45 KiB
45 KiB
1 | id | question | A | B | C | D |
---|---|---|---|---|---|---|
2 | 0 | 求不定积分:$\int{\frac{x^2+1}{x^4+1}}\mathrm{d}x=$____ | $\dfrac{\sqrt{3}}{2}\arctan\left(\dfrac{x-\frac{1}{x}}{\sqrt{2}}\right)+C$ | $\dfrac{\sqrt{3}}{3}\arctan\left(\dfrac{x-\frac{1}{x}}{\sqrt{3}}\right)+C$ | $\dfrac{\sqrt{2}}{2}\arctan\left(\dfrac{x+\frac{1}{x}}{\sqrt{3}}\right)+C$ | $\dfrac{\sqrt{2}}{2}\arctan\left(\dfrac{x-\frac{1}{x}}{\sqrt{2}}\right)+C$ |
3 | 1 | 求极限:$\lim_{n\rightarrow\infty}\int_0^2{\frac{x^n\ln x}{1+x^n}}\mathrm{d}x$=____ | $\ln 2-1$ | $2\ln 2-1$ | $\ln 2-2$ | $\ln 2$ |
4 | 2 | 求极限:$\lim_{x\rightarrow\infty}\left(\cos\frac{1}{x}+\sin\frac{1}{x^2}\right)^{x^2}=$____ | $\mathrm e^{\frac12}$ | $\mathrm e^{\frac23}$ | $\mathrm e^{\frac13}$ | $\mathrm e^{\frac34}$ |
5 | 3 | 求球体$x^2+y^2+z^2\leq R^2$与$x^2+y^2+z^2\leqslant2Rz$所围公共部分的体积____ | $\frac{5}{12}\pi R^3$ | $\frac{1}{2}\pi R^3$ | $\frac{7}{12}\pi R^3$ | $\frac{2}{3}\pi R^3$ |
6 | 4 | 求极限:$\lim_{x\rightarrow\infty}\left(\frac{x^3}{x^2+1}-\frac{x^2}{x-1}\right)=$____ | 1 | 0 | -1 | $\frac{1}{2}$ |
7 | 5 | 计算定积分:$I=\int_0^1{\ln x\ln\left(1-x\right)}\mathrm{d}x=$____ | $2-\frac{\pi^{2}}{6}$ | $2-\frac{\pi^{2}}{3}$ | $1-\frac{\pi^{2}}{3}$ | $1-\frac{\pi^{2}}{6}$ |
8 | 6 | 当$p$为何值时,广义积分$\int_0^{\frac{\pi}{2}}{\left|\ln\sin x\right|^p\mathrm{d}x}$是收敛的____ | $p>-\frac{1}{2}$时 | $p<-\frac{1}{2}$时 | $p>-\frac{2}{3}$时 | $p<-\frac{2}{3}$时 |
9 | 7 | 二重极限$\lim_{\left(x,y\right)\to\left(0,0\right)}\frac{3\sin\left(xy\right)}{\sqrt{1+6xy}-1}=$____ | $\dfrac{1}{4}$ | 1 | $\dfrac{3}{4}$ | $\dfrac{1}{2}$ |
10 | 8 | 求不定积分:$I=\int{\frac{\mathrm{d}x}{\left(x^2+x+1\right)^2}}$____ | $\frac{5\sqrt{3}}{9}\mathrm{arc}\tan \frac{2}{\sqrt{3}}\left( x+\frac{1}{2} \right) +\frac{3x+1}{3\left( x^2+x+1 \right)}+C$ | $\frac{4\sqrt{3}}{9}\mathrm{arc}\tan \frac{2}{\sqrt{3}}\left( x+\frac{1}{2} \right) +\frac{3x+1}{3\left( x^2+x+1 \right)}+C$ | $\frac{4\sqrt{3}}{7}\mathrm{arc}\tan \frac{2}{\sqrt{3}}\left( x+\frac{1}{3} \right) +\frac{2x+3}{3\left( x^2+x+1 \right)}+C$ | $\frac{4\sqrt{3}}{9}\mathrm{arc}\tan \frac{2}{\sqrt{3}}\left( x+\frac{1}{2} \right) +\frac{2x+1}{3\left( x^2+x+1 \right)}+C$ |
11 | 9 | 设区域$D$是由$y=x,x^2+y^2=2x$以及$x$轴所围成的第一象限的部分;求区域$D$绕$x=2$旋转所得的旋转体体积____ | $\frac{\pi^{2}}{4}+\frac{\pi}{3}$ | $\frac{\pi^{2}}{2}+\frac{\pi}{3}$ | $\frac{\pi^{2}}{2}+\frac{2\pi}{3}$ | $\frac{\pi^{2}}{2}+\frac{4\pi}{3}$ |
12 | 10 | 设区域$D_1$为$x^2+y^2\leq1$在第一象限的部分,$D_2$为$\left|x\right|+\left|y\right|\leq1$在第一象限的部分,则$I_1=\iint_{D_1}{\cos\left(\pi x y\right)}\mathrm{d}\sigma,I_2=\iint_{D_2}{\cos\left(\pi x y\right)}\mathrm{d}\sigma,I_3=\iint_{D_2}{\sin\left(\pi x y\right)}\mathrm{d}\sigma$的大小关系是?____ | $I_3>I_2>I_1$ | $I_2>I_1>I_3$ | $I_3>I_1>I_2$ | $I_1>I_2>I_3$ |
13 | 11 | 求不定积分$I=\int{\frac{1+\ln x}{x^{-x}+x^x}}\mathrm{d}x$____ | $\mathrm{arc}\tan \left( x^x \right) + x +C$ | $\mathrm{arc}\tan \left( x^x \right) +2x +C$ | $\mathrm{arc}\tan \left( x^x \right) - x +C$ | $\mathrm{arc}\tan \left( x^x \right) +C$ |
14 | 12 | 求极限:$\lim_{x\rightarrow0^+}\frac{\mathrm{e}^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}$=____ | 0 | -1 | -2 | -3 |
15 | 13 | 设$f\left(x\right)$在$\left[-\frac{\pi}{2},+\infty\right)$内可导,$f\left(0\right)=a$,$f\prime\left(x\right)=\begin{cases} \frac{a}{\left(x+1\right)\left(x^2+x+1\right)}\text{,}x\geq0\\ \frac{1}{2+\cos^2x}\text{,}-\frac{\pi}{2}\leq x<0\\ \end{cases}$;试求a的值____ | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{1}{5}$ |
16 | 14 | 求不定积分:$\int{\frac{x^2-1}{x^4+1}}\mathrm{d}x$____ | $\frac{1}{\sqrt{2}}\ln \left| \frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1} \right|+C$ | $\frac{1}{4\sqrt{2}}\ln \left| \frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1} \right|+C$ | $\frac{1}{2\sqrt{2}}\ln \left| \frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1} \right|+C$ | $\frac{1}{3\sqrt{2}}\ln \left| \frac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1} \right|+C$ |
17 | 15 | 圆柱面$x^2+y^2=1$被平面$z=0$及曲面$z=\frac{2+x+y}{1+x^2+y^2+2\left|x\right|}$截下部分的面积为?____ | 4 | 8 | -4 | 12 |
18 | 16 | 求极限:$\lim_{x\rightarrow+\infty}\frac{\int_0^x{\left|\sin t\right|}\mathrm{d}t+\left|\sin x\right|\mathrm{arc}\tan x}{x}=$____ | $\frac{4}{\pi}$ | $\frac{3}{\pi}$ | $\frac{2}{\pi}$ | $\frac{1}{\pi}$ |
19 | 17 | 求极限:$\lim_{x\rightarrow0}\frac{\sin\sin\cos x-\sin\sin1}{\cos\cos\cos x-\cos\cos1}$=____ | $\frac{\sin\cos1\cdot\cos1}{\sin\cos1\cdot\sin1}$ | $\frac{\cos\sin2\cdot\cos1}{\sin\cos2\cdot\sin1}$ | $\frac{\cos\sin1\cdot\cos1}{\sin\cos1\cdot\sin1}$ | $\frac{\cos\sin1\cdot\cos2}{\sin\cos1\cdot\sin2}$ |
20 | 18 | 向量场$\boldsymbol{F}=(6x+3y+5z,12x+6y+10z,3x+3y-3z)$的散度$\mathrm{div}\boldsymbol{F}=$____ | $\left(6,6,-3\right)$ | 9 | 15 | $\left(-7,2,9\right)$ |
21 | 19 | 已知$a_0=1,a_1=\frac{5}{4}$,$a_n=\frac{\left(2n+3\right)a_{n-1}+\left(2n-3\right)a_{n-2}}{4n}$,求极限:$\lim_{n\rightarrow\infty}a_n=$____ | \sqrt{\frac{1}{3}} | \sqrt{\frac{2}{3}} | \sqrt{\frac{3}{2}} | \sqrt{\frac{3}{4}} |
22 | 20 | 下列结论中,正确结论的个数是____。 (1)若级数$\sum_{n=1}^{\infty}a_{n}$条件收敛.则幂级数$\sum_{n=1}^{\infty}na_{n}x^{n}$的收敛半径为1; (2)若数项级数$\sum_{n=1}^{\infty}a_{n}$和$\sum_{n=1}^{\infty}b_{n}$都发散,则级数$\sum_{n=1}^{\infty}\big(|a_{n}|+|b_{n}|\big)$发散; (3)设$\left\{u_{n}\right\}$为单调递增有界数列,则$\sum_{n=1}^{\infty}\big(u_{n+1}^{2}-u_{n}^{2}\big)$收敛; (4)若$\sum_{n=1}^{\infty}nu_{n}$绝对收敛,$\sum_{n=1}^{\infty}\frac{v_{n}}{n}$条件收敛,则$\sum_{n=1}^{\infty}\left(u_{n}+v_{n}\right)$条件收敛。 | 一个 | 两个 | 三个 | 四个 |
23 | 21 | 求极限:$\lim_{x\rightarrow0}\frac{1}{x}\ln\frac{\mathrm{e}^x+\mathrm{e}^{2x}+\cdots+\mathrm{e}^{nx}}{n}=$____ | $\frac{n-1}{2}$ | $\frac{n}{2}$ | $\frac{n+1}{2}$ | $\frac{2n-1}{2}$ |
24 | 22 | 求极限:$lim_{x\rightarrow0}\left[\frac{\int_0^x{\mathrm{e}^{-t}}\cos t\mathrm{d}t}{\ln^2\left(1+x\right)}-\frac{1}{x}\right]=$____ | $\frac{1}{5}$ | $\frac{1}{4}$ | $\frac{1}{3}$ | $\frac{1}{2}$ |
