Minimind/ceval/ceval-exam/test/probability_and_statistics_test.csv
2024-08-28 16:41:44 +08:00

458 lines
52 KiB
CSV
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

id,question,A,B,C,D
0,设$X$服从几何分布,$P(X=1)=0.6$,则$P(X=4\mid X>2)=$____,0.5,0.24,0.36,0.16
1,"设$X_{1},X_{2},\cdots,X_{3n}$是来自总体$X\sim N\left(0,\sigma^{2}\right)$的一个样本,已知$P\left(a\sum_{i=1}^{n}X_{i}{}^{2}\geq\sum_{i=n+1}^{3n}X_{i}^{2}\right)=0.90$,则$F$的上侧分位数$F_{0.1}(2n,n)$的值为____",$2 / a$,$1 / 2a$,$a / 2$,$2a$
2,"设连续型随机变量X的概率密度函数为$f(x)=ke^{-{\frac{(x+2)^{2}}{4}}}$,$x\in(-\infty,|+\infty)$则k=____",$\frac{1}{2\sqrt{2\pi}}$,$\frac{1}{2\sqrt{\pi}}$,$\frac{1}{\sqrt{2\pi}}$,$\frac{1}{4\sqrt{2\pi}}$
3,"设随机变量X服从指数分布$X\sim e^\lambda$,且方差满足D(X)=4.则P(X>10)=____",e^{-\frac{5}{2}},e^{-5},e^{-20},e^{-40}
4,"设随机变量$X$服从均匀分布$U(-1,1)$,则$Y=e^X$的密度函数为:____","$$
f_Y(y)=\left\{\begin{array}{cl}
\frac{1}{2} \ln y+1, & y \in\left(e^{-1}, e^1\right) \\
0, & \text { 其他 }
\end{array}\right.
$$","$$
f_Y(y)=\left\{\begin{array}{lc}
\frac{1}{y}, & y \in\left(e^{-1}, e^1\right) \\
0, & \text { 其他 }
\end{array}\right.
$$","$f_Y(y)=\left\{\begin{array}{cl}\frac{1}{2}(\ln y+1), & y \in\left(e^{-1}, e^1\right) \\ 0, & \text { 其他 }\end{array}\right.$","$f_Y(y)=\left\{\begin{array}{cc}\frac{1}{2 y}, & y \in\left(e^{-1}, e^1\right) \\ 0, & \text { 其他 }\end{array}\right.$"
5,随机变量X$\sim N(24)Y\sim N(25)$,且$D(X+Y)=DX-DY+14$则下列正确的是____,$E(XY)=E(X)E(Y)+2[D(X)-D(Y)]$,$D(X-Y)=D(Y)$,"X, Y独立",XY不相关
6,"设总体X服从参数$\lambda$的Poisson分布$X_1,X_2,...,X_n$为来自总体的一个样本。以下关于$\lambda$的估计量中哪一个不是无偏估计量____",$2X_1-X_2$,$\overline{X}$,$\frac{1}{n-1}\sum\limits_{i=1}^n(X_i-\bar{X})^2$,$\frac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})^2$
7,"设$X_1,X_2,...,X_{12}$来自正态总体$N(0,1)$,$Y=(\sum_{i=1}^{6}X_i)^2+(\sum^{12}_{i=7}X_i)^2$,若$kY$服从卡方分布,则k的取值为____",\frac{1}{9},\frac{1}{3},\frac{1}{6},\frac{1}{2}
8,"设二维随机变量$(X,Y)$的联合分布函数为
$$
F(x,y)=\left\{\begin{array}{cl}
1-e^{-0.01x}-e^{-0.01y}+e^{-0.01(x+y)},&x\geq0,y\geq0,\\
0,&\text{其他}
\end{array}\right.
