210 lines
6.2 KiB
Python
210 lines
6.2 KiB
Python
import re
|
||
import json
|
||
import jsonlines
|
||
import psutil
|
||
import ujson
|
||
import numpy as np
|
||
import pandas as pd
|
||
from transformers import AutoTokenizer
|
||
from datasets import load_dataset
|
||
|
||
bos_token = "<s>"
|
||
eos_token = "</s>"
|
||
|
||
|
||
# pretrain
|
||
def process_wiki_clean():
|
||
with open('./dataset/clean-wikipedia-cn.json', 'r', encoding='utf-8') as f_read:
|
||
data = [ujson.loads(line) for line in f_read]
|
||
data_len = len(data)
|
||
doc_ids = []
|
||
for idx, line in enumerate(data):
|
||
text = line['response']
|
||
text_id = tokenizer(f'{bos_token}{text}{eos_token}').data['input_ids']
|
||
if len(text_id) > 5:
|
||
doc_ids += text_id
|
||
if idx % (int(data_len / 20)) == 0:
|
||
print(f"[{idx}/{data_len}] {text}")
|
||
arr = np.array(doc_ids, dtype=np.uint16)
|
||
with open('./dataset/clean-wikipedia-cn.bin', 'wb') as f:
|
||
f.write(arr.tobytes())
|
||
|
||
|
||
# pretrain
|
||
def process_other():
|
||
data = []
|
||
|
||
with open('./dataset/alpaca_gpt4_data_zh.json', 'r', encoding='utf-8') as f:
|
||
data_ = json.load(f)
|
||
data += data_
|
||
|
||
with open('./dataset/alpaca_data_zh_51k.json', 'r', encoding='utf-8') as f:
|
||
data_ = json.load(f)
|
||
data += data_
|
||
|
||
doc_ids = []
|
||
for idx, per in enumerate(data):
|
||
q = per['instruction']
|
||
i = per['input']
|
||
a = per['output']
|
||
q = q + i
|
||
if len(q) < 10 or len(a) < 5:
|
||
continue
|
||
if len(q) > 256 or len(a) > 256:
|
||
continue
|
||
text_id = tokenizer(f'{bos_token}{q},{a}{eos_token}').data['input_ids']
|
||
if len(text_id) > 5:
|
||
doc_ids += text_id
|
||
if idx % 50000 == 0:
|
||
print(idx, len(data))
|
||
|
||
arr = np.array(doc_ids, dtype=np.uint16)
|
||
with open('./dataset/clean_other.bin', 'wb') as f:
|
||
f.write(arr.tobytes())
|
||
|
||
|
||
# pretrain
|
||
def process_seq_monkey():
|
||
doc_ids = []
|
||
with jsonlines.open('./dataset/mobvoi_seq_monkey_general_open_corpus.jsonl') as reader:
|
||
for idx, obj in enumerate(reader):
|
||
content = obj.get('text', '')
|
||
if len(content) > 512:
|
||
continue
|
||
text_id = tokenizer(f'{bos_token}{content}{eos_token}').data['input_ids']
|
||
doc_ids += text_id
|
||
if idx % 50000 == 0:
|
||
print(f"seq_monkey: [{idx}]")
|
||
|
||
arr = np.array(doc_ids, dtype=np.uint16)
|
||
with open('./dataset/clean_seq_monkey.bin', 'wb') as f:
|
||
f.write(arr.tobytes())
|
||
|
||
|
||
def pretrain_process():
|
||
# process_wiki_clean()
|
||
process_seq_monkey()
|
||
|
||
data_path_list = [
|
||
# './dataset/clean-wikipedia-cn.bin',
|
||
'./dataset/clean_seq_monkey.bin'
|
||
]
|
||
data_lst = []
|
||
for data_path in data_path_list:
|
||
with open(data_path, 'rb') as f:
|
||
data = np.fromfile(f, dtype=np.uint16)
|
||
data_lst.append(data)
|
||
arr = np.concatenate(data_lst)
|
||
print(arr.shape)
|
||
with open('./dataset/pretrain_data.bin', 'wb') as f:
|
||
f.write(arr.tobytes())
|
||
|
||
|
||
def sft_process(contain_history=False):
|
||