25 | 23 | 计算广义积分:$\int_{-\infty}^{+\infty}{\frac{\mathrm{d}y}{\left(x^2+y^2\right)^{\frac{3}{2}}}}=$____ | $\frac{1}{x^2}$ | $\frac{2}{x^2}$ | $\frac{3}{x^2}$ | $\frac{5}{x^2}$ |
26 | 24 | 求不定积分:$I=\int{\frac{\cos2x-3}{\cos^4x\sqrt{4-\cot^2x}}\mathrm{d}x}$____ | $-\left[ \frac{\left( 3-\cot ^2x \right) ^{\frac{3}{2}}}{4\cot ^3x}+\frac{\sqrt{4-\cot ^2x}}{3\cot x} \right] +C$ | $-\left[ \frac{\left( 3-\cot ^2x \right) ^{\frac{1}{2}}}{3\cot ^3x}+\frac{\sqrt{4-\cot ^2x}}{4\cot x} \right] +C$ | $-\left[ \frac{\left( 4-\cot ^2x \right) ^{\frac{1}{2}}}{3\cot ^3x}+\frac{\sqrt{4-\cot ^2x}}{3\cot x} \right] +C$ | $-\left[ \frac{\left( 4-\cot ^2x \right) ^{\frac{3}{2}}}{3\cot ^3x}+\frac{\sqrt{4-\cot ^2x}}{4\cot x} \right] +C$ |
27 | 25 | 如果$f\prime\left(x\right)=-9x\mathrm{e}^{x^2}$并且$f\left(0\right)=-6$,则$f\left(x\right)$等于?____ | $-\frac{7}{2}\mathrm{e}^{x^{2}}+\frac{21}{2}$ | $-\frac{9}{2}\mathrm{e}^{x^{2}}+\frac{19}{2}$ | $-\frac{9}{2}\mathrm{e}^{x^{2}}+\frac{21}{2}$ | $-\frac{9}{4}\mathrm{e}^{x^{2}}+\frac{19}{2}$ |
28 | 26 | $\lim_{x\rightarrow0}x\left[\frac{2}{x}\right]=$____ | 0 | 1 | 2 | 3 |
29 | 27 | 求不定积分:$\int{\frac{\mathrm{e}^x+1}{\sqrt{\mathrm{e}^x-1}}\mathrm{d}x}=$____ | $3\sqrt{\mathrm{e}^x-1}+2\mathrm{arctan}\sqrt{\mathrm{e}^x-1}+C$ | $2\sqrt{\mathrm{e}^x-1}+2\mathrm{arctan}\sqrt{\mathrm{e}^x-1}+C$ | $2\sqrt{\mathrm{e}^x+1}+2\mathrm{arctan}\sqrt{\mathrm{e}^x-1}+C$ | $2\sqrt{\mathrm{e}^x-1}+3\mathrm{arctan}\sqrt{\mathrm{e}^x+1}+C$ |
30 | 28 | $\lim_{n\rightarrow\infty}\frac{3^n+2^n}{3^{n+1}-2^{n+1}}=$____ | $\frac{2}{3}$ | $\frac{1}{3}$ | $\frac{3}{4}$ | $\frac{2}{5}$ |
31 | 29 | 计算广义积分:$I=\int_1^{+\infty}{\frac{1}{\sqrt{x}}\ln\left(\frac{x+1}{x}\right)}\mathrm{d}x$____ | $\pi -\ln 2$ | $\pi -2\ln 2$ | $\pi -3\ln 2$ | $2\pi -\ln 2$ |
32 | 30 | 计算不定积分:$I=\int{\frac{\mathrm{d}x}{x^2+2x+3}}$____ | $\frac{\sqrt{2}}{4}\mathrm{arc}\tan \left( \frac{x+1}{\sqrt{2}} \right) +C$ | $\frac{\sqrt{2}}{3}\mathrm{arc}\tan \left( \frac{x+1}{\sqrt{2}} \right) +C$ | $\frac{\sqrt{2}}{2}\mathrm{arc}\tan \left( \frac{x+1}{\sqrt{2}} \right) +C$ | $\frac{\sqrt{2}}{2}\mathrm{arc}\tan \left( \frac{x+1}{2\sqrt{2}} \right) +C$ |
33 | 31 | 求不定积分:$\int{\frac{x^2}{x^2-1-\sqrt{1-x^2}}}\mathrm{d}x$____ | $x-\mathrm{arc}\sin x+C$ | $x-\mathrm{arc}\cos x+C$ | $x+\mathrm{arc}\sin x+C$ | $x+\mathrm{arc}\cos x+C$ |
34 | 32 | 设$x=\frac{1}{u}+\frac{1}{v},y=\frac{1}{u^2}+\frac{1}{v^2},z=\frac{1}{u^3}+\frac{1}{v^3}+\mathrm{e}^x$,求$\frac{\partial z}{\partial y},\frac{\partial z}{\partial v}$____ | $\frac{3}{4u}+\frac{u}{2}\mathrm{e}^x,\frac{\partial z}{\partial v}=\frac{3}{uv^3}-\frac{3}{v^4}+\frac{u-v}{v^3}\mathrm{e}^x$ | $\frac{3}{2u}+\frac{u}{4}\mathrm{e}^x,\frac{\partial z}{\partial v}=\frac{3}{uv^3}-\frac{3}{v^4}+\frac{u-v}{v^3}\mathrm{e}^x$ | $\frac{3}{2u}+\frac{u}{2}\mathrm{e}^x,\frac{\partial z}{\partial v}=\frac{3}{uv^3}-\frac{3}{v^4}+\frac{u-v}{v^3}\mathrm{e}^x$ | $\frac{3}{4u}+\frac{u}{2}\mathrm{e}^x,\frac{\partial z}{\partial v}=\frac{3}{uv^3}-\frac{3}{v^4}+\frac{2u-v}{v^3}\mathrm{e}^x$ |
35 | 33 | 求不定积分:$\int{\frac{1}{\mathrm{e}^x-1}}\mathrm{d}x$____ | $\ln \left| \mathrm{e}^x-1 \right|-x+C$ | $\ln \left| \mathrm{e}^x-2 \right|-x+C$ | $\ln \left| \mathrm{e}^x-3 \right|-x+C$ | $\ln \left| \mathrm{e}^x-1 \right|-2x+C$ |
36 | 34 | 求极限:$\lim_{n\rightarrow\infty}\sum_{k=1}^{2n}{\frac{\sqrt{1+\sin\frac{\pi k}{n}}}{n+\frac{1}{k}}}=$____ | $\frac{3\sqrt{2}}{\pi}$ | $\frac{4\sqrt{2}}{\pi}$ | $\frac{5\sqrt{2}}{\pi}$ | $\frac{6\sqrt{2}}{\pi}$ |
37 | 35 | 利用泰勒展开求解极限:$\lim_{x\rightarrow0}\frac{\sinh x-\tanh x}{x^3}=$____ | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{1}{5}$ |
38 | 36 | 求极限:$\lim_{x\rightarrow1}\frac{\left(1+\frac{1}{x}\right)^x\left(1+x\right)^{\frac{1}{x}}-4}{\left(x-1\right)^2}$=____ | $2\ln 2-1$ | $3\ln 2-2$ | $4\ln 2-3$ | $5\ln 2-3$ |
39 | 37 | 求极限:$\lim_{n\rightarrow\infty}\sqrt[n^2]{2}\cdot\sqrt[n^2]{2^2}\cdot\cdots\cdot\sqrt[n^2]{2^n}=$____ | 1 | $\sqrt{2}$ | $\sqrt{3}$ | $\frac{\sqrt{3}}{2}$ |
40 | 38 | 已知曲面$\Sigma$是由曲线段$\left\{\begin{array}{ll}z=\sqrt{y-1}&(1\leq y\leq4)\\x=0&\end{array}\right.$绕y轴旋转而成的旋转曲面,去左侧,则曲面积分$\iint_{\Sigma}\frac{x\mathrm{d}y\mathrm{d}z+3y\mathrm{d}z\mathrm{d}x+11z\mathrm{d}x\mathrm{d}y}{1+\sqrt{y-x^{2}-z^{2}}}=$____ | $\frac{405\pi}{4}$ | $\frac{405\pi}{2}$ | $\frac{63\pi}{4}$ | $\frac{189\pi}{4}$ |
41 | 39 | 向量场${\boldsymbol{F}}=(x^{2}+y^{2},y^{2}+z^{2},z^{2}+x^{2})$在点$\left(5,5,5\right)$处的旋度$\mathbf{rot}\boldsymbol{F}\big|_{(5,\:5,\:5)}=$____ | 10 | -30 | $\left(-\:10\:,\:-\:10\:,\:-\:10\right)$ | $(-\:10\:,10\:,\:-\:10)$ |
42 | 40 | 求极限:$L=\lim_{n\rightarrow\infty}\left(\int_1^2{\sqrt[n]{1+x}}\mathrm{d}x\right)^n$=____ | $\frac{27}{4\mathrm{e}}$ | $\frac{27}{2\mathrm{e}}$ | $\frac{27}{5\mathrm{e}}$ | $\frac{9}{2\mathrm{e}}$ |
43 | 41 | 计算三重积分:$I=\iiint_V{\left(x^2+y^2\right)}\mathrm{d}x\mathrm{d}y\mathrm{d}z$;其中$V$是由曲面$2\left(x^2+y^2\right)=z$与$z=4$为界面的区域____ | $\frac{4\pi}{3}$ | $\frac{8\pi}{3}$ | $3\pi$ | $\frac{16\pi}{3}$ |
44 | 42 | 求极限:$\lim_{x\rightarrow0}\frac{\sqrt{1+x}-\sqrt[3]{1+2x^2}}{\ln\left(1+3x\right)}=$____ | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{4}$ | $\frac{1}{6}$ |
45 | 43 | 求极限:$L=\lim_{x\rightarrow0}\frac{\ln^2\left(x+\sqrt{1+x^2}\right)-1+\mathrm{e}^{-x^2}}{x^4}=$____ | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\frac{1}{6}$ |
46 | 44 | 求极限:$\lim_{n\rightarrow\infty}\sum_{k=1}^n{\frac{n+k}{n^2+k}}=$____ | $\frac{1}{2}$ | 1 | $\frac{3}{2}$ | 2 |
47 | 45 | 若四次齐次函数$f\left(x,y,z\right)$满足$f_{xx}+f_{yy}+f_{zz}=x^2+y^2+z^2$;计算:$I=\oiint_{\Sigma}{f\left(x,y,z\right)}\mathrm{d}S=$,其中$\Sigma:x^2+y^2+z^2=1$____ | $\frac{\pi}{5}$ | $\frac{2\pi}{5}$ | $\frac{3\pi}{5}$ | $\frac{4\pi}{5}$ |
