iomgaa
afd4fd1f0f
Experiment 1.4.9: Memory Bank优化 - 顺序冻结 + 相似度Loss + 维度修复
🔬 实验基础: 基于实验1.4.7的重要改进
🎯 研究目标: 提升Memory Bank的知识保护和检索准确性
🚀 三大核心创新:
1️⃣ 智能冻结策略改进
• 从随机冻结 → 顺序冻结前20%记忆条目
• 保护重要知识: 假设前面的记忆条目更重要,需要优先保护
• freeze_ratio=0.2: 冻结前20%的memory_bank条目
2️⃣ 查询-知识相似度Loss
• 新增相似度监督信号: 衡量查询向量与选中知识的匹配度
• 余弦相似度计算: F.cosine_similarity(query, selected_memory)
• 相似度统计: 平均值、最大值、最小值、标准差全方位监控
3️⃣ 维度截断问题修复
• 统一维度处理: knowledge_dim → dim,避免信息截断
• concat_dim修正: dim + num_selected * dim (之前是knowledge_dim)
• 记忆向量完整保留: 解决查询结果维度被不当压缩的问题
🏗️ 架构优化细节:
• GatedMemoryFusion维度一致性: 统一使用dim维度
• 记忆池化策略: 使用平均池化压缩knowledge_length维度
• 残差连接增强: 改进memory_output与主路径的融合
📊 实验配置:
• experiment_1_4_9-02: 8层网络完整测试
• experiment_1_4_9-04: 1层网络最小验证
• EMA更新机制: decay=0.9, update_freq=5
• 数据库初始化: sentence_trex_data.json文本数据
💡 技术假设:
顺序冻结策略能更好地保护重要知识,相似度Loss能提升检索精度,
维度统一能减少信息丢失,三者结合将显著改善Memory Bank性能。
🛠️ 基础设施改进:
• UUID映射系统: 跟踪记忆条目的原始数据源
• 增强缓存机制: 支持映射文件自动生成
• 监控系统升级: 相似度统计信息实时追踪
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-05 14:24:48 +08:00
..
2025-06-25 20:27:28 +08:00
2025-05-22 10:05:31 +08:00
2025-08-01 15:54:21 +08:00
2025-08-03 14:25:26 +08:00
2025-08-04 20:12:00 +08:00
2025-08-06 11:55:36 +08:00
2025-08-07 11:43:23 +08:00
2025-08-09 10:47:35 +08:00
2025-08-12 11:07:23 +08:00
2025-09-01 15:35:14 +08:00
2025-09-05 14:24:48 +08:00
2025-09-05 14:24:48 +08:00
2025-09-01 15:35:14 +08:00
2025-09-05 14:24:48 +08:00
2025-09-05 14:24:48 +08:00
2025-07-17 00:05:34 +08:00
2025-07-13 21:28:46 +08:00
2025-07-13 21:28:46 +08:00
2025-07-17 12:06:28 +08:00
2025-08-01 15:54:21 +08:00