189 lines
7.0 KiB
Python
189 lines
7.0 KiB
Python
import os
|
|
import platform
|
|
import argparse
|
|
import time
|
|
import math
|
|
import warnings
|
|
import torch
|
|
import pandas as pd
|
|
import torch.nn.functional as F
|
|
from contextlib import nullcontext
|
|
|
|
from torch import optim
|
|
from transformers import AutoTokenizer
|
|
from transformers import AutoModelForCausalLM
|
|
from peft import get_peft_model, LoraConfig, TaskType
|
|
from torch.utils.data import DataLoader
|
|
from model.LMConfig import LMConfig
|
|
from model.dataset import SFTDataset
|
|
from model.model import Transformer
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
def Logger(content):
|
|
print(content)
|
|
|
|
|
|
def get_lr(it, all):
|
|
warmup_iters = args.warmup_iters
|
|
lr_decay_iters = all
|
|
min_lr = args.learning_rate / 10
|
|
|
|
if it < warmup_iters:
|
|
return args.learning_rate * it / warmup_iters
|
|
if it > lr_decay_iters:
|
|
return min_lr
|
|
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
|
assert 0 <= decay_ratio <= 1
|
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
|
return min_lr + coeff * (args.learning_rate - min_lr)
|
|
|
|
|
|
def train_epoch(epoch, wandb):
|
|
start_time = time.time()
|
|
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
|
X = X.to(args.device)
|
|
Y = Y.to(args.device)
|
|
loss_mask = loss_mask.to(args.device)
|
|
|
|
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr
|
|
|
|
with ctx:
|
|
logits = model(X, Y).logits
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')
|
|
loss_mask = loss_mask.view(-1)
|
|
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
|
|
loss = loss / args.accumulation_steps
|
|
|
|
scaler.scale(loss).backward()
|
|
|
|
if (step + 1) % args.accumulation_steps == 0:
|
|
scaler.unscale_(optimizer)
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
|
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
if step % args.log_interval == 0:
|
|
spend_time = time.time() - start_time
|
|
Logger(
|
|
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
|
|
epoch,
|
|
args.epochs,
|
|
step,
|
|
iter_per_epoch,
|
|
loss.item() * args.accumulation_steps,
|
|
optimizer.param_groups[-1]['lr'],
|
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
|
if wandb is not None:
|
|
wandb.log({"loss": loss.item() * args.accumulation_steps,
|
|
"lr": optimizer.param_groups[-1]['lr'],
|
|
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
|
|
|
if (step + 1) % args.save_interval == 0:
|
|
model.save_pretrained(args.save_dir)
|
|
|
|
|
|
def find_linear_with_keys(model, keys=["wq", "wk"]):
|
|
cls = torch.nn.Linear
|
|
linear_names = []
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, cls):
|
|
for key in keys:
|
|
if key in name:
|
|
linear_names.append(name)
|
|
break
|
|
return linear_names
|
|
|
|
|
|
def init_model():
|
|
model_name_or_path = "./minimind-v1-small"
|
|
tokenizer_name_or_path = "./minimind-v1-small"
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(args.device)
|
|
|
|
target_modules = find_linear_with_keys(model)
|
|
peft_config = LoraConfig(
|
|
r=8,
|
|
target_modules=target_modules
|
|
)
|
|
model = get_peft_model(model, peft_config)
|
|
model.print_trainable_parameters()
|
|
model = model.to(args.device)
|
|
return model, tokenizer
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="MiniMind LoRA Fine-tuning")
|
|
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
|
|
parser.add_argument("--epochs", type=int, default=20, help="Number of epochs")
|
|
parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
|
|
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
|
|
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",
|
|
help="Device to use")
|
|
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
|
|
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
|
|
parser.add_argument("--wandb_project", type=str, default="MiniMind-LoRA", help="Weights & Biases project name")
|
|
parser.add_argument("--num_workers", type=int, default=1, help="Number of workers for data loading")
|
|
parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
|
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
|
|
parser.add_argument("--warmup_iters", type=int, default=1000, help="Number of warmup iterations")
|
|
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
|
|
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
|
|
|
|
args = parser.parse_args()
|
|
|
|
lm_config = LMConfig()
|
|
max_seq_len = lm_config.max_seq_len
|
|
args.save_dir = os.path.join(args.out_dir)
|
|
os.makedirs(args.save_dir, exist_ok=True)
|
|
os.makedirs(args.out_dir, exist_ok=True)
|
|
tokens_per_iter = args.batch_size * max_seq_len
|
|
torch.manual_seed(1337)
|
|
device_type = "cuda" if "cuda" in args.device else "cpu"
|
|
|
|
args.wandb_run_name = f"MiniMind-LoRA-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
|
|
|
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
|
|
|
|
if args.use_wandb:
|
|
import wandb
|
|
|
|
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
|
|
else:
|
|
wandb = None
|
|
|
|
model, tokenizer = init_model()
|
|
|
|
df = pd.read_csv('./dataset/sft_data_single.csv')
|
|
df = df.sample(frac=1.0)
|
|
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
|
|
train_loader = DataLoader(
|
|
train_ds,
|
|
batch_size=args.batch_size,
|
|
pin_memory=True,
|
|
drop_last=False,
|
|
shuffle=False,
|
|
num_workers=args.num_workers,
|
|
)
|
|
|
|
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
|
|
optimizer = optim.Adam(
|
|
filter(lambda p: p.requires_grad, model.parameters()),
|
|
lr=args.learning_rate
|
|
)
|
|
|
|
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
|
|
Logger("compiling the model... (takes a ~minute)")
|
|
unoptimized_model = model
|
|
model = torch.compile(model)
|
|
|
|
iter_per_epoch = len(train_loader)
|
|
for epoch in range(args.epochs):
|
|
train_epoch(epoch, wandb)
|