$$
则$P(X>100)=$____",$1-e^{-1}$,$e^{-1}$,$1-2 e^{-1}$,$2 e^{-1}$
9,"已知随机变量$X\sim\left(\begin{array}{cc}0&1\\\frac{1}{4}&\frac{3}{4}\end{array}\right),Y\sim\left(\begin{array}{cc}0&1\\\frac{1}{4}&\frac{3}{4}\end{array}\right),E(XY)=\frac{5}{8}$则P$\{X+Y\leq1\}$等于____",$\frac{1}{8}$,$\frac{1}{4}$,$\frac{3}{8}$,$\frac{1}{2}$
10,"从大批彩色显像管中随机抽取20只,算得其平均寿命为$\hat{x}$小时,样本标准差为s,可以认为显像管的寿命服从正态分布。若已知标准差$\sigma=120$小时,则显像管平均寿命$\mu$的置信度为0.9的置信区间为____(注:$u_a$与$t_a(n)$分别为标准正态分布和自由度为n的t分布的上侧$\alpha$分位数)","$\left(\bar{x}-\frac{s}{\sqrt{20}} t_{0.05}(19), \bar{x}+\frac{s}{\sqrt{20}} t_{0.05}(19)\right)$","$\left(\bar{x}-\frac{\sigma}{\sqrt{20}} u_{0.025}, \bar{x}+\frac{\sigma}{\sqrt{20}} u_{0.025}\right)$","$\left(\bar{x}-\frac{\sigma}{\sqrt{20}} u_{0.05}(19), \bar{x}+\frac{\sigma}{\sqrt{20}} u_{0.05}\right)$","$\left(\bar{x}-\frac{\sigma}{\sqrt{20}} u_{0.05}, \bar{x}+\frac{\sigma}{20} u_{0.05}\right)$"
11,"若随机变量$X、Y$的方差都存在,则____",$D(X+Y) \leq D(X)+\mathrm{D}(Y)$,不能确定 $D(X+Y)$ 与 $D(X)+\mathrm{D}(Y)$ 的大小关系,$D(X+Y) \geq D(X)+\mathrm{D}(Y)$,$D(X+Y)=D(X)+D(Y)$
12,"设随机变量$X\sim U[-2,2]$,则$X$和$Y=|X|$的相关系数$\rho_{XY}=$____",1,-1,$\frac{1}{2}$,0
13,"某高校某课程考试成绩分优秀合格不合格三种分别得3分、2分、1分。根据以往统计,每批参加考试的学生中,优秀、合格、不合格的各占30%、60%、10%。用中心极限定理估计100位学生考试总分在210分至230分之间的概率为:(其中$\phi(x)$是标准正态分布的分布函数)____",$1-2 \phi(2.67)$,$2 \phi(2.67)-1$,$2 \phi(1.67)-1$,$1-2 \phi(1.67)$
14,"设随机变量$X$的方差存在,且$E(X)\neq0,D(X)>0$。则有____",$E\left(X^2\right)<D(X)$,$E\left(X^2\right)>D(X)$,$E\left(X^2\right)<[E(X)]^2$,$E\left(X^2\right)=D(X)$
15,"在原假设为$H_0$和备择假设$H_1$的假设检验中,显著性水平为$\alpha$。下列说法错误的是____",$P( 拒绝 H_0 \mid H_1 为假 ) \leq \alpha$,$P( 接受 H_0 \mid H_1 为真 ) \leq \alpha$,"当 $\alpha=0.05$ 拒绝 $H_0$ 时, $\alpha=0.01$ 必然拒绝 $H_0$","当 $\alpha=0.05$ 接受 $H_0$ 时, $\alpha=0.01$ 必然接受 $H_0$"
16,"设随机向量$(XY)$的分布函数为$F(xy)$,则$P(-X<a,Y\leq y)=$____","$1-F(-a, y)$","1-F(-a, $y-0)$","$F(+\infty, y)-F(-a, y-0)$","$F(+\infty, y)-F(-a, y)$"
17,"已知随机变量$X$的密度函数为$f(x)=\left\{\begin{array}{cc}2x,&0\leq x\leq1\\0,&\text{其他}\end{array}\right.$.设随机变量$Y=\left\{\begin{array}{cc}1,&X\leq\frac{1}{3}\\0,&\text{其他}\end{array}\right.$和随机变量$Z=\left\{\begin{array}{ll}1,&X>\frac{1}{2}\\0,&\text{其他}\end{array}\right.$则概率$P(Y=1,Z=0)=$____",$\frac{3}{4}$,0,$\frac{5}{36}$,$\frac{1}{9}$