48 | 46 | 求不定积分:$I=\int{\frac{x^2}{\left(x\cos x-\sin x\right)\left(x\sin x+\cos x\right)}\mathrm{d}x}$____ | $\ln \left| \frac{x\cos x+\sin x}{x\cos x-\sin x} \right|+C$ | $\ln \left| \frac{x\sin x+\cos x}{x\cos x-\sin x} \right|+C$ | $\ln \left| \frac{x\cos x+\sin x}{x\cos x-\cot x} \right|+C$ | $\ln \left| \frac{x\cos x+\sin x}{x\sin x-\cos x} \right|+C$ |
49 | 47 | 计算二重积分:$\iint_D{\frac{1}{\sqrt{x^2+y^2}}\mathrm{d}x\mathrm{d}y}=$,其中$D=\left\{\left(x,y\right)|0\leq x\leq y\leq1\right\}$____ | $\ln\left(1+2\sqrt{2}\right)$ | $\ln\left(2+\sqrt{2}\right)$ | $\ln\left(1+\sqrt{2}\right)$ | $\ln\left(2+2\sqrt{2}\right)$ |
50 | 48 | 设曲线$y=x\sin x$在$\left[0,n\pi\right]\left(n=1,2,\cdots\right)$上与$x$轴所围成的面积为$S_n$,求极限:$\lim_{n\rightarrow\infty}\left[\frac{S_n}{\pi\left(n+1\right)^2}\right]^n$____ | $\mathrm{e}^{-1}$ | $\mathrm{e}^{-2}$ | $\mathrm{e}^{-3}$ | $\mathrm{e}^{-\frac{3}{2}}$ |
51 | 49 | 将函数$f\left(x\right)=\frac{1}{4}\ln\frac{1+x}{1-x}+\frac{1}{2}\mathrm{arc}\tan x-x$展开成幂级数____ | $\begin{aligned}\sum_{k=1}^n\frac{x^{3k+1}}{3k+1},&|x|<1\end{aligned}$ | $\begin{aligned}\sum_{k=1}^n\frac{2x^{3k+1}}{3k+1},&|x|<1\end{aligned}$ | $\begin{aligned}\sum_{k=1}^n\frac{x^{4k+1}}{4k+1},&|x|<1\end{aligned}$ | $\begin{aligned}\sum_{k=1}^n\frac{2x^{4k+1}}{4k+1},&|x|<1\end{aligned}$ |
52 | 50 | $z=\mathrm{e}^{-4x}\mathrm{ln}\left(6y\right)$在点$\left(0,1\right)$处的全微分$\mathrm{d}z\big|_{(0,1)}=$____ | $-4\ln6\mathrm{d}x+\mathrm{d}y$ | $4\ln6\mathrm{d}x-\mathrm{d}y$ | $-4\ln6\mathrm{d}x-\mathrm{d}y$ | $-4\ln6\mathrm{d}x+6\mathrm{d}y$ |
53 | 51 | 求极限:$\lim_{n\rightarrow\infty}\left(2n+1\right)\left\{\frac{\pi}{2}-\frac{1}{2n+1}\left[\frac{\left(2n\right)!!}{\left(2n-1\right)!!}\right]^2\right\}$=____ | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{\pi}{3}$ | $\frac{2\pi}{3}$ |
54 | 52 | 求定积分:$\int_0^2{\left(x-1\right)^2\sqrt{2x-x^2}}\mathrm{d}x=$____ | $\frac{\pi}{4}$ | $\frac{\pi}{8}$ | $\frac{\pi}{12}$ | $\frac{\pi}{3}$ |
55 | 53 | 求极限:$\lim_{n\rightarrow\infty}\frac{\sqrt[2]{n}+\sqrt[3]{n}+\cdots+\sqrt[n]{n}}{n}$=____ | 0 | 1 | -1 | $\frac{1}{2}$ |
56 | 54 | 已知:$f\left(x\right)=\sin x+\int_0^{\frac{\pi}{4}}{f\left(2x\right)}\mathrm{d}x$,求$f\left(x\right)$____ | $\sin x+\frac{1}{1-\frac{\pi}{2}}$ | $\cos x+\frac{1}{2-\frac{\pi}{2}}$ | $\sin x+\frac{1}{3-\frac{\pi}{2}}$ | $\sin x+\frac{1}{2-\frac{\pi}{2}}$ |
57 | 55 | 求极限:$\lim_{x\rightarrow0}\frac{\left(1+x\right)^{\frac{1}{x}}-\left(1+2x\right)^{\frac{1}{2x}}}{\sin x}$=____ | $\frac{\mathrm{e}}{2}$ | $\frac{\mathrm{e}}{3}$ | $\frac{\mathrm{e}}{4}$ | $\frac{3\mathrm{e}}{4}$ |
58 | 56 | 设数列$\left\{a_n\right\}$单调减少,$\lim_{n\rightarrow\infty}a_n=0,s_n=\sum_{k=1}^n{a_k}\left(n=1,2,3,\cdots\right)$无界,则幂级数$\sum_{n=1}^{\infty}{a_n\left(x-1\right)^n}$的收敛半径为?____ | $\left( -1,1 \right]$ | $\left[ -1,1 \right)$ | $\left[ 0,2 \right)$ | $\left( 0,2 \right]$ |
59 | 57 | 求不定积分:$I=\int{\frac{\mathrm{e}^x}{\mathrm{e}^{2x}\left(1+\mathrm{e}^{2x}\right)}}\mathrm{d}x$____ | $-\frac{4}{\mathrm{e}^x}-\mathrm{arc}\tan\mathrm{e}^x+C$ | $-\frac{3}{\mathrm{e}^x}-\mathrm{arc}\tan\mathrm{e}^x+C$ | $-\frac{2}{\mathrm{e}^x}-\mathrm{arc}\tan\mathrm{e}^x+C$ | $-\frac{1}{\mathrm{e}^x}-\mathrm{arc}\tan\mathrm{e}^x+C$ |
60 | 58 | 函数$f(x)={\frac{\sqrt{6}x}{\left(x-1\right)^{2}}}+3\ln\left(1-x\right)$在$x=0$处的幂级数展开式为____ | $f(x)=\sum_{n=1}^{\infty}\left({\sqrt{6}}n-{\frac{3}{n}}\right)x^{n},-1<x<1$ | $f(x)=\sum_{n=1}^{\infty}\Bigl(\sqrt{6}n+\frac{3}{n}\Bigr)x^{n},-1<x<1$ | $f(x)=\sum_{n=1}^{\infty}\Bigl(\sqrt{6}n+\dfrac{3}{n}\Bigr)x^{n-1},-1<x<1$ | $f(x)=\sum_{n=1}^{\infty}\Bigl(\sqrt{6}n-\frac{3}{n}\Bigr)x^{n-1},-1<x<1$ |
61 | 59 | 计算$\iiint_{\Omega}{\left(y^2+z^2\right)}\mathrm{d}x\mathrm{d}y\mathrm{d}z=$其中$\Omega$是由$xOy$平面上的曲线$y^2=2x$绕$x$轴旋转而成的曲面与$x=5$所围成的区域____ | $\frac{200\pi}{3}$ | $\frac{250\pi}{3}$ | $100\pi$ | $\frac{320\pi}{3}$ |
62 | 60 | $x_n=\sum_{k=1}^n{\left[\left(n^k+1\right)^{-\frac{1}{k}}+\left(n^k-1\right)^{\frac{1}{k}}\right]$,求$\lim_{n\rightarrow\infty}x_n}$=____ | 0 | 1 | 2 | 3 |
63 | 61 | 求不定积分:$I=\int{\sqrt{1+\frac{1}{x^2}}}\mathrm{d}x$____ | $\sqrt{1+x^2}+\ln \left| \frac{\sqrt{4+x^2}-1}{x} \right|+C$ | $\sqrt{1+x^2}+\ln \left| \frac{\sqrt{1+2x^2}-1}{x} \right|+C$ | $\sqrt{1+x^2}+\ln \left| \frac{\sqrt{1+x^2}-1}{x} \right|+C$ | $\sqrt{1+x^2}+\ln \left| \frac{\sqrt{1+2x^2}-1}{x} \right|+C$ |
64 | 62 | 求极限:$\lim_{x\rightarrow+\infty}x^2\left(\mathrm{arc}\tan\frac{1}{x}-\mathrm{arc}\tan\frac{1}{x+1}\right)=$____ | -1 | 0 | 1 | $\frac{2}{3}$ |
65 | 63 | 求不定积分:$I=\int{\sqrt{1+x^2}}\mathrm{d}x$____ | $\frac{1}{5}\left( x\sqrt{1+x^2}+\ln \left| x+\sqrt{1+x^2} \right| \right) +C$ | $\frac{1}{4}\left( x\sqrt{1+x^2}+\ln \left| x+\sqrt{1+x^2} \right| \right) +C$ | $\frac{1}{3}\left( x\sqrt{1+x^2}+\ln \left| x+\sqrt{1+x^2} \right| \right) +C$ | $\frac{1}{2}\left( x\sqrt{1+x^2}+\ln \left| x+\sqrt{1+x^2} \right| \right) +C$ |
66 | 64 | 求极限:$\lim_{x\rightarrow0}\frac{\tan\tan\tan x-\sin\sin\sin x}{\tan x-\sin x}=$____ | 3 | 4 | 2 | 1 |
67 | 65 | 求不定积分:$I=\int{\left(x-2\right)\sqrt{x^2+4x+1}}\mathrm{d}x$____ | $\frac{\left( x^2+4x+1 \right) ^{\frac{3}{2}}}{3}-2\left( x+2 \right) \sqrt{x^2+4x+1}-6\ln \left| \frac{x+2+\sqrt{x^2+4x+1}}{\sqrt{3}} \right|+C$ | $\frac{\left( x^2+4x+1 \right) ^{\frac{3}{2}}}{4}-2\left( x+2 \right) \sqrt{x^2+4x+1}-3\ln \left| \frac{x+2+\sqrt{x^2+4x+1}}{\sqrt{3}} \right|+C$ | $\frac{\left( x^2+4x+1 \right) ^{\frac{3}{2}}}{4}-2\left( x+2 \right) \sqrt{x^2+4x+1}-4\ln \left| \frac{x+2+\sqrt{x^2+4x+1}}{\sqrt{3}} \right|+C$ | $\frac{\left( x^2+3x+1 \right) ^{\frac{3}{2}}}{4}-2\left( x+2 \right) \sqrt{x^2+4x+1}-3\ln \left| \frac{x+2+\sqrt{x^2+4x+1}}{\sqrt{3}} \right|+C$ |
