163 lines
5.3 KiB
Python
163 lines
5.3 KiB
Python
import random
|
||
from tqdm import tqdm
|
||
from transformers import AutoTokenizer
|
||
import json
|
||
from datasets import load_dataset
|
||
from tokenizers import (
|
||
decoders,
|
||
models,
|
||
normalizers,
|
||
pre_tokenizers,
|
||
processors,
|
||
trainers,
|
||
Tokenizer,
|
||
)
|
||
import os
|
||
|
||
random.seed(42)
|
||
|
||
def train_tokenizer():
|
||
# 读取JSONL文件并提取文本数据
|
||
def read_texts_from_jsonl(file_path):
|
||
with open(file_path, 'r', encoding='utf-8') as f:
|
||
for line in f:
|
||
data = json.loads(line)
|
||
yield data['text']
|
||
|
||
data_path = './dataset/tokenizer_train.jsonl'
|
||
|
||
# 初始化tokenizer
|
||
tokenizer = Tokenizer(models.BPE())
|
||
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
|
||
|
||
# 定义特殊token
|
||
special_tokens = ["<unk>", "<s>", "</s>"]
|
||
|
||
# 设置训练器并添加特殊token
|
||
trainer = trainers.BpeTrainer(
|
||
vocab_size=6400,
|
||
special_tokens=special_tokens, # 确保这三个token被包含
|
||
show_progress=True,
|
||
initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
|
||
)
|
||
|
||
# 读取文本数据
|
||
texts = read_texts_from_jsonl(data_path)
|
||
|
||
# 训练tokenizer
|
||
tokenizer.train_from_iterator(texts, trainer=trainer)
|
||
|
||
# 设置解码器
|
||
tokenizer.decoder = decoders.ByteLevel()
|
||
|
||
# 检查特殊token的索引
|
||
assert tokenizer.token_to_id("<unk>") == 0
|
||
assert tokenizer.token_to_id("<s>") == 1
|
||
assert tokenizer.token_to_id("</s>") == 2
|
||
|
||
# 保存tokenizer
|
||
tokenizer_dir = "./minimind_tokenizer"
|
||
os.makedirs(tokenizer_dir, exist_ok=True)
|
||
tokenizer.save(os.path.join(tokenizer_dir, "tokenizer.json"))
|
||
tokenizer.model.save("./minimind_tokenizer")
|
||
|
||
# 手动创建配置文件
|
||
config = {
|
||
"add_bos_token": False,
|
||
"add_eos_token": False,
|
||
"add_prefix_space": True,
|
||
"added_tokens_decoder": {
|
||
"0": {
|
||
"content": "<unk>",
|
||
"lstrip": False,
|
||
"normalized": False,
|
||
"rstrip": False,
|
||
"single_word": False,
|
||
"special": True
|
||
},
|
||
"1": {
|
||
"content": "<s>",
|
||
"lstrip": False,
|
||
"normalized": False,
|
||
"rstrip": False,
|
||
"single_word": False,
|
||
"special": True
|
||
},
|
||
"2": {
|
||
"content": "</s>",
|
||
"lstrip": False,
|
||
"normalized": False,
|
||
"rstrip": False,
|
||
"single_word": False,
|
||
"special": True
|
||
}
|
||
},
|
||
"additional_special_tokens": [],
|
||
"bos_token": "<s>",
|
||
"clean_up_tokenization_spaces": False,
|
||
"eos_token": "</s>",
|
||
"legacy": True,
|
||
"model_max_length": 1000000000000000019884624838656,
|
||
"pad_token": None,
|
||
"sp_model_kwargs": {},
|
||
"spaces_between_special_tokens": False,
|
||
"tokenizer_class": "PreTrainedTokenizerFast",
|
||
"unk_token": "<unk>",
|
||
"use_default_system_prompt": False,
|
||
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<s>user\\n' + content + '</s>\\n<s>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\\n' }}{% endif %}{% endfor %}"
|
||
}
|
||
|
||
# 保存配置文件
|
||
with open(os.path.join(tokenizer_dir, "tokenizer_config.json"), "w", encoding="utf-8") as config_file:
|
||
json.dump(config, config_file, ensure_ascii=False, indent=4)
|
||
|
||
print("Tokenizer training completed and saved.")
|
||
|
||
|
||
def eval_tokenizer():
|
||
from transformers import AutoTokenizer
|
||
|
||
# 加载预训练的tokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained("./model/minimind_tokenizer")
|
||
|
||
messages = [
|
||
{"role": "system", "content": "你是一个优秀的聊天机器人,总是给我正确的回应!"},
|
||
{"role": "user", "content": '是椭圆形的'},
|
||
{"role": "assistant", "content": '456'},
|
||
{"role": "user", "content": '456'},
|
||
{"role": "assistant", "content": '789'}
|
||
]
|
||
new_prompt = tokenizer.apply_chat_template(
|
||
messages,
|
||
tokenize=False
|
||
)
|
||
|
||
print(new_prompt)
|
||
# 获取词汇表大小(不包括特殊符号)
|
||
print('tokenizer词表大小:', tokenizer.vocab_size)
|
||
|
||
# 获取实际词汇表长度(包括特殊符号)
|
||
actual_vocab_size = len(tokenizer)
|
||
print('qwen实际词表长度:', actual_vocab_size)
|
||
|
||
new_prompt = 'wenjie,椭圆和⚪的关系是什么呢?因为明天下午要带家人去下医院,所以申请上午在家办公,因为明天下午要带家人去下医院,所以申请上午在家办公,因为明天下午要带家人去下医院,所以申请上午在家办公,下午请半天假~@LWJWe '
|
||
print(new_prompt)
|
||
model_inputs = tokenizer(new_prompt)
|
||
|
||
print(model_inputs)
|
||
print('长度:', len(model_inputs['input_ids']))
|
||
|
||
input_ids_ = model_inputs['input_ids']
|
||
|
||
response = tokenizer.decode(input_ids_)
|
||
print(response, end='')
|
||
|
||
|
||
def main():
|
||
# train_tokenizer()
|
||
eval_tokenizer()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|