Minimind/ceval/ceval-exam/val/probability_and_statistics_val.csv
2024-08-28 16:41:44 +08:00

49 lines
5.3 KiB
CSV
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

id,question,A,B,C,D,answer
0,设随机变量$X$和$Y$相互独立且X$\sim N(01)Y\sim N(0$2),则$D\left(X^2Y^2\right)=$____,10,20,32,45,C
1,"设随机变量$(X,Y)$的概率密度为$f(x,y)=\left\{\begin{array}{cc}6y,&0<x<1,0<y<x\\0,&\text{其他.}\end{array}\right.$,$$\text{则}P\left(X>\frac{1}{2}\mid Y=\frac{1}{3}\right)=$$____",$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{1}{3}$,A
2,"总体的简单样本,$\bar{X}$为样本均值,则$D(\bar{X})=$____",$\frac{3}{80}$,$\frac{9}{16}$,$\frac{3}{1600}$,$\frac{3}{160}$,C
3,"设总体$X$服从拉普拉斯分布$f(x,\lambda)=\frac{1}{4\lambda}e^{-\frac{|x|}{2\lambda}},-\infty<x<\infty$,其中$\lambda>0$。则$E(|X|)=$____",$\frac{1}{2 \lambda}$,$\frac{1}{\lambda}$,$2 \lambda$,$\lambda$,C
4,"设$X_1,X_2,\cdots X_{12}$是来自正态总体$X\sim N\left(0,\sigma^2\right)$的简单样本,随机变量$Y=\frac{\sum_{i=1}^6X_i^2}{\sum_{j=1}^6X_{j+6}^2}$服从的分布为:____",$\chi^2(6)$,$\chi^2(1)$,"$F(5,5)$","$F(6,6)$",D
5,对于任意两个随机变量X和$Y$,若$E(XY)=EX\cdot EY$则____,$D(X Y)=D(X) \cdot D(Y)$,$D(X+Y)=D(X)+D(Y)$,X和Y独立,X和Y不相关,D
6,"设$(X_1,X_2,...,X_n)$是取自总体X的一个样本X的概率密度如下$f(x)=\begin{cases}\frac12e^{-\frac{(x-\mu)}{2}},x\geq\mu,\\0,其他\end{cases}$,$\mu$为未知参数。则$\mu$的最大似然估计量是.____",$\hat{\mu}=\max _{1 \leq i \leq n} X_i$,$\hat{\mu}=\frac13 \max _{1 \leq i \leq n} X_i$,$\hat{\mu}=\min _{1 \leq i \leq n} X_i$,$\hat{\mu}=\frac12 \min _{1 \leq i \leq n} X_i$,C
7,当事件$A$和$B$同时发生时$C$也发生则下列式子中成立的是____,$P(C)=P(A \cap B)$,$P(C) \leq P(A)+P(B)-1$,$P(C)=P(A \cup B)$,$P(C) \geq P(A)+P(B)-1$,D
8,"$$
\text{设}0<P(A)<10<P(B)<1\text{}
$$
$P(A\mid B)+P(\bar{A}\mid\bar{B})=1$则____",事件A和B互不相容,事件A和B互相对立,事件A和B互不独立,事件A和B相互独立,D
9,设X和Y分别表示扔n次硬币出现正面和反面的次数则$XY$的相关系数为____,-1,0,\frac{1}{2},1,A
10,"设二维随机变量$(X,Y)$在区域$D=\left\{(x,y):x^2+y^2<1\right\}$内均匀分布,则$X$与$Y$为____",独立同分布的随机变量,独立不同分布的随机变量,不独立同分布的随机变量,不独立也不同分布的随机变量,C
11,设$X\sim N(14)Y\sim N(316)P\{Y=aX+b\}=1$,且$\rho_{XY}=-1$则____,"a=2, b=5","a=-2, b=-5","a=-2, b=5","a=2, b=-5",C
12,"设总体$X$的分布列如下:
\begin{tabular}{|c|c|c|c|}
\hline$\boldsymbol{X}$&0&1&2\\
\hline$\boldsymbol{p}$&$2/5$&$1/5$&$2/5$\\
\hline
\end{tabular}
$\left(X_{1},X_{2},\cdots X_{n}\right)$是来自于该总体的样本,$X_{(n)}=\max\left(X_{1},X_{2},\cdots X_{n}\right)$,