18,"设随机变量$X\sim P(3),Y$表示对$X$做相互独立观察时,事件$\{X\geq1\}$首次出现时已经观察的次数,则$Y$的分布律为:____","$P(Y=k)=e^{-3(k-1)}\left(1-e^{-3}\right), k=1,2, \cdots$","$P(Y=k)=\frac{3^k}{k !} e^{-3}, k=1,2, \cdots$","$P(Y=k)=e^{-3}\left(1-e^{-3}\right)^{(k-1)}, k=1,2, \cdots$","$P(Y=k)=C_n^k e^{-3 k}\left(1-e^{-3}\right)^{n-k}, k=1,2, \cdots, n$"
19,设$X\sim t(n)$则下列结论正确的是____,"$X^2 \sim F(1, n)$","$\frac{1}{X^2} \sim F(1, n)$",$X^2 \sim X^2(n)$,$X^2 \sim X^2(n-1)$
20,"设随机变量X,Y相互独立且均服从均匀分布U(0,1),则$P(X^2+Y^2<=1)=$____",$\frac{1}{4}$,$\frac{1}{2}$,$\frac{\pi}{8}$,$\frac{\pi}{4}$
21,"设二维随机向量$(X,Y)$在区域$\mathrm{D}=\{(x,y)|x^2+y^2<1\}$内均匀分布____","当 $|x|<1$ 时, $f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cc}\frac{1}{2 \sqrt{1-x^2}}, & -\sqrt{1-x^2}<y<\sqrt{1-x^2}, \\ 0, & \text { 其他}\end{array}\right.$","当 $|x|<1$ 时, $f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cl}\frac{1}{\pi}, & x^2+y^2<1 \\ 0, & \text { 其他 }\end{array}\right.$","当 $|x|<1$ 时, $f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cl}\frac{1}{\sqrt{1-x^2}}, & y<\sqrt{1-x^2}, \\ 0, & \text { 其他}\end{array}\right.$","当 $|x|<1$ 时, $\quad f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cc}\frac{1}{\pi \sqrt{1-x^2}},-\sqrt{1-x^2}<y<\sqrt{1-x^2} \text { } \\ 0, & \text { 其他}\end{array}\right.$"
22,"设总体$X\sim N\left(0,\sigma^{2}\right),\left(X_{1},X_{2},\cdots X_{n}\right)$为来自总体$X$的简单样本。记$\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$,$S_{1}^{2}=\frac{1}{n-1}\sum_{i=1}^{n}/\left(X_{i}-\bar{X}\right)^{2},S_{2}^{2}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$,当$n=9$时,下列选项正确的为____","$D\left(S_{1}^{2}\right)=\frac{2}{8} \sigma^{4}, D\left(S_{2}^{2}\right)=\frac{2}{9} \sigma^{4}$, 所以 $s_{2}^{2}$ 比 $S_{1}^{2}$ 有效","$D\left(S_{1}^{2}\right)=\frac{2}{8} \sigma^{4}, D\left(S_{2}^{2}\right)=\frac{2}{9} \sigma^{4}$, 不能确定 $S_{2}^{2}$ 与 $S_{1}^{2}$ 无偏性, 所以无法比较有效性","$D\left(S_{1}^{2}\right)=\frac{2}{9} \sigma^{2}, D\left(s_{2}^{2}\right)=\frac{2}{10} \sigma^{2}$, 不能确定无偏性, 所以无法比较有效性","$D\left(S_{1}^{2}\right)=\frac{2}{8} \sigma^{2}, D\left(S_{2}^{2}\right)=\frac{2}{9} \sigma^{2} \text {, 所以 } S_{2}^{2} \text { 比 } S_{1}^{2-1} \text { 有效 }$"
23,"在做区间估计时,若其他条件不变,关于末知参数的置信度分别为0.95和0.9的两个置信区间的长度正确的是____",前者一定比后者短,无法确定,前者一定比后者长,前者和后者一样长
