181 lines
5.8 KiB
Python
181 lines
5.8 KiB
Python
import random
|
||
import time
|
||
|
||
import numpy as np
|
||
import torch
|
||
import warnings
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
from model.model import Transformer
|
||
from model.LMConfig import LMConfig
|
||
|
||
warnings.filterwarnings('ignore')
|
||
|
||
|
||
def count_parameters(model):
|
||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||
|
||
|
||
def init_model(lm_config):
|
||
tokenizer = AutoTokenizer.from_pretrained('./model',
|
||
trust_remote_code=True, use_fast=False)
|
||
model_from = 1 # 1从权重,2用transformers
|
||
|
||
if model_from == 1:
|
||
moe_path = '_moe' if lm_config.use_moe else ''
|
||
ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'
|
||
|
||
model = Transformer(lm_config)
|
||
state_dict = torch.load(ckp, map_location=device)
|
||
|
||
# 处理不需要的前缀
|
||
unwanted_prefix = '_orig_mod.'
|
||
for k, v in list(state_dict.items()):
|
||
if k.startswith(unwanted_prefix):
|
||
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
||
|
||
for k, v in list(state_dict.items()):
|
||
if 'mask' in k:
|
||
del state_dict[k]
|
||
|
||
# 加载到模型中
|
||
model.load_state_dict(state_dict, strict=False)
|
||
else:
|
||
model = AutoModelForCausalLM.from_pretrained('minimind', trust_remote_code=True)
|
||
model = model.to(device)
|
||
|
||
print(f'模型参数: {count_parameters(model) / 1e6} 百万 = {count_parameters(model) / 1e9} B (Billion)')
|
||
return model, tokenizer
|
||
|
||
|
||
def setup_seed(seed):
|
||
random.seed(seed) # 设置 Python 的随机种子
|
||
np.random.seed(seed) # 设置 NumPy 的随机种子
|
||
torch.manual_seed(seed) # 设置 PyTorch 的随机种子
|
||
torch.cuda.manual_seed(seed) # 为当前 GPU 设置随机种子(如果有)
|
||
torch.cuda.manual_seed_all(seed) # 为所有 GPU 设置随机种子(如果有)
|
||
torch.backends.cudnn.deterministic = True # 确保每次返回的卷积算法是确定的
|
||
torch.backends.cudnn.benchmark = False # 关闭 cuDNN 的自动调优,避免不确定性
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# -----------------------------------------------------------------------------
|
||
out_dir = 'out'
|
||
start = ""
|
||
temperature = 0.7
|
||
top_k = 8
|
||
setup_seed(1337)
|
||
# device = 'cpu'
|
||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
||
dtype = 'bfloat16'
|
||
max_seq_len = 512
|
||
lm_config = LMConfig()
|
||
lm_config.max_seq_len = max_seq_len
|
||
# 对话是否携带历史对话(当前模型太弱,增大历史上下文,基本导致胡言乱语)
|
||
contain_history_chat = False
|
||
# -----------------------------------------------------------------------------
|
||
|
||
model, tokenizer = init_model(lm_config)
|
||
|
||
model = model.eval()
|
||
# 推送到huggingface
|
||
# model.push_to_hub("minimind")
|
||
# tokenizer.push_to_hub("minimind")
|
||
|
||
# answer_way = int(input('输入0自动测试,输入1问题测试:'))
|
||
answer_way = 0
|
||
stream = True
|
||
|
||
prompt_datas = [
|
||
'椭圆和圆的区别',
|
||
'中国关于马克思主义基本原理',
|
||
'人类大脑的主要功能是',
|
||
'万有引力是',
|
||
'世界上人口最多的国家是',
|
||
'DNA的全称是',
|
||
'数学中π的值大约是',
|
||
'世界上最高的山峰是',
|
||
'太阳系中最大的行星是',
|
||
'二氧化碳的化学分子式是',
|
||
'地球上最大的动物是',
|
||
'地球自转一圈大约需要',
|
||
'杭州市的美食有',
|
||
'江苏省的最好的大学',
|
||
]
|
||
|
||
messages_origin = []
|
||
messages = messages_origin
|
||
|
||
qa_index = 0
|
||
while True:
|
||
start = time.time()
|
||
if not contain_history_chat:
|
||
messages = messages_origin.copy()
|
||
|
||
if answer_way == 1:
|
||
# run generation
|
||
prompt = input('用户:')
|
||
else:
|
||
if qa_index >= len(prompt_datas):
|
||
break
|
||
prompt = prompt_datas[qa_index]
|
||
print('问题:', prompt)
|
||
qa_index += 1
|
||
|
||
messages.append({"role": "user", "content": prompt})
|
||
|
||
# print(messages)
|
||
new_prompt = tokenizer.apply_chat_template(
|
||
messages,
|
||
tokenize=False,
|
||
add_generation_prompt=True
|
||
)[-(max_seq_len - 1):]
|
||
|
||
x = tokenizer(prompt).data['input_ids']
|
||
x = (torch.tensor(x, dtype=torch.long, device=device)[None, ...])
|
||
|
||
answer = new_prompt
|
||
|
||
with torch.no_grad():
|
||
res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=max_seq_len, temperature=temperature,
|
||
top_k=top_k, stream=stream)
|
||
print('回答:', end='')
|
||
try:
|
||
y = next(res_y)
|
||
except StopIteration:
|
||
print("No answer")
|
||
continue
|
||
|
||
history_idx = 0
|
||
while y != None:
|
||
answer = tokenizer.decode(y[0].tolist())
|
||
if answer and answer[-1] == '<EFBFBD>':
|
||
try:
|
||
y = next(res_y)
|
||
except:
|
||
break
|
||
continue
|
||
# print(answer)
|
||
if not len(answer):
|
||
try:
|
||
y = next(res_y)
|
||
except:
|
||
break
|
||
continue
|
||
|
||
print(answer[history_idx:], end='', flush=True)
|
||
try:
|
||
y = next(res_y)
|
||
except:
|
||
break
|
||
history_idx = len(answer)
|
||
if not stream:
|
||
break
|
||
|
||
print('\n')
|
||
|
||
if contain_history_chat:
|
||
assistant_answer = answer.replace(new_prompt, "")
|
||
messages.append({"role": "assistant", "content": assistant_answer})
|
||
end = time.time()
|
||
print(end - start,'s')
|