68 | 66 | 求不定积分:$I=\int{\cot^2x}\tan\left(\frac{1+x\tan x}{\tan x}\right)\mathrm{d}x$____ | $\ln \left[ \cos \left( x+\sin x \right) \right] +C$ | $\ln \left[ \cos \left( x+\cos x \right) \right] +C$ | $\ln \left[ \cos \left( x+\tan x \right) \right] +C$ | $\ln \left[ \cos \left( x+\cot x \right) \right] +C$ |
69 | 67 | 计算定积分:$\int_1^3{\sqrt{1+\frac{1}{4}\left(x-\frac{1}{x}\right)^2}}\mathrm{d}x$____ | $3+\frac{1}{2}\ln 3$ | $2+\frac{1}{3}\ln 3$ | $3+\frac{1}{3}\ln 3$ | $2+\frac{1}{2}\ln 3$ |
70 | 68 | 计算定积分:$I=\int_0^{\pi}{\sqrt{\sin x-\sin^2x}\mathrm{d}x}$____ | $\sqrt{2}+\ln \left( \frac{\sqrt{2}-1}{\sqrt{2}+1} \right)$ | $\sqrt{2}-\ln \left( \frac{\sqrt{2}-1}{\sqrt{2}+1} \right)$ | $2\sqrt{2}+\ln \left( \frac{\sqrt{2}-1}{\sqrt{2}+1} \right)$ | $2\sqrt{2}-\ln \left( \frac{\sqrt{2}-1}{\sqrt{2}+1} \right)$ |
71 | 69 | 设$f\left(x\right)$在$\left[0,1\right]$上连续可导,且$f\left(0\right)=f\left(1\right)=0$则存在常数$c>0$使得:$\int_0^1{f^2\left(x\right)}\mathrm{d}x\leq c\int_0^1{\left[f\prime\left(x\right)\right]^2}\mathrm{d}x$,则$c$最小为?____ | $\frac{1}{\pi ^2}$ | $\frac{1}{2\pi ^2}$ | $\frac{2}{\pi ^2}$ | $\frac{1}{\pi}$ |
72 | 70 | 设可微函数$f\left(x,y\right)$在点$P\left(x,y\right)$处沿$\boldsymbol{l}_1\left(1,1\right)$的方向导数为$\frac{\sqrt{2}}{2}\cdot\frac{2xy-x^2}{x^4+y^2}$,沿$\boldsymbol{l}_2\left(0,-2\right)$的方向导数为$\frac{x^2}{x^4+y^2}$,若$f\left(1,1\right)=0$,求函数$f\left(x,y\right)$____ | $f\left( x,y \right) =-\mathrm{arc}\tan \left( \frac{y}{2x^2} \right)$ | $f\left( x,y \right) =-\mathrm{arc}\tan \left( \frac{y}{x^2} \right)$ | $f\left( x,y \right) =-\mathrm{arc}\tan \left( \frac{3y}{2x^2} \right)$ | $f\left( x,y \right) =-\mathrm{arc}\tan \left( \frac{2y}{x^2} \right)$ |
73 | 71 | 计算曲线积分:$\oint_C{\left(y-z\right)\mathrm{d}x+\left(z-x\right)\mathrm{d}y+\left(x-y\right)\mathrm{d}z}=$。其中$C$为$x^2+y^2=1$与$x+y+z=1$的交线,从$x$轴正向看是逆时针方向____ | $-3\pi$ | $-6\pi$ | $-9\pi$ | $-12\pi$ |
74 | 72 | 设$f\left(x\right)=\int_1^x{\frac{\ln t}{1+t}}\mathrm{d}t\left(x>0\right)$,求$f\left(2\right)+f\left(\frac{1}{2}\right)$的值____ | $\frac{1}{6}\ln ^22$ | $\frac{1}{4}\ln ^22$ | $\frac{1}{2}\ln ^22$ | $\frac{1}{3}\ln ^22$ |
75 | 73 | 计算第二型曲线积分$\int_S{\omega}=$其中:曲线$S=\left\{\left(x,y\right)|y=\sin x,x\in\left[0,\pi\right]\right\}$,定向沿着$x$增大的方向,$\omega=\mathrm{e}^x\left(1-2\cos y\right)\mathrm{d}x-2\mathrm{e}^x\left(y-\sin y\right)\mathrm{d}y=$____ | $-\frac{4}{5}\left( \mathrm{e}^{\pi}-1 \right)$ | $-\frac{3}{5}\left( \mathrm{e}^{\pi}-1 \right)$ | $-\frac{3}{4}\left( \mathrm{e}^{\pi}-1 \right)$ | $-\frac{3}{7}\left( \mathrm{e}^{\pi}-1 \right)$ |
76 | 74 | 求极限:$\lim_{n\rightarrow\infty}\frac{\sum_{i=1}^n{i^k}}{n^{k+1}}=$____,其中k>0。 | $\dfrac{1}{k+1}$ | $\dfrac{1}{k}$ | $\dfrac{1}{k-1}$ | $\dfrac{2}{k+1}$ |
77 | 75 | 求不定积分:$\int{-10\cot x\ln\left(\sin x\right)}\mathrm{d}x=$____ | $-2\ln^2\left(\sin x\right)+C$ | $-3\ln^2\left(\sin x\right)+C$ | $-4\ln^2\left(\sin x\right)+C$ | $-5\ln^2\left(\sin x\right)+C$ |
78 | 76 | 设$\int_0^1{\frac{x^{n-1}}{1+x}}\mathrm{d}x=\frac{a}{n}+\frac{b}{n^2}+o\left(\frac{1}{n^2}\right),n\rightarrow\infty$,求$a,b$____ | $a=\frac{1}{3}$,$b=\frac{1}{4}$ | $a=\frac{1}{2}$,$b=\frac{1}{3}$ | $a=\frac{1}{2}$,$b=\frac{1}{4}$ | $a=\frac{1}{4}$,$b=\frac{1}{2}$ |
79 | 77 | 二重极限$\operatorname*{lim}_{(x,y)\to(0,\:1)}\biggl(1+{\frac{x}{3y}}\biggr)^{\frac{1}{1+5xy}}=$____ | $\mathrm{e}^{1/36}$ | $\mathrm{e}^{1/18}$ | $\mathrm{e}^{1/48}$ | $\mathrm{e}^{1/9}$ |
80 | 78 | $\lim_{x\rightarrow a}\frac{x^a-a^x}{x^2-a^2}\left(a>0\right)=$____ | $\frac{a^{a+1}(1-\operatorname{ln}a)}{2}$ | $\frac{a^{a-1}(1-\operatorname{ln}a)}{2}$ | $\frac{a^{a-1}(1-\operatorname{ln}a)}{3}$ | $\frac{(a-1)^a(1-\operatorname{ln}a)}{2}$ |
81 | 79 | 设$D$:$\left\{\left(x,y\right)|x^2+y^2\leq4\right\}$,计算$I=\iint_D{\left|2x-x^2-y^2\right|}\mathrm{d}x\mathrm{d}y=$____ | $7\pi$ | $8\pi$ | $9\pi$ | $10\pi$ |
82 | 80 | 求不定积分:$I=\int{\frac{\cos x}{2\sin x+3\cos x}\mathrm{d}x}$____ | $\frac{3}{13}x+\ln \left| 2\sin x+3\cos x \right|+C$ | $\frac{1}{4}x+\ln \left| 2\sin x+3\cos x \right|+C$ | $\frac{5}{13}x+\ln \left| 2\sin x+3\cos x \right|+C$ | $\frac{6}{13}x+\ln \left| 3\sin x+2\cos x \right|+C$ |
83 | 81 | 设幂级数$\sum_{n=1}^{\infty}na_{n}\left(x-6\right)^{n}$的收敛区间为$(-\:2\:,14)$,则幂级数$\sum_{n=1}^{\infty}a_{n}\left(x+5\right)^{2n}$的收敛区间为____ | $\left(-5-2\sqrt{2}\:,5+2\sqrt{2}\right)$ | $\left(5-2{\sqrt{2}}\:,5+2{\sqrt{2}}\right)$ | $\left(-13,3\right)$ | $\left(-\:5\:-\:2\sqrt{2}\:,\:-\:5+2\sqrt{2}\:\right)$ |
84 | 82 | 求不定积分:$I=\int{\frac{\tan x}{1+\tan^3x}}\mathrm{d}x$____ | $\frac{1}{4}\ln \left( \sec x \right) -\frac{1}{4}x-\frac{1}{6}\ln \left| \sec x-\tan x \right|+\frac{\sqrt{3}}{3}\mathrm{arc}\tan \left( \frac{2\tan x-1}{\sqrt{3}} \right) -\frac{1}{6}\ln \left| 1+\tan x \right|+C$ | $\frac{1}{4}\ln \left( \sec x \right) -\frac{1}{3}x-\frac{1}{3}\ln \left| \sec x-\tan x \right|+\frac{\sqrt{3}}{3}\mathrm{arc}\tan \left( \frac{2\tan x-1}{\sqrt{3}} \right) -\frac{1}{6}\ln \left| 1+\tan x \right|+C$ | $\frac{1}{2}\ln \left( \sec x \right) -\frac{1}{2}x-\frac{1}{6}\ln \left| \sec x-\tan x \right|+\frac{\sqrt{3}}{3}\mathrm{arc}\tan \left( \frac{2\tan x-1}{\sqrt{3}} \right) -\frac{1}{6}\ln \left| 1+\tan x \right|+C$ | $\frac{1}{3}\ln \left( \sec x \right) -\frac{1}{2}x-\frac{1}{4}\ln \left| \sec x-\tan x \right|+\frac{\sqrt{3}}{3}\mathrm{arc}\tan \left( \frac{2\tan x-1}{\sqrt{3}} \right) -\frac{1}{6}\ln \left| 1+\tan x \right|+C$ |
85 | 83 | 已知平面区域D由直线$\frac{x}{\sqrt{6}}+{\frac{y}{3}}=1$、$x=0$和$y=0$围成,曲片面$\Sigma\:z\:=\:\sin\left(x+y\right)$,其中$(x,y)\:\in\:D$,则曲面积$\iint_{\Sigma}{\frac{1}{\sqrt{3-2z^{2}}}}\mathrm{d}S=$____ | $\frac{3\sqrt{\frac{3}{2}}}{2}$ | $3\sqrt{6}$ | $\frac{9\sqrt{\frac{3}{2}}}{2}$ | $3\sqrt{\dfrac{3}{2}}$ |
86 | 84 | 计算定积分:$I=\int_{-\pi}^{\pi}{\frac{x\sin x\cdot\mathrm{arc}\tan e^x}{1+\cos^2x}}\mathrm{d}x$____ | $\dfrac{\pi^{3}}{8}$ | $\dfrac{\pi^{3}}{6}$ | $\dfrac{\pi^{3}}{4}$ | $\dfrac{\pi^{2}}{2}$ |