24,"随机变量(X,Y)服从G={(x,y)|0<=x<=1,0<=y<=2}上的均匀分布则XY中至少有一个小于\frac{1}{3}的概率为____",\frac{5}{9},\frac{1}{2},\frac{1}{18},\frac{4}{9}
25,"设总体$X$的分布函数为$F(x)=\left\{\begin{array}{cc}1-1/x^{\theta+1},&x>1,\\0,&x\leq1\text{,}\end{array}\right.$其中末知参数$\theta>0,\left(X_1,X_2,\cdots,X_n\right)$为取自总体$X$的简单随机样本,$\bar{X}$为样本均值,$\theta$的矩估计量为:____",$\frac{n}{\sum_{i=1}^n \ln X_i}-1$,$1-\frac{n}{\sum_{i=1}^n \ln X_i}$,$\frac{1}{\bar{X}-1}$,$\frac{1}{1-\bar{X}}$
26,"设$X_{1},X_{2},\cdots,X_{n}$为来自总体$X$的样本,$E(X)=\mu,D(X)=\sigma^{2},\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$。
(i)$D\left(X_{i}+\bar{X}\right)=\frac{n+3}{n}\sigma^{2},\quad$(ii)$D\left(X_{i}-\bar{X}\right)=\frac{n_{\rceil}1}{n}\sigma^{2},(iii)\operatorname{cov}\left(X_{i},\bar{X}\right)=\frac{1}{n}\sigma^{2}$,$(iv)\operatorname{cov}\left(X_{i+1}-X_{i},\bar{X}\right)=0$.在(i)(ii)(iii)(iv)中正确的个数____",4,3,2,1
27,"设随机变量X的分布函数为$F(x)=\alpha\Phi(x)+(1-\alpha)\Phi\left(\frac{x-1}{2}\right)$,其中$\Phi(x)$为标准正态分布函数,$0<\alpha<1$,则$E(X)$和$D(X)$分别为____",$1-\alpha$ 和$5-(\alpha+1) 2$,$1-\alpha$ 和$5- (\alpha-1) 2$,$\alpha$ 和$5-(\alpha+1) 2$,$\alpha$ 和$5-(\alpha-1)2$
28,"设随机变量X的概率密度函数为
$$
f(x)=\begin{cases}0,&x<0,\\a,&0\leqslant x\leqslant 1,\text{,则}a={}_{-}\\a\mathrm{e}^{-(x-1)},&x>1\end{cases}
$$____",1,\frac{1}{2},\frac{1}{3},\frac{2}{3}
29,"设$X_1X_2\ldots,X_{10}$是取自正态总体$N\left(2\sigma^2\right)$的样本,记$\bar{X}=\frac{1}{10}\sum_{i=1}^{10}X_i,\mathrm{~S}=\sqrt{\frac{1}{9}\sum_{i=1}^{10}\left(X_i-\bar{X}\right)^2}$,已知$P\left(\bar{X}\leqslant2,S^2\leqslant\sigma^2\right)=\frac{1}{5}$,则$\mathrm{P}(\mathrm{S}\leq\sigma)$的值为____",\frac{1}{5},\frac{1}{4},\frac{2}{5},\frac{3}{5}
30,设$X\sim N\left(03^2\right)Y\sim N\left(12^2\right)$,若$P(X>a)=P(Y\leq3)$,则$\mathrm{a}=$____,-3,-2,2,0
31,对于任意两个事件A和B____,若 $A B \neq \varnothing$ ,则 $\mathrm{A} \mathrm{~B}$ 定独立,若 $A B \neq \varnothing$ 则AB有可能独立,若 $A B=\varnothing$ 则AB一定独立,"若 $A B=\varnothing$ ,则 A ,B 一定不独立"
32,"设(X_1,X_2,...,X_9)是来自正态总体X~N(0,6)的简单随机样本,下列选项正确的是____$(\chi_{0.975}^2(9)=2.7,\chi_{0.975}^2(8)=2.18,\chi_{0.05}^2(9)=16.919,\chi_{0.05}^2(8)=15.507)$",$P\left(\sum_{i=1}^9\left(X_i-\bar{X}\right)^2>16.2\right)=0.975$,$P\left(\sum_{i=1}^9\left(X_i-\bar{X}\right)^2>13.08\right)=0.025$,$P\left(\sum_{i=1}^9\left(X_i-\bar{X}\right)^2>16.2\right)=0.025$,$P\left(\sum_{i=1}^9\left(X_i-\bar{X}\right)^2>13.08\right)=0.975$
