Minimind/4-lora_sft.py
2024-08-28 16:41:44 +08:00

167 lines
5.2 KiB
Python

import os
import platform
import time
import math
import warnings
import torch
import pandas as pd
import torch.nn.functional as F
from contextlib import nullcontext
from torch import optim
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from peft import get_peft_model, LoraConfig, TaskType
from torch.utils.data import DataLoader
from model.LMConfig import LMConfig
from model.dataset import SFTDataset
warnings.filterwarnings('ignore', category=UserWarning)
def get_lr(it):
warmup_iters = 1000
lr_decay_iters = 80000
min_lr = 1e-5
if it < warmup_iters:
return learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
# ------------------------------------------------------------------------------
def train_epoch(epoch):
start_time = time.time()
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(device)
Y = Y.to(device)
loss_mask = loss_mask.to(device)
lr = get_lr(epoch * iter_per_epoch + step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
with ctx:
logits = model(X, Y).logits
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')
loss_mask = loss_mask.view(-1)
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
if step % 100 == 0:
spend_time = time.time() - start_time
print(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
epochs,
step,
iter_per_epoch,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names:
lora_module_names.remove('lm_head')
return list(lora_module_names)
def init_model():
model_name_or_path = "./minimind"
tokenizer_name_or_path = "./minimind"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(device)
target_modules = find_all_linear_names(model)
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8,
lora_alpha=16,
lora_dropout=0.1,
inference_mode=False,
target_modules=target_modules
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
model = model.to(device)
return model, tokenizer
# I/O
if __name__ == "__main__":
# -----------------------------------------------------------------------------
lm_config = LMConfig()
max_seq_len = lm_config.max_seq_len
out_dir = 'out'
epochs = 20
gradient_accumulation_steps = 1
batch_size = 16
learning_rate = 1e-4
weight_decay = 1e-1
device = 'cuda:0'
dtype = 'bfloat16'
save_dir = os.path.join(out_dir)
os.makedirs(save_dir, exist_ok=True)
tokens_per_iter = gradient_accumulation_steps * batch_size * max_seq_len
os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
ctx = (
nullcontext()
if device_type == "cpu"
else torch.cuda.amp.autocast()
)
# -----------------------------------------------------------------------------
model, tokenizer = init_model()
# -----init dataloader------
df = pd.read_csv('./dataset/sft_data.csv')
df = df.sample(frac=1.0)
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
pin_memory=False,
drop_last=False,
shuffle=False,
num_workers=0,
)
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
# optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
iter_per_epoch = len(train_loader)
# compile the model
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
print("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model)
raw_model = model
# training loop
for epoch in range(epochs):
train_epoch(epoch)
model.save_pretrained('minimind')