Minimind/ceval/ceval-exam/dev/high_school_mathematics_dev.csv
2024-08-28 16:41:44 +08:00

13 lines
3.4 KiB
CSV
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

id,question,A,B,C,D,answer,explanation
0,"已知函数$f(x)=\sin(\omega x-\frac{\pi}{6})(\omega>0).$若f(x)在$\left(0,\frac{\pi}{2}\right)$上有且仅有三个极值点则不正确的有____","f(x)在区间$[0, \frac{\pi}{4}]$上的最小值可以等于$-\frac{1}{2}$","若$f(x)$的图像关于点$\left(\frac{\pi}{3},0\right)$对称,则$f(x)$在区间$\left(0,\frac{\pi}{12}\right)$上单调递增",$f(x)$的最小正周期可能为$\frac{\pi}{3}$,若$f\left(0\right)+f\left(\frac{\pi}{2}\right)=0$,将$ g(x)=\sin{2x}$的图象向右平移$\frac{\pi}{12}$个单位可得到$y=f\left(\frac{x}{3}\right)$的图象,A,"1. 根据极值点个数限制,可得$\frac{\pi}{2}\omega-\frac{\pi}{6} \in \left(\frac{5\pi}{2}, \frac{7\pi}{2}\right)$,解得$\omega \in \left(\frac{16}{3}, \frac{22}{3}\right)$。
2. 若A选项成立则可得$\frac{\pi}{4}\omega - \frac{\pi}{6} \leq \frac{7\pi}{6}$,解得$\omega \leq \frac{16}{3}$与1中范围矛盾。"
1,二项式$(\sqrt[3]{3}+x)^{12}$的展开式中系数为有理数的项的个数为____,6,5,4,3,B,"1. 该二项式展开的通项为$T_{r+1}=C^r_{12}3^{4-r/3}x^r$。
2. 若要通项系数为有理数,则需$3^{r/3}$为有理数,即$r$被3整除。0到12中符合要求的$r$共5项。"
2,为加快新冠肺炎检测效率某检测机构采取合并检测法即将多人的拭子样本合并检测若为阴性则可以确定所有样本都是阴性的若为阳性则还需要对本组的每个人再做检测现对20名密切接触者的拭子样本进行合并检测每份样本的检测结果是阴性还是阳性都是相互独立的每人检测结果呈阳性的概率为p且检测次数的数学期望为20则p的值为____,$1-({\frac{1}{20}})^{\frac{1}{20}}$,$1-(\frac{1}{20})^{\frac{1}{21}}$,$1-\left(\frac{1}{21}\right)^{\frac{1}{20}}$,$1-\left(\frac{1}{21}\right)^{\frac{1}{21}}$,A,"1. 实际的检测次数为1合并检测结果阴性或21合并检测的结果为阳性每人单独再检测
2. 由期望的运算公式可得$1\times(1-p)^{20}+21\times p^{20}$=20解得$p=1-({\frac{1}{20}})^{\frac{1}{20}}$"
3,"在矩形ABCD种AB=1,AD=2,则点P在以点C为圆心且与BD相切的圆上若$\overrightarrow{AP} = \lambda\overrightarrow{AB}+\mu\overrightarrow{AD}$,则$\lambda+\mu$的最大值为____",3,$2\sqrt{2}$,$\sqrt{5}$,2,A,"1. 首先我们需要求圆的半径。BD长为$\sqrt{1^2+2^2}=\sqrt{5}$圆的半径为C到BD做垂线的长度即$\frac{1 \times 2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$。
2. 设A点为原点AD为x轴AB为y轴则点P坐标需要满足的圆的参数方程可写为$x=2+\frac{2\sqrt{5}}{5}\cos\theta, y=1+\frac{2\sqrt{5}}{5}\sin\theta$,又有$\lambda$和$\mu$满足$x=2\mu$$y=\lambda$,与圆的参数方程联立可得$\mu=1+\frac{\sqrt{5}}{5}\cos\theta, \lambda = 1+\frac{2\sqrt{5}}{5}\sin\theta$。
3. 整理可得$\lambda+\mu = 2+\frac{2\sqrt{5}}{5}\sin\theta+\frac{\sqrt{5}}{5}\cos\theta$,设$\phi$满足$\sin\phi=\frac{\sqrt{5}}{5}, \cos\phi=\frac{2\sqrt{5}}{5}$,则有$\lambda+\mu=2+\sin(\theta+\phi) \leq 3$。"
4,"已知$\left \{ a_n \right \}$ 为等差数列,若$a_1+a_5+a_9=8\pi$,则 $\cos (a_3+a_7)$的值为____",$\frac{\sqrt{3}}{2}$,$-\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$-\frac{1}{2}$,D,"1. 根据等差数列的性质,有$a_{m-n}+a_{m+n}=2a_m$,因此,$a_1+a_5+a_9=3a_5=8\pi$,即$a_5=\frac{8\pi}{3}$。
2. 同理,$\cos(a_3+a_7)=\cos(2a_5)=\cos(\frac{16\pi}{3})=-\frac{1}{2}$。"