9.895869, LR: 0.000065, Speed: 120496.61 tokens/sec | Epoch Time Left: 1:35:54 | Total Time Left: 5:45:59
[2025-07-05 03:13:42] Epoch 3/4, Step 11100/18020, Loss(triple): 7.303949, Loss(predicate): 6.463470, LR: 0.000064, Speed: 119764.18 tokens/sec | Epoch Time Left: 1:35:13 | Total Time Left: 5:45:18
[2025-07-05 03:14:22] Epoch 3/4, Step 11150/18020, Loss(triple): 7.727985, Loss(predicate): 8.016347, LR: 0.000064, Speed: 121188.49 tokens/sec | Epoch Time Left: 1:34:31 | Total Time Left: 5:44:35
[2025-07-05 03:15:03] Epoch 3/4, Step 11200/18020, Loss(triple): 7.107994, Loss(predicate): 8.176496, LR: 0.000064, Speed: 121399.71 tokens/sec | Epoch Time Left: 1:33:49 | Total Time Left: 5:43:53
[2025-07-05 03:15:43] Epoch 3/4, Step 11250/18020, Loss(triple): 7.456631, Loss(predicate): 8.087825, LR: 0.000064, Speed: 121518.29 tokens/sec | Epoch Time Left: 1:33:07 | Total Time Left: 5:43:11
[2025-07-05 03:16:24] Epoch 3/4, Step 11300/18020, Loss(triple): 7.523598, Loss(predicate): 10.838013, LR: 0.000064, Speed: 121036.82 tokens/sec | Epoch Time Left: 1:32:26 | Total Time Left: 5:42:29
[2025-07-05 03:17:05] Epoch 3/4, Step 11350/18020, Loss(triple): 7.304407, Loss(predicate): 5.575460, LR: 0.000063, Speed: 120248.07 tokens/sec | Epoch Time Left: 1:31:44 | Total Time Left: 5:41:47
[2025-07-05 03:17:46] Epoch 3/4, Step 11400/18020, Loss(triple): 7.371309, Loss(predicate): 8.523692, LR: 0.000063, Speed: 120651.68 tokens/sec | Epoch Time Left: 1:31:03 | Total Time Left: 5:41:05
[2025-07-05 03:18:26] Epoch 3/4, Step 11450/18020, Loss(triple): 7.234486, Loss(predicate): 5.451925, LR: 0.000063, Speed: 121363.12 tokens/sec | Epoch Time Left: 1:30:21 | Total Time Left: 5:40:23
[2025-07-05 03:19:06] === GPU性能分析 (平均每步) ===
[2025-07-05 03:19:06] 前向传播: 7.99ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 03:19:06] GPU总时间: 9.91ms, 实际迭代时间: 808.98ms, GPU利用率: 1.2%
[2025-07-05 03:19:06] ==================================================
[2025-07-05 03:19:06] === 三元组预测示例 ===
[2025-07-05 03:19:06] 样本1目标: Denise Faustman employer Harvard University
[2025-07-05 03:19:06] 样本1预测: GR birulry.ener itist Hay upation politan occhip countryici
[2025-07-05 03:19:06] 样本2目标: Walther Wüst place of birth Kaiserslautern
[2025-07-05 03:19:06] 样本2预测: GHensatryaalt itk Met 7ate bir of dth J 19
[2025-07-05 03:19:06] ==================
[2025-07-05 03:19:06] Epoch 3/4, Step 11500/18020, Loss(triple): 7.614857, Loss(predicate): 10.329427, LR: 0.000063, Speed: 121516.37 tokens/sec | Epoch Time Left: 1:29:39 | Total Time Left: 5:39:41
[2025-07-05 03:19:47] Epoch 3/4, Step 11550/18020, Loss(triple): 7.292194, Loss(predicate): 10.778279, LR: 0.000062, Speed: 120896.40 tokens/sec | Epoch Time Left: 1:28:58 | Total Time Left: 5:38:59
[2025-07-05 03:20:28] Epoch 3/4, Step 11600/18020, Loss(triple): 7.680038, Loss(predicate): 8.237793, LR: 0.000062, Speed: 120131.93 tokens/sec | Epoch Time Left: 1:28:16 | Total Time Left: 5:38:17
[2025-07-05 03:21:09] Epoch 3/4, Step 11650/18020, Loss(triple): 7.456238, Loss(predicate): 12.609843, LR: 0.000062, Speed: 120561.68 tokens/sec | Epoch Time Left: 1:27:35 | Total Time Left: 5:37:36
[2025-07-05 03:21:52] Epoch 3/4, Step 11700/18020, Loss(triple): 7.587231, Loss(predicate): 14.318227, LR: 0.000062, Speed: 114362.82 tokens/sec | Epoch Time Left: 1:26:54 | Total Time Left: 5:36:55
[2025-07-05 03:22:34] Epoch 3/4, Step 11750/18020, Loss(triple): 7.571283, Loss(predicate): 16.622116, LR: 0.000062, Speed: 117239.58 tokens/sec | Epoch Time Left: 1:26:13 | Total Time Left: 5:36:13
[2025-07-05 03:23:15] Epoch 3/4, Step 11800/18020, Loss(triple): 7.353672, Loss(predicate): 10.708638, LR: 0.000061, Speed: 118492.77 tokens/sec | Epoch Time Left: 1:25:32 | Total Time Left: 5:35:32