87 | 85 | 计算二重积分:$\iint_D{\ln\left(\frac{x}{y^2}\right)}\mathrm{d}x\mathrm{d}y=$,其中$D=\left\{\sqrt{x}+\sqrt{y}\leq1,x\geq0,y\geq0\right\}$____ | $\frac{13}{36}$ | $\frac{5}{12}$ | $\frac{4}{9}$ | $\frac{19}{36}$ |
88 | 86 | 当$x\rightarrow0$时,下列最高阶的无穷小量是?$\left(1\right)\ln\left(1+x^2\right)-x^2;\left(2\right)\sqrt{1+x^2}+\cos x-2;\left(3\right)\int_0^{x^2}{\ln\left(1+t^2\right)}\mathrm{d}t;\left(4\right)\mathrm{e}^{x^2}-1-x^2$____ | $\left( 1 \right)$ | $\left( 2 \right)$ | $\left( 3 \right)$ | $\left( 4 \right)$ |
89 | 87 | 求极限:$\lim_{n\rightarrow\infty}\sqrt{n}\underset{n\text{个}}{\underbrace{\sin\sin\cdots\sin x}}\text{=,}x\in\left(0,1\right)$____ | 1 | $\sqrt{2}$ | $\sqrt{3}$ | $\sqrt{5}$ |
90 | 88 | 求极限:$\lim_{x\rightarrow0}\frac{\tan\left(\mathrm{e}^x-1\right)-\mathrm{e}^{\tan x}+1}{x^4}$=____ | $\frac{1}{3}$ | $\frac{1}{6}$ | $\frac{1}{9}$ | $\frac{1}{12}$ |
91 | 89 | 求二重积分$\iint\limits_D{\left(2-x-y\right)\mathrm{d}x\mathrm{d}y}=$其中$D:\left(x-1\right)^2+\left(y-1\right)^2+\left(5-x-y\right)^2\leq12$____ | $-6\sqrt{3}\pi$ | $-5\sqrt{3}\pi$ | $-4\sqrt{3}\pi$ | $-3\sqrt{3}\pi$ |
92 | 90 | 求不定积分:$\int{\frac{x^2+x+1}{x\left(1+x^2\right)\left(1+x\mathrm{e}^{\mathrm{arc}\tan x}\right)}}\mathrm{d}x$____ | $\ln \left| \frac{x\mathrm{e}^{\mathrm{arc}\tan x}}{2+x\mathrm{e}^{\mathrm{arc}\tan x}} \right|+C$ | $\ln \left| \frac{x\mathrm{e}^{\mathrm{arc}\tan x}}{1+2x\mathrm{e}^{\mathrm{arc}\tan x}} \right|+C$ | $\ln \left| \frac{2x\mathrm{e}^{\mathrm{arc}\tan x}}{2+x\mathrm{e}^{\mathrm{arc}\tan x}} \right|+C$ | $\ln \left| \frac{x\mathrm{e}^{\mathrm{arc}\tan x}}{1+x\mathrm{e}^{\mathrm{arc}\tan x}} \right|+C$ |
93 | 91 | 求极限:$\lim_{x\rightarrow a}\sin\left(\frac{x-a}{2}\right)\tan\left(\frac{\pi x}{2a}\right)=$____ | $-\dfrac{a}{\pi}$ | $-\dfrac{2a}{\pi}$ | $-\dfrac{a}{2\pi}$ | $-\dfrac{2a}{3\pi}$ |
94 | 92 | 求极限:$\lim_{n\rightarrow\infty}\frac{5n+2\sqrt{n}+4}{\sqrt{n^2+1}}=$____ | 2 | 3 | 4 | 5 |
95 | 93 | 计算第二型曲线积分$\int_S{\omega}=$其中:曲线$S=\left\{\left(x,y,z\right)|x^2+y^2+z^2=1,x+y+z=0\right\}$,从第一象限看定向为逆时针方向,____ | $-2\sqrt{3}\pi$ | $2\sqrt{3}\pi$ | $-3\sqrt{3}\pi$ | $3\sqrt{3}\pi$ |
96 | 94 | 求定积分:$\int_0^{\frac{\pi}{3}}{\tan x}\mathrm{d}x=$____ | $\text{ln}2$ | $\text{ln}3$ | $\text{ln}4$ | $\text{ln}5$ |
97 | 95 | 设函数$f\left(x\right)$满足:$xf\prime\left(x\right)-f\left(x\right)=\sqrt{2x-x^2}$,且$f\left(1\right)=0$,求:$\int_0^1{f\left(x\right)}\mathrm{d}x$____ | $-\frac{\pi}{8}$ | $-\frac{\pi}{4}$ | $-\frac{\pi}{2}$ | $-\frac{2\pi}{3}$ |
98 | 96 | 求不定积分:$I=\int{x\sin^2x}\mathrm{d}x$____ | $\frac{1}{2}-\frac{1}{4}x\sin 2x-\frac{1}{8}\cos 2x+C$ | $\frac{1}{4}-\frac{1}{2}x\sin 2x-\frac{1}{4}\cos 2x+C$ | $\frac{1}{4}-\frac{1}{4}x\sin 2x-\frac{1}{8}\cos 2x+C$ | $\frac{1}{2}-\frac{1}{4}x\sin 2x-\frac{1}{4}\cos 2x+C$ |
99 | 97 | 计算定积分:$I=\int_1^{\sqrt{3}}{\frac{\mathrm{d}x}{x^2\sqrt{1+x^2}}}$____ | $4\left( \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}} \right)$ | $3\left( \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}} \right)$ | $2\left( \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}} \right)$ | $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}$ |
100 | 98 | 计算二重积分:$I=\int_0^{a\sin\varphi}{\mathrm{e}^{-y^2}}\mathrm{d}y\int_{\sqrt{a^2-y^2}}^{\sqrt{b^2-y^2}}{\mathrm{e}^{-x^2}}\mathrm{d}x+\int_{a\sin\varphi}^{b\sin\varphi}{\mathrm{e}^{-y^2}}\mathrm{d}y\int_{y\cot\varphi}^{\sqrt{b^2-y^2}}{\mathrm{e}^{-x^2}}\mathrm{d}x=$其中$0<a<b,0<\varphi<\frac{\pi}{2}$____ | $\dfrac{\mathrm{e}^{-a^2}-\mathrm{e}^{-b^2}}{4}\varphi$ | $\dfrac{\mathrm{e}^{-a^2}-\mathrm{e}^{-b^2}}{3}\varphi$ | $\dfrac{\mathrm{e}^{-a^2}-\mathrm{e}^{-b^2}}{2}\varphi$ | $\dfrac{2\mathrm{e}^{-a^2}-\mathrm{e}^{-b^2}}{3}\varphi$ |
101 | 99 | 函数$u=x^2+y^2+2z^2$在点$P\left(1,1,\sqrt{2}\right)$处沿曲线$\left\{\begin{array}{l} x^2+y^2+z^2=4\\ x^2+y^2=2x\\ \end{array}\right.$在该点处指向$x$轴正向一侧切线方向的方向导数为?____ | $-\frac{\sqrt{6}}{12}$ | $-\frac{\sqrt{6}}{6}$ | $-\frac{\sqrt{6}}{3}$ | $-\frac{2\sqrt{6}}{3}$ |
102 | 100 | 计算定积分:$\int_0^1{\ln^{2022}x\mathrm{d}x}$____ | $\begin{array}{c}1011!\end{array}$ | $\begin{array}{c}2022!\end{array}$ | $\begin{array}{c}2023!\end{array}$ | $\begin{array}{c}4044!\end{array}$ |
103 | 101 | 设$f\left(x\right)=\int_1^x{\frac{\ln\left(1+t\right)}{t}}\mathrm{d}t$,则$\int_0^1{\frac{f\left(x\right)}{\sqrt{x}}}\mathrm{d}x$为?____ | $4-4\ln 2-2\pi$ | $8-4\ln 2-2\pi$ | $4-2\ln 2-2\pi$ | $4-4\ln 2-2\pi$ |
104 | 102 | 已知函数$f(x,y)$在$\mathbb{R}^{2}$上连续,且$f(x,y)=3xy+\iint_{D}f(x,y)\mathrm{d}x\mathrm{d}y$,其中平面区域D由$y=0$,$y=2x^2$以及$x=1$围成,则$f(x,y)$____ | 3xy+9 | 3xy+12 | 3xy+15 | 3xy+3 |
105 | 103 | 设函数$f\left(x\right)$连续,且$f\left(0\right)\ne0$,求极限:$\lim_{x\rightarrow0}\frac{x\int_0^x{f\left(x-t\right)}\mathrm{d}t}{\int_0^x{tf\left(x-t\right)}\mathrm{d}t}=$____ | 1 | 2 | 3 | 4 |
106 | 104 | 设$G_n=\sqrt[n+1]{\prod_{k=1}^n{C_{n}^{k}}}$,其中$C_{n}^{k}=\frac{n!}{k!\left(n-k\right)!}$,求$\lim_{n\rightarrow\infty}\sqrt[n]{G_n}$____ | $\sqrt{\text{2e}}$ | $\sqrt{\text{3e}}$ | $\sqrt{\text{e}}$ | $\sqrt{\text{4e}}$ |
107 | 105 | 设$\Sigma$为上半球面$x^2+y^2+z^2=a^2\left(a>0,z\geq0\right)$,则积分$\iint_{\Sigma}{\left(\sqrt{2}x+z+1\right)^2}\mathrm{d}S$为?____ | $3\pi a^2\left(a^2+a+1\right)$ | $2\pi a^2\left(a^2+a+2\right)$ | $2\pi a^2\left(a^2+3a+1\right)$ | $2\pi a^2\left(a^2+a+1\right)$ |
108 | 106 | 计算定积分:$I=\int_{-\pi}^{\pi}{\frac{x\sin x\left(\mathrm{arc}\tan\mathrm{e}^x+\int_0^x{\mathrm{e}^{t^2}\mathrm{d}t}\right)}{1+\cos^2x}}\mathrm{d}x$____ | $\dfrac{\pi^{3}}{12}$ | $\dfrac{\pi^{3}}{8}$ | $\dfrac{\pi^{3}}{4}$ | $\dfrac{\pi^{3}}{2}$ |
109 | 107 | 设$L$:$\left\{\begin{array}{l} x^2+y^2+z^2=a^2\\ y+z=a\\ \end{array}\right.$,试计算:$\oint_L{\left(x^2+y^2+z^2\right)\mathrm{d}s}=$____ | $\sqrt{2}\pi a^3$ | $\sqrt{3}\pi a^3$ | $\sqrt{5}\pi a^3$ | $\sqrt{6}\pi a^3$ |
