Minimind/ceval/ceval_result/advanced_mathematics_val_result.csv
2024-08-28 16:41:44 +08:00

25 lines
4.9 KiB
CSV
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

question,A,B,C,D,answer,llm_answer,is_right
求极限:$\lim_{x\rightarrow0}\frac{\int_{x^2}^x{\frac{\sin\left(xt\right)}{t}}\mathrm{d}t}{x^2}=$____,$\frac{5}{6}$,1,$\frac{7}{6}$,$\frac{4}{3}$,B,C,0
设$n$为正整数,求极限:$\lim_{x\rightarrow+\infty}\left[\frac{x^n}{\left(x-1\right)\left(x-2\right)\cdots\left(x-n\right)}\right]^x=$____,$e^{\frac{(n-1)(n+1)}{2}}$,$e^{\frac{(n-1)n}{2}}$,$e^{\frac{n(n+1)}{2}}$,$e^{\frac{n^{2}}{2}}$,C,C,1
设平面区域$D$由直线$y=\frac{1}{2}x-\frac{1}{2\sqrt{5}}$、$y=2x-\frac{2}{\sqrt{5}}$和$y=x$围成,函数$z=3xy+3$在$D$上的最大值和最小值分别是M和m则____,"$M=6,m=3$","$M=\dfrac{27}{5},m=3$","$M=\dfrac{18}{5},m=3$","$M={\frac{27}{5}},m={\frac{117}{40}}$",D,C,0
设函数$f\left(x\right)$连续,且$f\left(x\right)>0$,求积分:$int_0^1{\ln f\left(x+t\right)}\mathrm{d}t=$____,$\int_0^x{\ln \frac{f\left( t+2 \right)}{f\left( t \right)}}\mathrm{d}t+\int_0^1{\ln f\left( t \right)}\mathrm{d}t$,$\int_0^1{\ln \frac{f\left( t+2 \right)}{f\left( t \right)}}\mathrm{d}t+\int_0^1{\ln f\left( t \right)}\mathrm{d}t$,$\int_0^2x{\ln \frac{f\left( t+1 \right)}{f\left( t \right)}}\mathrm{d}t+\int_0^1{\ln f\left( t \right)}\mathrm{d}t$,$\int_0^x{\ln \frac{f\left( t+2 \right)}{f\left( t \right)}}\mathrm{d}t+\int_0^1{\ln f\left( t \right)}\mathrm{d}t$,A,C,0
设有界区域$\Omega$由平面$2x+y+2z=2$与三个坐标平面围成,$\Sigma$为整个表面的外侧;\\计算曲面积分:$I=\iint_{\Sigma}{\left(x^2+1\right)\mathrm{d}y\mathrm{d}z-2y\mathrm{d}z\mathrm{d}x+3z\mathrm{d}x\mathrm{d}y}=$____,$\frac{1}{2}$,1,$\frac{3}{2}$,$\frac{5}{2}$,A,A,1
已知$\int_0^{+\infty}{\frac{\sin x}{x}\mathrm{d}x=\frac{\pi}{2}}$,则$\int_0^{+\infty}{\int_0^{+\infty}{\frac{\sin x\sin\left(x+y\right)}{x\left(x+y\right)}}}\mathrm{d}x\mathrm{d}y$=____,$\frac{\pi ^2}{12}$,$\frac{\pi ^2}{8}$,$\frac{\pi ^2}{4}$,$\frac{\pi ^2}{2}$,B,C,0
"设曲线$C=\left\{(x,y,z):x={\sqrt{3}}\cos(t),y={\sqrt{3}}\sin(t),z={\frac{2}{3}}t^{\frac{3}{2}},0\leq t\leq5\right\}$,则曲线积分$\int_C(x^2+y^2)\mathrm{d}s=$____",$\frac{3}{4}\left(16\sqrt{2}-3\sqrt{3}\right)$,$2\bigl(16\sqrt{2}-3\sqrt{3}\bigr)$,$\frac{9}{4}\left(16\sqrt{2}-3\sqrt{3}\right)$,$\frac{3}{2}\left(16\sqrt{2}-3\sqrt{3}\right)$,B,A,0
"计算二重积分:$\iint_D{x\mathrm{d}x\mathrm{d}y}=$.其中$D$为由直线$y=-x+2,x$轴以及曲线$y=\sqrt{2x-x^2}$所围成的平面区域.____",$\frac{\pi}{4}+\frac{1}{3}$,$\frac{\pi}{2}+\frac{1}{3}$,$\frac{\pi}{2}+\frac{1}{4}$,$\frac{\pi}{2}+\frac{2}{3}$,A,D,0