[2025-07-05 03:23:56] Epoch 3/4, Step 11850/18020, Loss(triple): 7.392567, Loss(predicate): 12.070099, LR: 0.000061, Speed: 120842.40 tokens/sec | Epoch Time Left: 1:24:51 | Total Time Left: 5:34:50
[2025-07-05 03:24:37] Epoch 3/4, Step 11900/18020, Loss(triple): 7.379948, Loss(predicate): 8.003204, LR: 0.000061, Speed: 120916.52 tokens/sec | Epoch Time Left: 1:24:09 | Total Time Left: 5:34:08
[2025-07-05 03:25:17] Epoch 3/4, Step 11950/18020, Loss(triple): 8.114231, Loss(predicate): 14.328934, LR: 0.000061, Speed: 120643.22 tokens/sec | Epoch Time Left: 1:23:28 | Total Time Left: 5:33:26
[2025-07-05 03:25:58] === GPU性能分析 (平均每步) ===
[2025-07-05 03:25:58] 前向传播: 7.94ms, 损失计算: 0.02ms, 反向传播: 1.90ms, 优化器: 0.00ms
[2025-07-05 03:25:58] GPU总时间: 9.86ms, 实际迭代时间: 817.22ms, GPU利用率: 1.2%
[2025-07-05 03:25:58] ==================================================
[2025-07-05 03:25:58] === 三元组预测示例 ===
[2025-07-05 03:25:58] 样本1目标: Kyōtanabe Station instance of railway station
[2025-07-05 03:25:58] 样本1预测: countryP entoviera an<61>yas wayance rout ofationation inst St
[2025-07-05 03:25:58] 样本2目标: DJ Rolando genre techno
[2025-07-05 03:25:58] 样本2预测: placeGensoela ofo onob Mak upation bir ofitth countryer
[2025-07-05 03:25:58] ==================
[2025-07-05 03:25:58] Epoch 3/4, Step 12000/18020, Loss(triple): 7.885593, Loss(predicate): 8.513661, LR: 0.000060, Speed: 120290.09 tokens/sec | Epoch Time Left: 1:22:46 | Total Time Left: 5:32:44
[2025-07-05 03:26:39] Epoch 3/4, Step 12050/18020, Loss(triple): 7.270298, Loss(predicate): 10.138036, LR: 0.000060, Speed: 119903.67 tokens/sec | Epoch Time Left: 1:22:05 | Total Time Left: 5:32:02
[2025-07-05 03:27:20] Epoch 3/4, Step 12100/18020, Loss(triple): 7.428677, Loss(predicate): 10.124156, LR: 0.000060, Speed: 121372.15 tokens/sec | Epoch Time Left: 1:21:23 | Total Time Left: 5:31:20
[2025-07-05 03:28:00] Epoch 3/4, Step 12150/18020, Loss(triple): 7.642506, Loss(predicate): 14.803726, LR: 0.000060, Speed: 121281.46 tokens/sec | Epoch Time Left: 1:20:42 | Total Time Left: 5:30:38
[2025-07-05 03:28:41] Epoch 3/4, Step 12200/18020, Loss(triple): 7.189354, Loss(predicate): 9.132960, LR: 0.000060, Speed: 120218.17 tokens/sec | Epoch Time Left: 1:20:00 | Total Time Left: 5:29:57
[2025-07-05 03:29:22] Epoch 3/4, Step 12250/18020, Loss(triple): 7.075500, Loss(predicate): 10.100566, LR: 0.000059, Speed: 121370.79 tokens/sec | Epoch Time Left: 1:19:19 | Total Time Left: 5:29:15
[2025-07-05 03:30:02] Epoch 3/4, Step 12300/18020, Loss(triple): 7.632637, Loss(predicate): 13.129811, LR: 0.000059, Speed: 120403.31 tokens/sec | Epoch Time Left: 1:18:37 | Total Time Left: 5:28:33
[2025-07-05 03:30:43] Epoch 3/4, Step 12350/18020, Loss(triple): 7.209843, Loss(predicate): 9.750793, LR: 0.000059, Speed: 121376.89 tokens/sec | Epoch Time Left: 1:17:56 | Total Time Left: 5:27:51
[2025-07-05 03:31:23] Epoch 3/4, Step 12400/18020, Loss(triple): 7.551416, Loss(predicate): 11.780762, LR: 0.000059, Speed: 121203.95 tokens/sec | Epoch Time Left: 1:17:14 | Total Time Left: 5:27:09
[2025-07-05 03:32:04] Epoch 3/4, Step 12450/18020, Loss(triple): 7.752583, Loss(predicate): 6.689484, LR: 0.000058, Speed: 119589.97 tokens/sec | Epoch Time Left: 1:16:33 | Total Time Left: 5:26:27
[2025-07-05 03:32:45] === GPU性能分析 (平均每步) ===
[2025-07-05 03:32:45] 前向传播: 7.98ms, 损失计算: 0.02ms, 反向传播: 1.91ms, 优化器: 0.00ms
[2025-07-05 03:32:45] GPU总时间: 9.91ms, 实际迭代时间: 813.59ms, GPU利用率: 1.2%
[2025-07-05 03:32:45] ==================================================
[2025-07-05 03:32:45] === 三元组预测示例 ===
[2025-07-05 03:32:45] 样本1目标: Nishinomiya Station (JR West) instance of railway station
[2025-07-05 03:32:45] 样本1预测: countryT entyinaena ickyir wayance train ofationation inst St