110 | 108 | 求极限:$\lim_{n\rightarrow\infty}\sqrt[n]{\frac{\left(2n\right)!}{n^nn!}}$=____ | $\frac{2}{\mathrm{e}}$ | $\frac{4}{\mathrm{e}}$ | $\frac{6}{\mathrm{e}}$ | $\frac{8}{\mathrm{e}}$ |
111 | 109 | 设$f\left(x\right)$连续,且$f\left(0\right)=0,f\prime\left(0\right)\ne0$,求$\lim_{t\rightarrow0^+}\frac{\iint_D{f\left(\sqrt{x^2+y^2}\right)}\mathrm{d}x\mathrm{d}y}{\int_0^t{yf\left(t-y\right)}\mathrm{d}y}$,其中$D:\left\{\left(x,y\right)|x^2+y^2\leq t^2\right\}$____ | $4\pi$ | $3\pi$ | $2\pi$ | $\pi$ |
112 | 110 | 已知$\tan^2\theta=2\tan\theta+1$,$\left(0<\theta<\pi\right)$,则,$\tan\theta$=____ | $2+\tan 3\theta \$ | $3+\tan 2\theta \$ | $3+\tan 3\theta \$ | $4+\tan 3\theta \$ |
113 | 111 | 平面${\frac{x}{2}}+{\frac{y}{2}}+{\frac{z}{\sqrt{5}}}=1$位于第一卦限部分的面积为____ | $\sqrt{\frac{7}{2}}$ | $3\sqrt{\dfrac{7}{2}}$ | $\frac{2\sqrt{14}}{3}$ | $\sqrt{14}$ |
114 | 112 | 求不定积分:$I=\int{\frac{\mathrm{d}x}{\left(x^2+x+1\right)^2}}$____ | $\frac{1\sqrt{3}}{9}t+\frac{1\sqrt{3}}{9}\sin t\cos t+C$ | $\frac{2\sqrt{3}}{9}t+\frac{2\sqrt{3}}{9}\sin t\cos t+C$ | $\frac{4\sqrt{3}}{9}t+\frac{4\sqrt{3}}{9}\sin t\cos t+C$ | $\frac{8\sqrt{3}}{9}t+\frac{8\sqrt{3}}{9}\sin t\cos t+C$ |
115 | 113 | 计算二次积分:$\int_0^{\pi}{\left(\int_x^{\pi}{\frac{\sin u}{u}\mathrm{d}u}\right)}\mathrm{d}x=$____ | 0 | 1 | 2 | 3 |
116 | 114 | 设$P_n\left(x\right)$是一个$n$次泰勒多项式,求$\int{\frac{P_n\left(x\right)}{\left(x-a\right)^{n+1}}}\mathrm{d}x$____ | $\sum_{k=0}^{n-1}{\frac{P_{n}^{\left( k \right)}\left( a \right)}{k!\left( k-n \right)}\cdot \left( x-a \right) ^{k-n}+\frac{P_{n}^{\left( n \right)}\left( a \right)}{n!}\cdot \ln \left| x-a \right|+C}$ | $\sum_{k=0}^{n-1}{\frac{P_{n}^{\left( k \right)}\left( a \right)}{(k-1)!\left( k-n \right)}\cdot \left( x-a \right) ^{k-n}+\frac{P_{n}^{\left( n \right)}\left( a \right)}{n!}\cdot \ln \left| x-a \right|+C}$ | $\sum_{k=0}^{n-1}{\frac{P_{n}^{\left( k \right)}\left( a \right)}{(k-1)!\left( k-n \right)}\cdot \left( x-a \right) ^{k-n}+\frac{P_{n}^{\left( n \right)}\left( a \right)}{(n+1)!}\cdot \ln \left| x-a \right|+C}$ | $\sum_{k=0}^{n-1}{\frac{P_{n}^{\left( k \right)}\left( a \right)}{k!\left( k-n \right)}\cdot \left( x-a \right) ^{k-n}+\frac{P_{n}^{\left( n \right)}\left( a \right)}{(n+1)!}\cdot \ln \left| x-a \right|+C}$ |
117 | 115 | 对于任意满足$f\left(1\right)=1$的$\left[0,1\right]$上的上凸函数$f\left(x\right)$,实数c满足:$\int_0^1{f^2\left(x\right)}\mathrm{d}x\geqslant c\int_0^1{f\left(x\right)}\mathrm{d}x$,求$c_{\max}$____ | $\frac{1}{3}$ | $\frac{2}{3}$ | 1 | $\frac{4}{3}$ |
118 | 116 | 求级数$\sum_{n=1}^{\infty}{\frac{1}{n\left(n+1\right)\left(n+2\right)}}$的和____ | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{6}$ | $\frac{3}{8}$ |
119 | 117 | 计算定积分:$I=\int_{-2}^2{\frac{x^2+x}{\sqrt{4-x^2}}}\mathrm{d}x$____ | $\pi$ | $2\pi$ | $3\pi$ | $4\pi$ |
120 | 118 | 求极限:$\lim_{n\rightarrow\infty}\frac{5n+2\sqrt{n}+4}{\sqrt{n+1}}=$____ | -1 | 0 | ${-\infty}$ | $+\infty$ |
121 | 119 | 函数项级数$\sum_{n=1}^{\infty}\left(\left({\frac{1}{5}}+{\frac{1}{n}}\right)^{n}+\left({\frac{1}{5}}\right)^{n}\right)x^{n}+\sum_{n=1}^{\infty}{\frac{\left({\frac{1}{5}}\right)^{n}}{n}}(x-2)^{n}$的收敛域是____ | $\left[-3,5\right]$ | $\left[-3,5\right)$ | $\left(-3,7\right]$ | $\left[-5,7\right]$ |
122 | 120 | 设$f\left(x\right)$在$\left[0,1\right]$上有二阶导数,且$f\prime\left(x\right)>0,f''\left(x\right)>0,f\left(0\right)=0$;取$x_1\in\left(0,1\right)$,数列$\left\{x_n\right\}$满足$\left(x_{n+1}-x_n\right)f\prime\left(x_n\right)+f\left(x_n\right)=0\left(n=1,2,\cdots\right)$;已知$\lim_{n\rightarrow\infty}x_n$存在,求其值____ | -1 | 0 | 1 | $\frac{1}{2}$ |
123 | 121 | 求不定积分:$\int{\left(1+x-\frac{1}{x}\right)\mathrm{e}^{x+\frac{1}{x}}}\mathrm{d}x$____ | $x\mathrm{e}^{x+\frac{1}{x}}+C$ | $x\mathrm{e}^{x+\frac{2}{x}}+C$ | $x\mathrm{e}^{x+\frac{1}{2x}}+C$ | $2x\mathrm{e}^{2x+\frac{1}{x}}+C$ |
124 | 122 | 计算广义积分:$I=\int_0^{+\infty}{\frac{\mathrm{cos}\ln x}{\left(1+x\right)^2}}\mathrm{d}x=$____ | $2\pi\text{csch}\pi$ | $\frac{\pi}{2}\text{csch}\pi$ | $\pi\text{csch}\pi$ | $2\pi\text{csch}\frac{\pi}{2}$ |
125 | 123 | 设$f\in C\left(\mathbb{R}^1\right)$,则$\int_0^{\frac{\pi}{2}}{\mathrm{d}\phi}\int_0^{\frac{\pi}{2}}{f\left(1-\sin\theta\cos\phi\right)}\sin\theta\mathrm{d}\theta=$____ | $\frac{\pi}{4}\int_0^1{f\left( x \right)}\mathrm{d}x$ | $\frac{\pi}{2}\int_0^1{2f\left( x \right)}\mathrm{d}x$ | $\frac{\pi}{2}\int_0^1{f\left( x \right)}\mathrm{d}x$ | $\pi\int_0^1{f\left( x \right)}\mathrm{d}x$ |
126 | 124 | 求极限:$\lim_{t\rightarrow0^+}\frac{\int_0^t{\mathrm{d}x}\int_x^t{\sin\left[\left(xy\right)^2\right]\mathrm{d}y}}{t^6}=$____ | $\frac{1}{6}$ | $\frac{1}{9}$ | $\frac{1}{12}$ | $\frac{1}{18}$ |
127 | 125 | 数列$\left\{x_n\right\}]$满足$x_1=1,x_2=\frac{1}{3}$,并且对于所有的$n\ge1$,满足$x_{n+2}=\frac{2x_nx_{n+1}}{x_n+x_{n+1}}$试求:$\lim_{n\rightarrow\infty}x_n=$____ | $\frac{3}{5}$ | $\frac{1}{2}$ | $\frac{3}{7}$ | $\frac{3}{8}$ |
128 | 126 | 设$D$为圆域$x^2+y^2\leq4x$,则$\iint_D{\mathrm{arc}\tan\left(\mathrm{e}^{xy}\right)}\mathrm{d}x\mathrm{d}y=$____ | $\frac{3\pi^{2}}{2}$ | $-\frac{\pi^{2}}{2}$ | $\frac{\pi^{2}}{2}$ | $\pi ^2$ |
129 | 127 | 求极限:$\lim_{t\rightarrow1^-}\sqrt{1-t}\left(1+t+t^4+t^9+\cdots+t^{n^2}+\cdots\right)=$____ | $\frac{\sqrt{\pi}}{2}$ | $\frac{\sqrt{\pi}}{3}$ | $\frac{\sqrt{\pi}}{4}$ | $\frac{\sqrt{\pi}}{5}$ |
130 | 128 | 求极限:$\lim_{n\rightarrow\infty}\left(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\cdots+\frac{1}{\sqrt{n^2+n}}\right)^n=$____ | $\text{e}^{-\frac{1}{5}}$ | $\text{e}^{-\frac{1}{6}}$ | $\text{e}^{-\frac{1}{3}}$ | $\text{e}^{-\frac{1}{4}}$ |
131 | 129 | 设二元函数$z=z\left(x,y\right)$是方程$z-{\frac{1}{9}}\sin z=4x+3y$所确定的隐函数,则$z_{x}=$____ | $\dfrac{-36}{9+\cos z}$ | $\dfrac{36}{9-\cos z}$ | $\frac{-36}{4+\cos z}$ | $\dfrac{36}{9+\cos z}$ |
132 | 130 | 计算定积分:$\int_{\frac{1}{\mathrm{e}}}^{\mathrm{e}}{\frac{\mathrm{arc}\tan\left(\ln x\right)}{x}}\mathrm{d}x$____ | 0 | 1 | -1 | $\frac{2}{\pi}$ |
