Minimind/train_dpo.py
2025-04-04 11:39:41 +08:00

248 lines
9.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import platform
import argparse
import time
import math
import warnings
import pandas as pd
import torch
import torch.nn.functional as F
import torch.distributed as dist
from contextlib import nullcontext
from torch import optim, nn
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.model import MiniMindLM
from model.LMConfig import LMConfig
from model.dataset import DPODataset
warnings.filterwarnings('ignore')
def Logger(content):
if not ddp or dist.get_rank() == 0:
print(content)
def get_lr(current_step, total_steps, lr):
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
def logits_to_probs(logits, labels):
# logits shape: (batch_size, seq_len, vocab_size)
# labels shape: (batch_size, seq_len)
# probs shape: (batch_size, seq_len)
log_probs = F.log_softmax(logits, dim=2)
probs = torch.gather(log_probs, dim=2, index=labels.unsqueeze(2)).squeeze(-1)
return probs
def dpo_loss(ref_probs, probs, mask, beta):
# ref_probs 和 probs 都是 shape: (batch_size, seq_len)
# https://github.com/jingyaogong/minimind/issues/298
seq_lengths = mask.sum(dim=1, keepdim=True) # (batch_size, 1)
ref_probs = (ref_probs * mask).sum(dim=1) / seq_lengths.squeeze()
probs = (probs * mask).sum(dim=1) / seq_lengths.squeeze()
# 将 chosen 和 rejected 数据分开
batch_size = ref_probs.shape[0]
chosen_ref_probs = ref_probs[:batch_size // 2]
reject_ref_probs = ref_probs[batch_size // 2:]
chosen_probs = probs[:batch_size // 2]
reject_probs = probs[batch_size // 2:]
pi_logratios = chosen_probs - reject_probs
ref_logratios = chosen_ref_probs - reject_ref_probs
logits = pi_logratios - ref_logratios
loss = -F.logsigmoid(beta * logits)
return loss.mean()
def train_epoch(epoch, wandb):
start_time = time.time()
for step, batch in enumerate(train_loader):
x_chosen = batch['x_chosen'].to(args.device)
x_rejected = batch['x_rejected'].to(args.device)
y_chosen = batch['y_chosen'].to(args.device)
y_rejected = batch['y_rejected'].to(args.device)
mask_chosen = batch['mask_chosen'].to(args.device)
mask_rejected = batch['mask_rejected'].to(args.device)
x = torch.cat([x_chosen, x_rejected], dim=0)
y = torch.cat([y_chosen, y_rejected], dim=0)
mask = torch.cat([mask_chosen, mask_rejected], dim=0)
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
with ctx:
with torch.no_grad():
ref_outputs = ref_model(x)
ref_logits = ref_outputs.logits
ref_probs = logits_to_probs(ref_logits, y)
ref_probs = ref_probs * mask
outputs = model(x)
logits = outputs.logits
probs = logits_to_probs(logits, y)
probs = probs * mask
loss = dpo_loss(ref_probs, probs, mask, beta=0.1)
loss = loss / args.accumulation_steps
scaler.scale(loss).backward()
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format(
epoch + 1,
args.epochs,
step,
iter_per_epoch,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
wandb.log({"loss": loss,
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/rlhf_{lm_config.dim}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save(state_dict, ckp)
model.train()
def init_model(lm_config):
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
model = MiniMindLM(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'./out/full_sft_{lm_config.dim}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
model.load_state_dict(state_dict, strict=False)
# 初始化参考模型
ref_model = MiniMindLM(lm_config)
ref_model.load_state_dict(state_dict, strict=False)
ref_model.eval()
ref_model.requires_grad_(False)
Logger(f'LLM总参数量{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
model = model.to(args.device)
ref_model = ref_model.to(args.device)
return model, ref_model, tokenizer
def init_distributed_mode():
if not ddp: return
global ddp_local_rank, DEVICE
dist.init_process_group(backend="nccl")
ddp_rank = int(os.environ["RANK"])
ddp_local_rank = int(os.environ["LOCAL_RANK"])
ddp_world_size = int(os.environ["WORLD_SIZE"])
DEVICE = f"cuda:{ddp_local_rank}"
torch.cuda.set_device(DEVICE)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MiniMind RLHF")
parser.add_argument("--out_dir", type=str, default="out")
parser.add_argument("--epochs", type=int, default=2)
parser.add_argument("--batch_size", type=int, default=8)
# sft阶段学习率为 「5e-6」->「5e-7」长度512建议离线正负样本「概率」偏好对齐阶段lr <=「1e-8」长度3000否则很容易遗忘训坏
parser.add_argument("--learning_rate", type=float, default=1e-8)
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-RLHF-SFT")
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument("--ddp", action="store_true")
parser.add_argument("--accumulation_steps", type=int, default=1)
parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--warmup_iters", type=int, default=0)
parser.add_argument("--log_interval", type=int, default=100)
parser.add_argument("--save_interval", type=int, default=100)
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--dim', default=512, type=int)
parser.add_argument('--n_layers', default=8, type=int)
parser.add_argument('--max_seq_len', default=1024, type=int)
parser.add_argument('--use_moe', default=False, type=bool)
parser.add_argument("--data_path", type=str, default="./dataset/dpo.jsonl")
args = parser.parse_args()
lm_config = LMConfig(dim=args.dim, n_layers=args.n_layers, max_seq_len=args.max_seq_len, use_moe=args.use_moe)
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * lm_config.max_seq_len
device_type = "cuda" if "cuda" in args.device else "cpu"
args.wandb_run_name = f"MiniMind-Full-DPO-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
base_seed = 1337
torch.manual_seed(base_seed)
torch.cuda.manual_seed(base_seed)
if ddp:
init_distributed_mode()
args.device = torch.device(DEVICE)
rank = dist.get_rank()
torch.manual_seed(base_seed + rank)
# 同时设置 CUDA 的随机种子
torch.cuda.manual_seed(base_seed + rank)
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
model, ref_model, tokenizer = init_model(lm_config)
train_ds = DPODataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=args.num_workers,
sampler=train_sampler
)
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
if ddp:
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)