33,设随机变量$X\sim N(01)$,对给定的$\alpha(0<\alpha<1)$,数$\mathrm{u}_\alpha$满足P$\left\{X>u_\alpha\right\}=\alpha$.若$P\{X\mid\geq35\}=\alpha$则x等于____,$u_{\frac{a}{2}}$,$u_{1-\frac{\alpha}{2}}$,$u \frac{1-a}{2}$,$u_{1-\alpha}$
34,"设随机变量$X$服从参数为$\lambda=4$的泊松分布,即$X\sim\mathrm{P}(4)$,当$k=$.时,使得概率$P(X=k)$最大____",3,4,3 和 4,以上都不是
35,"设随机变量X和Y的均值、方差都存在。若E(XY)=E(X)E(Y),则____",X和Y独立,D(XY)=D(X)D(Y),X和Y不独立,D(X+Y)=D(X)+D(Y)
36,"设$X_1,X_2,\cdots,X_{20}$是总体$X$的简单样本,$X_0=\min\left\{X_1,X_2,\cdots,X_{20}\right\}$,其中$X$分布律如下表
\begin{tabular}{lccc}
\hline$X$&0&1&2\\
\hline$P$&$p_1$&$p_2$&$p_3$\\
\hline
\end{tabular}____","$$
\mathrm{P}\left(X_{(1)}=0\right)=p_1^{20}, \quad \mathrm{P}\left(X_{(1)}=2\right)=1-\left(1-p_3\right)^{20}
$$","$$
\mathrm{P}\left(X_{(1)}=0\right)=p_1^{20}, \quad \mathrm{P}\left(X_{(1)}=2\right)=p_3^{20}
$$","$$
\mathrm{P}\left(X_{(1)}=0\right)=p_1^{20}, \quad \mathrm{P}\left(X_{(1)}=2\right)=1-\left(1-p_2\right)^{20}
$$","$$
\mathrm{P}\left(X_{(1)}=0\right)=1-\left(1-p_1\right)^{20}, \quad \mathrm{P}\left(X_{(1)}=2\right)=p_3^{20}
$$"
37,"设二维随机向量$(X,Y)$的联合概率密度为$f(x,y)=\begin{cases}k,&0<x<1,x^2<y<1\text{;}\\0,&\text{其他}\end{cases}$其中$k>0$为常数,下例结论正确的为:____","$$
f_X(x)=\left\{\begin{array}{l}
k\left(1-x^2\right), 0<x<1, \\
0, \quad \text { 其他. }
\end{array} ; f_Y(y)=\left\{\begin{array}{l}
k \sqrt{y}, 0<y<1, \\
0, \quad \text { 其他. }
\end{array}\right.\right.
$$","$$
f_X(x)=\left\{\begin{array}{l}
k\left(x^2-1\right), 0<x<1, \\
0, \quad \text { 其他 }
\end{array} ; f_Y(y)=\left\{\begin{array}{l}
k \sqrt{y}, 0<y<1, \\
0, \quad \text { 其他 }
\end{array}\right.\right.
$$","$$
f_X(x)=\left\{\begin{array}{l}
k\left(1-y^2\right), 0<x<1, \\
0, \quad \text { 其他 }
\end{array} ; f_Y(y)=\left\{\begin{array}{l}
k \sqrt{x}, 0<y<1, \\
0, \quad \text { 其他 }
\end{array}\right.\right.
$$","$$
f_X(x)=\left\{\begin{array}{l}
\left(1-x^2\right), 0<x<1, \\
0, \quad \text { 其他 }
\end{array} ; f_Y(y)=\left\{\begin{array}{l}
k \sqrt{y}, 0<y<1, \\
0, \quad \text { 其他 }
\end{array}\right.\right.
$$"
38,"设$X_{1},X_{2},\cdots,X_{50}$为来自总体$X$的简单随机样本,$X$的概率密度都为
$$
f(x)=\left\{\begin{array}{cc}
0.1e^{-0.1x},&x>0\\
0,&x\leq0
\end{array}\right.