133 | 131 | 当$n\rightarrow\infty$时,$\frac{1}{3^n}\left(1+\frac{1}{n}\right)^{n^2}$的等价无穷小形式为${e}^{\alpha}\left(\beta\mathrm{e}\right)^n$,则$\alpha,\beta$为?____ | $\alpha=-\frac{1}{4},\beta=\frac{1}{3}$ | $\alpha=-\frac{1}{2},\beta=\frac{1}{3}$ | $\alpha=-\frac{1}{2},\beta=\frac{1}{4}$ | $\alpha=\frac{1}{4},\beta=\frac{1}{3}$ |
134 | 132 | 求不定积分:$I=\int{\frac{x\ln\left(x+\sqrt{1+x^2}\right)}{\left(1-x^2\right)^2}}\mathrm{d}x$____ | $\frac{\ln \left( x+\sqrt{1+x^2} \right)}{3\left( 1-x^2 \right)}-\frac{1}{4\sqrt{2}}\ln \left| \frac{\sqrt{x^2+1}+\sqrt{2}x}{\sqrt{x^2+1}-\sqrt{2}x} \right|+C$ | $\frac{\ln \left( x+\sqrt{1+x^2} \right)}{2\left( 1-x^2 \right)}-\frac{1}{4\sqrt{2}}\ln \left| \frac{\sqrt{x^2+1}+\sqrt{2}x}{\sqrt{x^2+1}-\sqrt{2}x} \right|+C$ | $\frac{\ln \left( x+\sqrt{1+x^2} \right)}{1-x^2}-\frac{1}{4\sqrt{2}}\ln \left| \frac{\sqrt{x^2+1}+\sqrt{2}x}{\sqrt{x^2+1}-\sqrt{2}x} \right|+C$ | $\frac{\ln \left( x+\sqrt{1+x^2} \right)}{2\left( 1-x^2 \right)}-\frac{1}{2\sqrt{2}}\ln \left| \frac{\sqrt{x^2+1}+\sqrt{2}x}{\sqrt{x^2+1}-\sqrt{2}x} \right|+C$ |
135 | 133 | 设$f\left(x\right)=\lim_{n\rightarrow\infty}\frac{x^{2n-1}+ax^2+bx}{x^{2n}+1}$为$\left(-\infty,+\infty\right)$上的连续函数,则a,b的值分别为?____ | a=0,b=1 | a=0,b=-1 | a=1,b=0 | a=-1,b=1 |
136 | 134 | 计算定积分:$I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\sqrt{\sin^2x-\sin^4x}}\mathrm{d}x$____ | 0 | 1 | -1 | \frac{1}{2} |
137 | 135 | 求极限:$\lim_{x\rightarrow+\infty}\int_x^{2x}{\frac{\sqrt{t}}{1+\mathrm{e}^t}\mathrm{d}t}=$____ | -1 | 0 | 1 | $\frac{1}{2}$ |
138 | 136 | 试确定常数a和b使得极限$\lim_{x\rightarrow\infty}\left(\sqrt[3]{1-x^6}-ax^2-b\right)=0$成立____ | a=0,b=-1 | a=-1,b=0 | a=-1,b=1 | a=1,b=0 |
139 | 137 | 求极限:$\lim_{x\rightarrow2}\frac{x^2-4}{x^2-3x+2}$=____ | 1 | 2 | 3 | 4 |
140 | 138 | 求不定积分:$I=\int{\cos x\cdot\left(x^3+2x^2+3x+4\right)}\mathrm{d}x$____ | $\sin x\cdot \left( x^3+3x^2-3x \right) +\cos x\cdot \left( 3x^2+4x-3 \right) +C$ | $\sin x\cdot \left( x^3+3x^2-3x \right) +\cos x\cdot \left( 2x^2+4x-3 \right) +C$ | $\sin x\cdot \left( x^3+2x^2-3x \right) +\cos x\cdot \left( 3x^2+4x-3 \right) +C$ | $\sin x\cdot \left( x^3+2x^2-3x \right) +\cos x\cdot \left( 2x^2+4x-3 \right) +C$ |
141 | 139 | 求积分$I=\int_{0}^{\sqrt{5}\sin\frac{\pi}{3}}\mathrm{d}y\int_{\sqrt{5-y^{2}}}^{\sqrt{36-y^{2}}}\mathrm{d}x+\int_{\sqrt{5}\sin\frac{\pi}{3}}^{6\sin\frac{\pi}{3}}\mathrm{d}y\int_{y\cot\frac{\pi}{3}}^{\sqrt{36-y^{2}}}\mathrm{d}x=$____ | $\frac{31\pi}{18}$ | $\frac{31\pi}{6}$ | $\frac{31\pi}{15}$ | $\frac{31\pi}{9}$ |
142 | 140 | 设$f\left(x\right)$为连续函数,求极限:$\lim_{x\rightarrow0}\frac{\int_0^x{t\mathrm{e}^t}\left[\int_{t^2}^0{f\left(u\right)}\mathrm{d}u\right]\mathrm{d}t}{x^3\mathrm{e}^x}=$____ | -1 | 0 | 1 | $\frac{1}{2}$ |
143 | 141 | 求极限:$L=\lim_{n\rightarrow\infty}\int_0^1{\frac{\mathrm{d}x}{x^n+1}}$=____ | 0 | 1 | 2 | 3 |
144 | 142 | 给定以下数项级数(1)$\sum\limits_{n=1}^{\infty}\frac{(-1)^n}{n^{\frac{1}{4}}}\arctan\frac{1}{\sqrt{n}}$,(2)$\sum\limits_{n=1}^{\infty}(-1)^{\:n}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)$,(3)$\sum\limits_{n=1}^{\infty}\sin\left(n\pi+\dfrac{1}{n}\pi\right)$,(4)$\sum\limits_{n=1}^\infty\left(\dfrac{\sin2n}{n^2}-\dfrac{1}{\sqrt{n}}\right)$,其中条件收敛的个数为____ | 2 | 3 | 4 | 1 |
145 | 143 | 求极限:$L=\lim_{x\rightarrow0}\frac{\ln^2\left(x+\sqrt{1+x^2}\right)+\mathrm{e}^{-x^2}-1}{x^4}=$____ | $\frac{1}{6}$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{3}$ |
146 | 144 | 求极限:$\lim_{n\rightarrow\infty}\left(\frac{2}{n^2+n+1}+\frac{4}{n^2+n+2}+\cdots+\frac{2n}{n^2+n+n}\right)^n$____ | $\mathrm{e}^{-\frac{3}{4}}$ | $\mathrm{e}^{-\frac{2}{3}}$ | $\mathrm{e}^{-\frac{3}{5}}$ | $\mathrm{e}^{-\frac{4}{5}}$ |
147 | 145 | 求极限:$L=\lim_{x\rightarrow0^+}\frac{\ln\left(\frac{\pi}{2}-\mathrm{arc}\tan\frac{1}{x\sqrt{1+x^2+x^4}}\right)}{\ln\left(\tan x\sqrt{2+x^2+x^4}\right)}=$____ | -1 | 0 | 1 | $\frac{1}{2}$ |
148 | 146 | 求极限:$\lim_{n\rightarrow\infty}\frac{5n+2\sqrt{n}+4}{\sqrt{n^3+1}}=$____ | 0 | -1 | 1 | 2 |
149 | 147 | 设函数$f(x)\:=\:\sum_{n=0}^{\infty}{\frac{(-1)^{\:n}}{(2n+1)!}}\cdot{\frac{x^{2n+1}}{2^{2n}}}$,则$f^{(2022)}(1)\:=\:$____ | $\frac{1}{2^{2021}}\sin\left(\dfrac{1}{2}\right)$ | $-\frac{1}{2^{2022}}\sin\left(\frac{1}{2}\right)$ | $-\frac{1}{2^{2022}}\cos\left(\frac{1}{2}\right)$ | $-\frac{1}{2^{2021}}\sin\left(\frac{1}{2}\right)$ |
150 | 148 | 设函数$z=z\left(x,y\right)$由方程$F\left(\frac{y}{x},\frac{z}{x}\right)=0$确定,其中$F$为可微函数,且$F_{2}^{\prime}\ne0$,则$x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=$____ | z | 1 | -2z | 0 |
151 | 149 | 求不定积分:$\int{\frac{x\sqrt[3]{\mathrm{arc}\tan\left(x^2\right)}}{1+x^4}}\mathrm{d}x=$____ | $\frac{3}{8}\left[ \mathrm{arc}\tan \left( x^2 \right) \right] ^{\frac{4}{3}}+C$ | $\frac{1}{2}\left[ \mathrm{arc}\tan \left( x^2 \right) \right] ^{\frac{4}{3}}+C$ | $\frac{5}{8}\left[ \mathrm{arc}\tan \left( x^2 \right) \right] ^{\frac{4}{3}}+C$ | $\frac{3}{4}\left[ \mathrm{arc}\tan \left( x^2 \right) \right] ^{\frac{4}{3}}+C$ |
152 | 150 | 设$\Omega$是由曲线$\left\{\begin{array}{l} y^2=2z\\ x=0\\ \end{array}\right.$绕$z$轴旋转一周而成的曲面与$z=2,z=8$所围立体;计算$\iiint_{\Omega}{\left(x^2+y^2\right)\mathrm{d}V}=$____ | $330\pi$ | $336\pi$ | $342\pi$ | $348\pi$ |
153 | 151 | 求定积分:$\int_0^1{\sqrt{2x-x^2}}\mathrm{d}x=$____ | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{3\pi}{4}$ | $\pi$ |
154 | 152 | 求极限:$\lim_{x\rightarrow0}\left(\frac{\sin\sin x}{\sin\mathrm{arc}\tan x}\right)^{\frac{1}{1-\cos x}}=$____ | $\sqrt[3]{e}$ | $\sqrt[3]{2e}$ | $\sqrt[3]{3e}$ | $\sqrt[3]{4e}$ |
155 | 153 | 设$f\left(x\right)$在$\left[-1,1\right]$上有定义,$f\prime\left(0\right)$存在,求极限:$\lim_{n\rightarrow\infty}\left[f\left(\frac{1}{n^2}\right)+f\left(\frac{2}{n^2}\right)+\cdots+f\left(\frac{n}{n^2}\right)-nf\left(0\right)\right]=$____ | $\dfrac{1}{3}f'(0)$ | $\dfrac{1}{2}f'(0)$ | $\dfrac{1}{4}f'(0)$ | $\dfrac{2}{3}f'(0)$ |
