158 lines
5.1 KiB
Python
158 lines
5.1 KiB
Python
import csv
|
||
import itertools
|
||
import re
|
||
import json
|
||
import jsonlines
|
||
import psutil
|
||
import ujson
|
||
import numpy as np
|
||
import pandas as pd
|
||
from transformers import AutoTokenizer
|
||
from datasets import load_dataset
|
||
|
||
bos_token = "<s>"
|
||
eos_token = "</s>"
|
||
|
||
|
||
def pretrain_process(chunk_size=50000):
|
||
chunk_idx = 0
|
||
|
||
with jsonlines.open('./dataset/mobvoi_seq_monkey_general_open_corpus.jsonl') as reader:
|
||
with open('./dataset/pretrain_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
|
||
writer = csv.writer(csvfile)
|
||
writer.writerow(['text'])
|
||
|
||
while True:
|
||
chunk = list(itertools.islice(reader, chunk_size))
|
||
if not chunk:
|
||
break
|
||
|
||
for idx, obj in enumerate(chunk):
|
||
try:
|
||
content = obj.get('text', '')
|
||
if len(content) > 512:
|
||
continue
|
||
writer.writerow([content])
|
||
except UnicodeDecodeError as e:
|
||
print(f"Skipping invalid line {chunk_idx * chunk_size + idx + 1}: {e}")
|
||
continue
|
||
chunk_idx += 1
|
||
print('chunk:', ((chunk_idx - 1) * chunk_size, chunk_idx * chunk_size), 'process end')
|
||
|
||
|
||
def sft_process(contain_history=False):
|
||
file_name = 'sft_data.csv'
|
||
if not contain_history:
|
||
file_name = 'sft_data_single.csv'
|
||
|
||
def chinese_ratio(text):
|
||
# 匹配所有中文字符
|
||
chinese_chars = re.findall(r'[\u4e00-\u9fff]', text)
|
||
# 中文字符数量占比
|
||
return len(chinese_chars) / len(text) if text else 0
|
||
|
||
def process_and_write_data(data):
|
||
q_lst, a_lst, history_lst = [], [], []
|
||
for per in data:
|
||
history, q, a = per['history'], per['q'], per['a']
|
||
|
||
if (contain_history and not history) or not q or not a:
|
||
continue
|
||
if len(q) < 10 or len(a) < 5:
|
||
continue
|
||
if len(q) > 512 or len(a) > 512:
|
||
continue
|
||
# 判断q和a中中文字符占比是否超过70%
|
||
if not (chinese_ratio(q) > 0.5 and chinese_ratio(a) > 0.5):
|
||
continue
|
||
|
||
q_lst.append(q)
|
||
a_lst.append(a)
|
||
if contain_history:
|
||
history_lst.append(history)
|
||
else:
|
||
history_lst.append([])
|
||
|
||
# 创建DataFrame并追加到CSV文件
|
||
df = pd.DataFrame({'history': history_lst, 'q': q_lst, 'a': a_lst})
|
||
# # 1、默认
|
||
# df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n', encoding='utf-8')
|
||
# 2、若遇到数据 `_csv.Error: need to escape, but no escapechar set` 问题,可加 escapechar='\\' 参数:
|
||
df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n', escapechar='\\',
|
||
encoding='utf-8')
|
||
|
||
chunk_size = 1000 # 每次处理的记录数
|
||
data = []
|
||
|
||
with open(f'./dataset/{file_name}', 'w', encoding='utf-8') as f:
|
||
f.write('history,q,a\n')
|
||
|
||
sft_datasets = ['./dataset/sft_data_zh.jsonl']
|
||
if not contain_history:
|
||
sft_datasets = ['./dataset/sft_data_zh.jsonl']
|
||
|
||
chunk_num = 0
|
||
for path in sft_datasets:
|
||
with jsonlines.open(path) as reader:
|
||
for idx, obj in enumerate(reader):
|
||
try:
|
||
data.append({
|
||
'history': obj.get('history', ''),
|
||
'q': obj.get('input', '') + obj.get('q', ''),
|
||
'a': obj.get('output', '') + obj.get('a', '')
|
||
})
|
||
|
||
if len(data) >= chunk_size:
|
||
chunk_num += 1
|
||
process_and_write_data(data)
|
||
data = []
|
||
if chunk_num % 100 == 0:
|
||
print(f'chunk:{chunk_num} process end')
|
||
except jsonlines.InvalidLineError as e:
|
||
print(f"Skipping invalid JSON line {idx + 1}: {e}")
|
||
continue
|
||
|
||
if data:
|
||
process_and_write_data(data)
|
||
data = []
|
||
|
||
|
||
def rl_process():
|
||
################
|
||
# Dataset
|
||
################
|
||
|
||
dataset_paths = [
|
||
'./dataset/dpo/dpo_zh_demo.json',
|
||
'./dataset/dpo/dpo_train_data.json',
|
||
'./dataset/dpo/huozi_rlhf_data.json',
|
||
]
|
||
|
||
train_dataset = load_dataset('json', data_files=dataset_paths)
|
||
|
||
merged_data = []
|
||
for split in train_dataset.keys():
|
||
merged_data.extend(train_dataset[split])
|
||
|
||
with open('./dataset/dpo/train_data.json', 'w', encoding='utf-8') as f:
|
||
json.dump(merged_data, f, ensure_ascii=False, indent=4)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer', use_fast=False)
|
||
print('tokenizer词表大小:', len(tokenizer))
|
||
|
||
################
|
||
# 1: pretrain
|
||
# 2: sft
|
||
# 3: RL
|
||
################
|
||
process_type = 2
|
||
|
||
if process_type == 1:
|
||
pretrain_process()
|
||
if process_type == 2:
|
||
sft_process(contain_history=False)
|
||
if process_type == 3:
|
||
rl_process()
|