(i)$P\left(\mathbf{X}_{(n)}=0\right)=\left(\frac{2}{5}\right)^{n}$,
(ii)$P\left(X_{(n)}=1\right)=\frac{2}{5}\left(c_{0}^{1}\left(\frac{1}{5}\right)^{n-1}\right.$,
(iii)$P\left(\mathbf{X}_{(n)}=2\right)=1-\left(\frac{2}{5}\right)^{n}$,
上述(i)、(ii)、(iii)中正确个数为____",2,1,0,3,B
13,"设随机变量(X,Y)的概率密度为$f(x,y)=\begin{cases}2,0<x<y,0<y<1\\0,其他\end{cases}$.则0<y<1时f_{X|Y}(x|y)=____","$\begin{cases}\frac{1}{x}, & 0<y<x, \\ 0, & \text { 其他 }\end{cases}$","$\{\begin{array}{cl}\frac{1}{2 x}, & |y|<x, \\0, & \text { 其他}\end{array}$","$\begin{cases}\frac{1}{y}, & 0<x<y, \\ 0, & \text { 其他. }\end{cases}$","$\begin{cases}\frac{1}{2y}, & |x|<y, \\ 0, & \text { 其他. }\end{cases}$",C
14,"设总体$X$的分布律为
\begin{tabular}{|l|l|l|l|}
\hline$X$&-1&0&2\\
\hline$P$&$\frac{1}{3}\theta$&$1-\frac{2}{3}\theta$&$\frac{1}{3}\theta$\\
\hline
\end{tabular}
$\left(X_{1},X_{2},\cdots,X_{n}\right)$为来自总体的样本,设有以下四个统计量
(i)$\frac{3}{n}\sum_{i=1}^{n}X_{i}$,(ii)$\left.X_{1}+\frac{2}{n-1}\right)_{i=2}^{n}X_{i}$,(iii)$\frac{3}{5n}\sum_{i=1}^{n}X_{i}^{2}$,(iv)$\frac{1}{3n}\sum_{i=1}^{n}X_{i}^{2}$
在上述四个统计量中,是参数$\theta$的一致估计量的个数是____",0,2,1,3,B
15,"设$X_1,...,X_4,X_5$相互独立、且都服从N(0,4).设$\alpha\in(0,1)$,$k>0$,$P(X_1^2+X_2^2+X_3^2+X_4^2\le kX_5^2)=\alpha$则k=____","$\frac{1}{4}F_{\alpha}(4,1)$","$\frac{1}{4}F_{1-\alpha}(4,1)$","$4F_{\alpha}(4,1)$","$4F_{1-\alpha}(4,1)$",D
16,"设$X_1,X_1,\cdots X_8$为来自总体$X\sim N\left(\mu_1,1\right)$的简单样本,$\bar{X},S_1^2$分別是其对应的样本均值与样本方差。$Y_1,Y_1,\cdots,Y_7$为来自总$Y\sim N\left(\mu_2,1\right)$的简单样本,$\bar{Y},S_2^2$分别是其对应的样本均值与样本方差。下列选项正确的是____",$\sum_{i=1}^8\left(X_i-\mu_1\right)^2+\sum_{i=1}^7\left(Y_i-\mu_2\right)^2 \sim \chi^2(15)$,$E\left(\sum_{i=1}^8\left(X_i-\mu_1\right)^2+\sum_{i=1}^7\left(Y_i-\mu_2\right)^2\right)=15$,$\mathrm{D}(\bar{X}+\bar{Y})=\frac{1}{8}+\frac{1}{7}$,"$\bar{X}-\bar{Y} \sim \mathrm{N}\left(\mu_1-\mu_2, \frac{1}{8}+\frac{1}{7}\right)$",B
17,"若随机变量X的分布函数为$F(x)=pF_1(x)+qF_2(x)$,其中$F_1(x)$$F_2(x)$为两个分布函数常数pq满足:$p>0$$q>0$$p+q=1$那么X的分布叫作$F_1(x)F_2(x)$的混合分布.设$\mu_1\mu_2$分别为$F_1(x)F_2(x)$的期望,$\sigma_1^2,\sigma_2^2$分别为$F_1(\mathrm{x})$$F_2(\mathrm{x})$的方差,则$DX=$____",$p \sigma_1^2+q \sigma_2^2$,$p^2 \sigma_1^2+q^2 \sigma_2^2$,$p \sigma_1^2+q \sigma_2^2+p q\left(\mu_1-\mu_2\right)^2$,$p \sigma_1^2+q \sigma_2^2+p q\left(\sigma_1-\sigma_2\right)^2$,C