156 | 154 | 判断广义积分$\int_1^{+\infty}{\frac{\sqrt{1+x^{-1}}-1}{x^p\ln\left(1+x^{-2}\right)}}\mathrm{d}x$的敛散性____ | $\left\{\begin{array}{c}p\leq1\text{时发散}\\ p\gt1 \text{时收敛}\end{array}\right.$ | $\left\{\begin{array}{c}p\leq2\text{时发散}\\ p\gt2 \text{时收敛}\end{array}\right.$ | $\left\{\begin{array}{c}p\leq3\text{时发散}\\ p\gt3 \text{时收敛}\end{array}\right.$ | $\left\{\begin{array}{c}p\leq3\text{时发散}\\ p\gt3 \text{时收敛}\end{array}\right.$ |
157 | 155 | 求极限:$\lim_{x\rightarrow0}\frac{\int_0^x{\left|\sin t\right|}\mathrm{d}t}{\int_0^x{\left(t-\left[t\right]\right)}\mathrm{d}t}$____ | $\frac{2}{\pi}$ | $\frac{4}{\pi}$ | $\frac{6}{\pi}$ | $\frac{8}{\pi}$ |
158 | 156 | 求不定积分:$I=\int{\frac{1+\sin^2x}{1-\cos2x}}\mathrm{d}x$____ | $-\frac{1}{3}\cot x+\frac{1}{2}x+C$ | $-\frac{1}{2}\cot x+\frac{1}{3}x+C$ | $-\frac{1}{2}\cot x+\frac{1}{2}x+C$ | $-\frac{1}{2}\tan x+\frac{1}{2}x+C$ |
159 | 157 | 求不定积分:$\int{\frac{x^2}{\sqrt{3+2x-x^2}}}\mathrm{d}x$____ | $6\mathrm{arc}\sin \left( \frac{x-1}{2} \right) -\frac{\sqrt{3+2x-x^2}}{2}\cdot \left( x+3 \right) +C$ | $3\mathrm{arc}\sin \left( \frac{x-1}{3} \right) -\frac{\sqrt{3+2x-x^2}}{2}\cdot \left( x+3 \right) +C$ | $3\mathrm{arc}\sin \left( \frac{x-1}{2} \right) -\frac{\sqrt{3+2x-x^2}}{2}\cdot \left( x+3 \right) +C$ | $6\mathrm{arc}\sin \left( \frac{x-1}{2} \right) -\frac{\sqrt{3+2x-x^2}}{2}\cdot \left( x+6 \right) +C$ |
160 | 158 | 求不定积分:$\int{\frac{x}{\left(x-1\right)\left(x^2+1\right)}}\mathrm{d}x$____ | $\frac{1}{4}\mathrm{arc}\tan x+\frac{1}{4}\ln \left| \frac{x-1}{x+1} \right|+\frac{1}{4}\ln \left| \frac{x^2-1}{x^2+1} \right|+C$ | $\frac{1}{4}\mathrm{arc}\tan x+\frac{1}{2}\ln \left| \frac{x-1}{x+1} \right|+\frac{1}{4}\ln \left| \frac{x^2-1}{x^2+1} \right|+C$ | $\frac{1}{2}\mathrm{arc}\tan x+\frac{1}{4}\ln \left| \frac{x-1}{x+1} \right|+\frac{1}{4}\ln \left| \frac{x^2-1}{x^2+1} \right|+C$ | $\frac{1}{4}\mathrm{arc}\tan x+\frac{1}{2}\ln \left| \frac{x-1}{x+1} \right|+\frac{1}{2}\ln \left| \frac{x^2-1}{x^2+1} \right|+C$ |
161 | 159 | 设$L$为圆周$x^2+y^2=2x$,计算曲线积分:$I=\int_L{x\mathrm{d}s}=$____ | $\pi$ | $2\pi$ | $3\pi$ | $4\pi$ |
162 | 160 | 已知曲线$\Gamma:4x^{2}+2y^{2}=1$,$\boldsymbol{n}$是$\Gamma$在点$\mathrm{M}\left({\sqrt{\frac{1}{8}}},{\sqrt{\frac{1}{4}}}\right)$处的一个外法向量(指向曲线$\Gamma$所围区域的外部的方向),函数$z=3x-(4x^{2}+2y^{2})$,则方向导数$\left.\frac{\partial z}{\partial\boldsymbol{n}}\right|_{_{M}}$=____ | $\sqrt{6}-\sqrt{3}$ | $\sqrt{6}$ | $\sqrt{6}-2\sqrt{3}$ | $-\sqrt{3}$ |
163 | 161 | 求不定积分:$I=\int{\mathrm{arc}\tan\sqrt{\frac{1-x}{1+x}}\mathrm{d}x}$____ | $x\mathrm{arc}\tan \sqrt{\frac{2-x}{2+x}}-\frac{1}{2}\sqrt{1-x^2}+C$ | $x\mathrm{arc}\tan \sqrt{\frac{2-x}{2+x}}-\frac{1}{3}\sqrt{1-x^2}+C$ | $x\mathrm{arc}\tan \sqrt{\frac{2-x}{1+x}}-\frac{2}{3}\sqrt{1-x^2}+C$ | $x\mathrm{arc}\tan \sqrt{\frac{1-x}{1+x}}-\frac{1}{2}\sqrt{1-x^2}+C$ |
164 | 162 | 求极限:$\lim_{n\rightarrow\infty}\sum_{k=1}^n{\frac{n+1-k}{nC_{n}^{k}}}$____ | 0 | -1 | 1 | $\dfrac{1}{2}$ |
165 | 163 | 求不定积分:$I=\int{\sqrt{x^2-1}}\mathrm{d}x$=____ | $\frac{x}{4}\sqrt{x^{2}-1}-\frac{1}{4}\operatorname{ln}\big|x+\sqrt{x^{2}-1}\big|+C$ | $\frac{x}{4}\sqrt{x^{2}-1}-\frac{1}{2}\operatorname{ln}\big|x+\sqrt{x^{2}-1}\big|+C$ | $\frac{x}{2}\sqrt{x^{2}-1}-\frac{1}{4}\operatorname{ln}\big|x+\sqrt{x^{2}-1}\big|+C$ | $\frac{x}{2}\sqrt{x^{2}-1}-\frac{1}{2}\operatorname{ln}\big|x+\sqrt{x^{2}-1}\big|+C$ |
166 | 164 | 已知$a_n$收敛,且设$\operatorname*{lim}_{n\to\infty}a_{n}=A$求极限:$\lim_{n\rightarrow\infty}\frac{\sum_{k=1}^n{k^ma_k}}{n^{m+1}}=$____ | $\frac{A}{m-1}$ | $\frac{A}{m}$ | $\frac{A}{m+1}$ | $\frac{2A}{m}$ |
167 | 165 | 求极限:$\lim_{n\rightarrow\infty}\sum_{k=1}^n{\frac{k}{n^2+k}}\sin^2\frac{\pi\left(k-1\right)}{n}$=____ | $\begin{aligned}\frac{1}{2}\left(1+\sin^21-\sin2\right)\end{aligned}$ | $\begin{aligned}\frac{1}{3}\left(1+\sin^21-\sin2\right)\end{aligned}$ | $\begin{aligned}\frac{1}{2}\left(1+\sin^22-\sin2\right)\end{aligned}$ | $\begin{aligned}\frac{1}{4}\left(1+\sin^21-\sin2\right)\end{aligned}$ |
168 | 166 | 求不定积分:$\int{\frac{x-\sin x\cos x}{x^2\cos^2x+\sin^2x}}$____ | $-\mathrm{arc}\tan \left( x\cos x \right) +C$ | $-\mathrm{arc}\tan \left( x\sin x \right) +C$ | $-\mathrm{arc}\tan \left( x\tan x \right) +C$ | $-\mathrm{arc}\tan \left( x\cot x \right) +C$ |
169 | 167 | 设$D=\left\{\left(x,y\right)|x^2+y^2\leq4\right\}$,则$\iint_D{\left(x+2y\right)^2\mathrm{d}x\mathrm{d}y}=$____ | $10\pi$ | $20\pi$ | $40\pi$ | $50\pi$ |
170 | 168 | 求不定积分:$\int{\frac{x^2}{\sqrt{a^2+x^2}}}\mathrm{d}x$=____ | $\dfrac{x}{2}\sqrt{x^2+a^2}-\dfrac{a^2}{2}\ln\left|x+\sqrt{x^2+a^2}\right|+C$ | $\dfrac{x}{3}\sqrt{x^2+a^2}-\dfrac{a^2}{2}\ln\left|x+\sqrt{x^2+a^2}\right|+C$ | $\dfrac{x}{2}\sqrt{x^2+a^2}-\dfrac{a^2}{3}\ln\left|x+\sqrt{x^2+a^2}\right|+C$ | $\dfrac{2x}{3}\sqrt{x^2+a^2}-\dfrac{2a^2}{3}\ln\left|x+\sqrt{x^2+a^2}\right|+C$ |
171 | 169 | 求极限:$\lim_{n\rightarrow\infty}\frac{1}{n^2}\sum_{j=1}^{\left[\mathrm{e}^n\right]}{\sum_{i=3n}^{7n}{\sin\left(\frac{i}{n}\cdot\frac{j}{n}\right)}}$____ | $\ln 7-\ln 3$ | $2\ln 2-\ln 3$ | $\ln 3$ | $\ln 10-\ln 3$ |
172 | 170 | 利用泰勒展开求解极限:$\lim_{x\rightarrow0}\frac{\tan x\cdot\mathrm{arc}\tan x-x^2}{x^6}=$____ | $\frac{4}{7}$ | $\frac{4}{9}$ | $\frac{1}{3}$ | $\frac{2}{9}$ |
173 | 171 | 定义:$f\left(\alpha\right)=\int_0^{\alpha}{\left[\ln x\ln\left(\alpha-x\right)\right]}\mathrm{d}x$,求出$\alpha$的值,使得$f\left(\alpha\right)$最小____ | $\mathrm{e}^{\frac{\pi}{\sqrt{12}}}$ | $\mathrm{e}^{\frac{\pi}{\sqrt{6}}}$ | $\mathrm{e}^{\frac{\pi}{\sqrt{3}}}$ | $\mathrm{e}^{2\frac{\pi}{\sqrt{3}}}$ |
174 | 172 | 求极限:$\lim_{x\rightarrow0}\frac{\overset{p\text{次}}{\overbrace{\tan\tan\cdots\tan}}x-\overset{p\text{次}}{\overbrace{\sin\sin\cdots\sin}x}}{\tan x-\sin x}=$,其中$p\in\mathbb{N}^+$____ | p-1 | p | p+1 | 2p |