Minimind/1-pretrain.py
2024-08-28 16:41:44 +08:00

195 lines
6.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import platform
import time
import math
import warnings
import torch
import torch.distributed as dist
from torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, DistributedSampler
from contextlib import nullcontext
from model.model import Transformer
from model.LMConfig import LMConfig
from model.dataset import PretrainDataset
warnings.filterwarnings('ignore')
def Logger(content):
if not ddp or dist.get_rank() == 0:
print(content)
def get_lr(it, all):
warmup_iters = 0
lr_decay_iters = all
min_lr = learning_rate / 10
if it < warmup_iters:
return learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
def train_epoch(epoch):
start_time = time.time()
for step, (X, Y) in enumerate(train_loader):
X = X.to(device)
Y = Y.to(device)
# 设置学习率
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# 前向传播和损失计算
with ctx:
out = model(X, Y)
loss = out.last_loss
# 反向传播
scaler.scale(loss).backward()
# 梯度剪裁和更新参数
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
# 清零梯度
optimizer.zero_grad(set_to_none=True)
if step % 100 == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
epochs,
step,
iter_per_epoch,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
# torch.save(model.state_dict(), '{}/iter_{}.pth'.format(save_dir, int(step + epoch * iter_per_epoch)))
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save(state_dict, ckp)
model.train()
def init_model():
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# model init
model = Transformer(lm_config).to(device)
# moe_path = '_moe' if lm_config.use_moe else ''
# ckp = f'{save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
#
# state_dict = torch.load(ckp, map_location=device)
# unwanted_prefix = '_orig_mod.'
# for k, v in list(state_dict.items()):
# if k.startswith(unwanted_prefix):
# state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
# model.load_state_dict(state_dict, strict=False)
Logger(f'LLM总参数量{count_parameters(model) / 1e6:.3f} 百万')
return model
def init_distributed_mode():
if not ddp: return
global ddp_local_rank, DEVICE
dist.init_process_group(backend="nccl")
ddp_rank = int(os.environ["RANK"])
ddp_local_rank = int(os.environ["LOCAL_RANK"])
ddp_world_size = int(os.environ["WORLD_SIZE"])
DEVICE = f"cuda:{ddp_local_rank}"
torch.cuda.set_device(DEVICE)
# torchrun --nproc_per_node 2 1-pretrain.py
# I/O
if __name__ == "__main__":
# -----------------------------------------------------------------------------
lm_config = LMConfig()
max_seq_len = lm_config.max_seq_len
out_dir = 'out'
epochs = 20
batch_size = 8
learning_rate = 1e-4
device = 'cuda:0'
dtype = 'bfloat16'
save_dir = os.path.join(out_dir)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(out_dir, exist_ok=True)
tokens_per_iter = batch_size * max_seq_len
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
ctx = (
nullcontext()
if device_type == "cpu"
else torch.cuda.amp.autocast()
)
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
if ddp:
init_distributed_mode()
device = torch.device(DEVICE)
# -----------------------------------------------------------------------------
# -----init dataloader------
data_path_list = ['./dataset/pretrain_data.bin']
train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
train_sampler = DistributedSampler(train_ds) if ddp else None
num_workers = 8 # 可以根据系统的 CPU 核心数来调整
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=num_workers,
sampler=train_sampler
)
# init model
model = init_model()
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
# optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# compile the model
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
Logger("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model)
if ddp:
# Ignore the freqs_cis buffer so that DDP does not broadcast it at
# construction time since NCCL does not support ComplexFloat
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
# training loop
iter_per_epoch = len(train_loader)
for epoch in range(epochs):
train_epoch(epoch)