$$
$\bar{X}=\frac{1}{50}\sum_{i=1}^{50}X_{i}$是样本均值,根据中心极限定理估计概率$P(7<\bar{X}<13)$为
(其中$\phi(x)$是标准正态分布的分布函数____",$2\phi\left(\frac{3}{\sqrt{2}}\right)-1$,$2 \phi\left(\frac{3}{2.5}\right)-1$,$1-\phi(0.3)$,$2 \phi\left(\frac{3}{2}\right)-1$
39,"设$X_{1},X_{2},\cdots,X_{n}$是来自总体$X\sim N\left(\mu,\sigma^{2}\right)$的一个样本。在假设$H_{0}:\sigma^{2}\leq1,H_{1}:\sigma^{2}>1$的$p$值假设检验中,根据检验统计量样本观察值计算得到$p$值为0.039,现有以下四个结论i在显著性水平$\alpha=0.05$下,接受$H_{0}:\sigma^{2}\leq1$。ii在显著性水平$\alpha=0.05$下,拒绝接受$H_{0}:\sigma^{2}\leq1$。(iii)在同样的样本数据下,当检验问题改为$H_{0}:\sigma^{2}=1,H_{1}:\sigma^{2}\neq1$时,在显著性水平$\alpha=0.05$下,不能拒绝$H_{0}:\sigma^{2}=1$。(iv)在同样的样本数据下,当检验问题改为$H_{0}:\sigma^{2}=1,H_{1}:\sigma^{2}\neq1$时,在显著性水平$\alpha=0.05$下,拒绝接受$H_{0}:\sigma^{2}=1$。上述结论正确的有____",(i) (iv),(i) (iii),(ii) (iv),(ii) (iii)
40,"随机变量$X,Y$相互独立,其概率密度分别为
$$
f_{X}(x)=\left\{\begin{array}{rc}
e^{-x},&x>0,\\
0,&x\leq0,
\end{array}f_{Y}(y)=\left\{\begin{aligned}
2e^{-2y},&y>0,\\
0,&y\leq0.
\end{aligned}\right.\right.
$$
考虑随机变量
$$
Z=\begin{cases}1,&\text{当}X\leq Y\\0,&\text{当}X>Y\end{cases}
$$
则$Z$的期望与方差分别为____",$\frac{1}{3}$与$\frac{2}{9}$,$\frac{2}{3}$与$\frac{2}{9}$,$\frac{2}{3}$与$\frac{8}{9}$,$\frac{2}{3}$与$\frac{5}{9}$
41,"设$X\sim N\left(\mu_1,\sigma_1^2\right),Y\sim N\left(\mu_2,\sigma_2^2\right),\mathrm{X},\mathrm{Y}$相互独立,$X_1,X_2,\ldots,X_{n_1}$与$Y_1,Y_2,\ldots,Y_{n_2}$分别为X,Y的样本则有____","$\bar{X}-\bar{Y} \sim N\left(\mu_1+\mu_2, \sigma_1^2+\sigma_2^2\right)$","$\bar{X}-\bar{Y} \sim N\left(\mu_1-\mu_2, \frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}\right)$","$\bar{X}-\bar{Y} \sim N\left(\mu_1-\mu_2, \frac{\sigma_1^2}{n_1}-\frac{\sigma_2^2}{n_2}\right)$","$\bar{X}-\bar{Y} \sim N\left(\mu_1-\mu_2, \frac{\sigma_1^2}{\sqrt{n_1}}-\frac{\sigma_2^2}{\sqrt{n_2}}\right) $"
42,"设随机变量序列$X_1,X_2,\cdots,X_n,\cdots$相互独立、同分布,且$E\left(X_i\right)=3$,$D\left(X_i\right)=4,i=1,2,\cdots$,则下列选项不正确的是____","$$
\forall \varepsilon>0 \quad \lim _{n \rightarrow+\infty} \mathrm{P}\left(\left|\frac{1}{n} \sum_{i=1}^n X_i-3\right|>\varepsilon\right)=0
$$","$$
\frac{1}{n} \sum_{i=1}^n X_i^2 \longrightarrow 13
