Minimind/data_process.py
2024-10-23 12:02:28 +08:00

154 lines
4.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import csv
import itertools
import re
import json
import jsonlines
import psutil
import ujson
import numpy as np
import pandas as pd
from transformers import AutoTokenizer
from datasets import load_dataset
bos_token = "<s>"
eos_token = "</s>"
def pretrain_process(chunk_size=50000):
chunk_idx = 0
with jsonlines.open('./dataset/mobvoi_seq_monkey_general_open_corpus.jsonl') as reader:
with open('./dataset/pretrain_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['text'])
while True:
chunk = list(itertools.islice(reader, chunk_size))
if not chunk:
break
for idx, obj in enumerate(chunk):
try:
content = obj.get('text', '')
if len(content) > 512:
continue
writer.writerow([content])
except UnicodeDecodeError as e:
print(f"Skipping invalid line {chunk_idx * chunk_size + idx + 1}: {e}")
continue
chunk_idx += 1
print('chunk:', ((chunk_idx - 1) * chunk_size, chunk_idx * chunk_size), 'process end')
def sft_process(contain_history=False):
file_name = 'sft_data.csv'
if not contain_history:
file_name = 'sft_data_single.csv'
def chinese_ratio(text):
# 匹配所有中文字符
chinese_chars = re.findall(r'[\u4e00-\u9fff]', text)
# 中文字符数量占比
return len(chinese_chars) / len(text) if text else 0
def process_and_write_data(data):
q_lst, a_lst, history_lst = [], [], []
for per in data:
history, q, a = per['history'], per['q'], per['a']
if (contain_history and not history) or not q or not a:
continue
if len(q) < 10 or len(a) < 5:
continue
if len(q) > 512 or len(a) > 512:
continue
# 判断q和a中中文字符占比是否超过70%
if not (chinese_ratio(q) > 0.86 and chinese_ratio(a) > 0.86):
continue
q_lst.append(q)
a_lst.append(a)
if contain_history:
history_lst.append(history)
else:
history_lst.append([])
# 创建DataFrame并追加到CSV文件
df = pd.DataFrame({'history': history_lst, 'q': q_lst, 'a': a_lst})
df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n')
chunk_size = 1000 # 每次处理的记录数
data = []
with open(f'./dataset/{file_name}', 'w', encoding='utf-8') as f:
f.write('history,q,a\n')
sft_datasets = ['./dataset/sft_data_zh.jsonl']
if not contain_history:
sft_datasets = ['./dataset/sft_data_zh.jsonl']
chunk_num = 0
for path in sft_datasets:
with jsonlines.open(path) as reader:
for idx, obj in enumerate(reader):
try:
data.append({
'history': obj.get('history', ''),
'q': obj.get('input', '') + obj.get('q', ''),
'a': obj.get('output', '') + obj.get('a', '')
})
if len(data) >= chunk_size:
chunk_num += 1
process_and_write_data(data)
data = []
if chunk_num % 100 == 0:
print(f'chunk:{chunk_num} process end')
except jsonlines.InvalidLineError as e:
print(f"Skipping invalid JSON line {idx + 1}: {e}")
continue
if data:
process_and_write_data(data)
data = []
def rl_process():
################
# Dataset
################
dataset_paths = [
'./dataset/dpo/dpo_zh_demo.json',
'./dataset/dpo/dpo_train_data.json',
'./dataset/dpo/huozi_rlhf_data.json',
]
train_dataset = load_dataset('json', data_files=dataset_paths)
merged_data = []
for split in train_dataset.keys():
merged_data.extend(train_dataset[split])
with open('./dataset/dpo/train_data.json', 'w', encoding='utf-8') as f:
json.dump(merged_data, f, ensure_ascii=False, indent=4)
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer', use_fast=False)
print('tokenizer词表大小', len(tokenizer))
################
# 1: pretrain
# 2: sft
# 3: RL
################
process_type = 2
if process_type == 1:
pretrain_process()
if process_type == 2:
sft_process(contain_history=False)
if process_type == 3:
rl_process()