求极限:$L=\lim_{n\rightarrow\infty}\sqrt{n}\left(1-\sum_{k=1}^n{\frac{1}{n+\sqrt{k}}}\right)$=____,$\frac{1}{3}$,$\frac{2}{3}$,1,$\frac{4}{3}$,B,C,0
"$x=1$是函数$f\left(x\right)=\frac{bx^2+x+1}{ax+1}$的可去间断点,求$a,b$的值____","$a=-1,b=-2$","$a=-2,b=-1$","$a=-2,b=-2$","$a=-1,b=0$",A,A,1
求$\sum_{n=1}^{\infty}{\frac{\left(-1\right)^{n+1}-2^n}{n}x^n}$的和函数.____,"$\ln\left(1-2x-x^2\right),x\in\left[-\dfrac{1}{2},\dfrac{1}{2}\right)$","$\ln\left(1-x-x^2\right),x\in\left(-\dfrac{1}{2},\dfrac{1}{2}\right)$","$\ln\left(1-2x-2x^2\right),x\in\left[-\dfrac{1}{2},\dfrac{1}{2}\right)$","$\ln\left(1-x-2x^2\right),x\in\left[-\dfrac{1}{2},\dfrac{1}{2}\right)$",D,A,0
求极限:$\lim_{x\rightarrow0}\frac{\sqrt{1+x\cos x}-\sqrt{1+\sin x}}{x^3}=$____,$-\dfrac{1}{3}$,$-\dfrac{1}{4}$,$-\dfrac{1}{5}$,$-\dfrac{1}{6}$,D,C,0
求极限:$\lim_{n\rightarrow\infty}\sum_{k=1}^n{\frac{k}{\left(k+1\right)!}}=$____,1,0,-1,2,A,C,0
"已知曲线C是圆$(x-1)^{2}+(y-6)^{2}=25$上从点$A(1,1)$沿逆时针方向到$B(4,2)$的一段弧,则$\oint_{C}(3\ln(1+y)+5x^{2})\mathrm{d}x+\Bigl({\frac{3x}{1+y}}-2y\Bigr)\mathrm{d}y=$____",$108+3\ln\Bigl(\frac{27}{2}\Bigr)$,$3\ln\left(\dfrac{81}{2}\right)-102$,$102+3\ln\Bigl(\frac{81}{2}\Bigr)$,$3\ln\left(\dfrac{27}{2}\right)-97$,C,C,1
"设$D$是全平面,$f\left(x\right)=\begin{cases}
x\text{}-1\leq x\leq2\\
0\text{}\text{其他}\\
\end{cases}$;计算$\iint_D{f\left(x\right)f\left(x^2-y\right)}\mathrm{d}\sigma=$____",$\frac{9}{4}$,$\frac{5}{2}$,$\frac{11}{4}$,3,A,A,1
计算广义积分:$\int_0^{+\infty}{\frac{\mathrm{d}x}{\left(1+x^2\right)\left(1+x^4\right)}}$____,$\frac{\pi}{8}$,$\frac{\pi}{4}$,$\frac{\pi}{2}$,$\frac{\pi}{3}$,B,B,1
已知数列$\left\{a_n\right\}$,其中$a_n=\cos n\alpha$,其前$n$$项和为$S_n$.求:$S_n=$____,$\frac{\cos \frac{n}{2}\alpha \cdot \sin \frac{n\alpha}{2}}{\sin \frac{\alpha}{2}}$,$\frac{\cos \frac{n+1}{2}\alpha \cdot \sin \frac{n\alpha}{2}}{\sin \frac{\alpha}{2}}$,$\frac{\cos \frac{n+1}{2}\alpha \cdot \sin \frac{n\alpha}{2}}{\sin \frac{\alpha}{3}}$,$\frac{\cos \frac{n-1}{2}\alpha \cdot \sin \frac{n\alpha}{2}}{\sin \frac{\alpha}{2}}$,B,B,1
计算定积分:$\int_{-1}^1{\frac{\mathrm{d}x}{\left(1+\mathrm{e}^x\right)\left(1+x^2\right)}}$____,$\frac{\pi}{8}$,$\frac{\pi}{4}$,$\frac{\pi}{2}$,$\pi$,B,C,0
求极限:$\lim_{x\rightarrow0}\frac{\tan2x^2-x^2}{\sin x^2+3x^2}=$____,$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,$\frac{3}{5}$,B,C,0
-,-,-,-,-,文件 advanced_mathematics_val.csv 的正确率: 36.84%,-,-