$$","$$
{n} \sum_{i=1}^n X_i \stackrel{p}{\longrightarrow} 3
$$","$$
\frac{1}{n} \sum_{i=1}^n X_i^3 \longrightarrow 27
$$"
43,"假设$(X,Y)$为二维随机变量则下列结论正确的是____","如果 $(X,Y)$ 服从二维正态分布,则 $X$ 与 $Y$ 一定独立","如果 $(X,Y)$ 服从二维正态分布,则 $X$ 与 $Y$ 一定不独立","如果 $(X,Y)$ 不服从二维正态分布,则 $X$ 与 $Y$ 一定都不服从正 态分布","如果 $(X,Y)$ 不服从二维正态分布,则 $X$ 与 $Y$ 不一定都不服从 正态分布"
44,"设$\mathrm{X}_1\mathrm{x}_2\ldots,\mathrm{x}_n$为来自X的简单随机样本$\mathrm{X}^2$服从$(17)$内的均匀分布,记$\bar{X}=\frac{1}{n}\sum_{i=1}^nX_i$,由中心极限定理以下成立的是____",$\lim _{n \rightarrow \infty} P\left\{\frac{\sum_{i=1}^n X_i-4}{\sqrt{3}} \leqslant x\right\}=\Phi(x)$,$\lim _{n \rightarrow \infty} P\left\{\frac{\bar{X}-4}{\frac{\sqrt{3}}{n}} \leqslant x\right\}=\Phi(x)$,$\lim _{n \rightarrow \infty} P\{\bar{X} \leqslant 3 x+4\}=\Phi(x)$,$\lim _{n \rightarrow \infty} P\left\{\sum_{i=1}^n X_i \leqslant \sqrt{3 n x}+4 n\right\}=\Phi(x)$
45,"设随机变量X,Y相互独立,其中X的分布函数为F(x)的概率分布为P(Y=1)=0.7,P(Y=2)=0.3.则随机变量Z=X+Y的分布函数G(z)=____",0.7F(z-2)+0.3F(z-1),0.7F(z-1)+0.3F(z-2),0.7F(z+2)+0.3F(z+1),0.7F(z+1)+0.3F(z+2)
46,"设二维随机变量$(X,Y)$的联合密度函数$f(x,y)=\begin{cases}12e^{-3x-b},&x>0,y>0\\0,&\text{o.w.}\end{cases}$令$M=\max(X,Y)$,则$\boldsymbol{M}$的分布函数为:____","$$
F(z)= \begin{cases}3 e^{-3 z}+4 e^{-4 z}-7 e^{-7 z}, & z \geq 0, \\ 0, & \text { 其他}\end{cases}
$$","$$
F(z)=\left\{\begin{array}{cc}1-e^{-3 z}-e^{-4 z}+e^{-7 z}, & z \geq 0 \\ 0, & \text { 其他}\end{array}\right.
$$","$$
F(z)=\left\{\begin{array}{cc}
1-e^{-7 z}, & z \geq 0 \\
0, & \text { 其他}
\end{array}\right.
$$","$$
F(z)=\left\{\begin{array}{cc}
1-e^{-3 z}-e^{-4 z}, & z \geq 0, \\
0, & \text { 其他}
\end{array}\right.
$$"
47,"设$X_1,X_2,X_3$是来自总体$X$的样本,其中$E(X)=7,D(X)=4$,下面说法正确的是____",$P\left(X_1=X_2=X_3\right)=0$,$D\left(X_1+X_2\right)=D(2 X)=4 D(X)=16$,$D\left(X_1+X_2\right)=2 D(X)=8$,$X_1=X_2=X_3$
48,在正态总体的假设检验中,显著性水平为$\alpha$则下列结论正确的是____,若在 $\alpha=0.1$ 下接受H0则在 $\alpha=0.05$ 下必接受H0,若在 $\alpha=0.1$ 下接受H0 ,则在 $\alpha=0.05$ 下必拒绝H0,若在 $\alpha=0.1$ 下拒绝H0则在 $\alpha=0.05$ 下必接受H0,若在 $\alpha=0.1$ 下拒绝H0则在 $\alpha=0.05$ 下必拒绝H0
49,"设随机变量XY和Z相互独立且服从同一伯努利分布$B(1,p)$,则$U=X+Y$与$Z$____",不独立且相关,不独立且不相关,独立且不相关,独立且相关.