file_name = 'sft_data.csv'
|
||
if not contain_history:
|
||
file_name = 'sft_data_single.csv'
|
||
|
||
def chinese_ratio(text):
|
||
# 匹配所有中文字符
|
||
chinese_chars = re.findall(r'[\u4e00-\u9fff]', text)
|
||
# 中文字符数量占比
|
||
return len(chinese_chars) / len(text) if text else 0
|
||
|
||
def process_and_write_data(data):
|
||
q_lst, a_lst, history_lst = [], [], []
|
||
for per in data:
|
||
history, q, a = per['history'], per['q'], per['a']
|
||
|
||
if (contain_history and not history) or not q or not a:
|
||
continue
|
||
if len(q) < 10 or len(a) < 5:
|
||
continue
|
||
if len(q) > 256 or len(a) > 256:
|
||
continue
|
||
# 判断q和a中中文字符占比是否超过70%
|
||
if not (chinese_ratio(q) > 0.9 and chinese_ratio(a) > 0.9):
|
||
continue
|
||
|
||
q_lst.append(q)
|
||
a_lst.append(a)
|
||
if contain_history:
|
||
history_lst.append(history)
|
||
else:
|
||
history_lst.append([])
|
||
|
||
# 创建DataFrame并追加到CSV文件
|
||
df = pd.DataFrame({'history': history_lst, 'q': q_lst, 'a': a_lst})
|
||
df.to_csv(f'./dataset/{file_name}', mode='a', header=False, index=False, lineterminator='\r\n')
|
||
|
||
chunk_size = 1000 # 每次处理的记录数
|
||
data = []
|
||
|
||
with open(f'./dataset/{file_name}', 'w', encoding='utf-8') as f:
|
||
f.write('history,q,a\n')
|
||
|
||
sft_datasets = ['./dataset/sft_data_zh_2.jsonl']
|
||
if not contain_history:
|
||
sft_datasets = ['./dataset/sft_data_zh_2.jsonl']
|
||
|
||
for path in sft_datasets:
|
||
with jsonlines.open(path) as reader:
|
||
for idx, obj in enumerate(reader):
|
||
data.append({
|
||
'history': obj.get('history', ''),
|
||
'q': obj.get('input', '') + obj.get('q', ''),
|
||
'a': obj.get('output', '') + obj.get('a', '')
|
||
})
|
||
|
||
if len(data) >= chunk_size:
|
||
process_and_write_data(data)
|
||
data = []
|
||
|
||
if data:
|
||
process_and_write_data(data)
|
||
data = []
|
||
|
||
|
||
def rl_process():
|
||
################
|
||
# Dataset
|
||
################
|
||
|
||
dataset_path = ['./dataset/dpo/dpo_zh_demo.json',
|
||
'./dataset/dpo/train_1.json',
|
||
'./dataset/dpo/huozi_rlhf_data.json', ]
|
||
|
||
train_dataset = load_dataset('json', data_files=dataset_path)
|
||
|
||
def process(row):
|
||
row["chosen"] = tokenizer.apply_chat_template(row["chosen"], tokenize=False)
|
||
row["reject"] = tokenizer.apply_chat_template(row["rejected"], tokenize=False)
|
||
return row
|
||
|
||
ds = train_dataset.map(
|
||
process,
|
||
load_from_cache_file=False,
|
||
)
|
||
|
||
output_dataset_path = './dataset/dpo/train_data.json'
|
||
ds['train'].to_json(output_dataset_path, force_ascii=False, orient='records', lines=True)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
tokenizer = AutoTokenizer.from_pretrained('./model', use_fast=False)
|
||
print('tokenizer词表大小:', len(tokenizer))
|
||
|
||
################
|
||
# 1: pretrain
|
||
# 2: sft
|
||
# 3: RL
|
||
################
|
||
process_type = 2
|
||
|
||
if process_type == 1:
|
||
pretrain_process()
|
||
if process_type == 2:
|
||
sft_process(contain_history=True)
|
||
if process_type == 3:
|
||
rl_process()
|