50,"设随机变量$U\sim N(0,1)$,对给定的$\alpha(0<\alpha<1)$,分位点$u_a$满足$P\left(U>u_\alpha\right)=\alpha$。如果$P(|U|<c)=\alpha$,则$c=$____",$u_{1-\alpha}$,$\frac{u_{1-\alpha}}{2}$,$u_{\frac{\alpha}{2}}$,$u_{1-\frac{\alpha}{2}}$
51,"设$0<P(A)<1,0<P(B)<1$,则事件$A$和$B$相互独立的充要条件为:____",$A$ 和 $B$ 互不相容,$P(\bar{B} \mid \bar{A})+P(B \mid \bar{A})=1$,$P(B \mid A)+P(\bar{B} \mid \bar{A})=1$,$A$ 和 $B$ 对立
52,"设随机变量X的分布函数F(x)=0.8\Phi(x)+0.2\Phi(0.5x-0.5),\Phi(x)为标准正态分布函数,则X的数学期望E(X)=____",0.4,1,0.8,0.2
53,"设总体X服从参数为$\lambda(\lambda>0)$的泊松分布,$X_1X_2\ldots,X$n为来自总体X的简单随机样本.记$\bar{X}=\frac{1}{n}\sum_{i=1}^nX_i$$T=a\bar{X}+(\bar{X})^2$,其中$a$为常数.若$\mathrm{E}(T)=\lambda^2$则a=____",-\frac{1}{n},\frac{1}{n},-1,1
54,"设$X_1X_2\ldots,X_n$为来自总体$X\sim N\left(\mu,\sigma^2\right)$的一个样本,统计量$Y=n\left(\frac{X-\mu}{S}\right)^2$,则____",$Y \sim X 2(n-1)$,$Y \sim t(n-1)$,"$Y \sim F(n-1,1)$","$Y \sim F(1, n-1)$"
55,"设$X_{1},X_{2},\cdots,X_{16}$是来自总体$X\sim E\left(\frac{1}{8\theta}\right)$的一个样本,其中$\theta$末知,$X_{(1)}=\min\left(X_{1},X_{2},\cdots,X_{16}\right)$,若$kX_{(1)}$为$\theta$的无偏估计,则$k$的值为____",$4$,$2$,$1/2$,$1/4$
56,"设总体区服从均匀分布$U\left[\theta-\frac{1}{2},\theta+\frac{1}{2}\right]$,其中$\theta\in R$是末知参数,$X_1\ldotsX_n$为来自该总体的简单随机样本.取.$\left[\bar{X}-\frac{5}{\sqrt{12n}},\bar{X}+\frac{5}{\sqrt{12n}}\right]$为$\theta$的置信区间则由切比雪夫不等式这个置信区间的置信水平至少为____",0.96,0.9,0.5,0.72
57,"设连续型随机变量$X$的密度函数$f(x)$,且满足$E(X)=2,\int_{-\infty}^{+\infty}\left(x^{2}-2x-5\right)f(x)dx=6$.则$D(X-10)=$____",22,34,11,44
58,"由概率密度的性质得AB为随机事件$P(A)=\frac{2}{3},P(B\mid A)=\frac{1}{6},P(A\mid B)=\frac{1}{3}$,令$X=\left\{\begin{array}{ll}1,&A\text{发生}\\0,&A\text{不发生}\end{array}\quad Y=\begin{cases}1,&B\text{发生}\\0,&B\text{不发生}\end{cases}\right.$若$Z=X+aYX$与Z不相关则$a$的值为____",0.5,1,2,3
59,"设随机变量X的分布函数为$F(x)=\begin{cases}0,&x<0\\\frac{1}{2},&0\leq x<1\\1-\mathrm{e}^{-x},&x\geq 1\end{cases}$,则$\mathrm{P}\{\mathrm{x}=0\}=$____",0,$\frac{1}{2}$,$\frac{1}{2}-\mathrm{e}^{-1}$,$1-\mathrm{e}^{-1}$.
60,设$X$和$Y$为相互独立的连续型随机变量,它们的密度函数分别为$f_1(x)f_2(x)$,它们的分布函数分别为$F_1(x)F_2(x)$则____,$f 1(x)+f 2(x)$ 为某一随机变量的密度函数,$f 1(x) f 2(x)$ 为某一随机变量的密度函数,$F 1(x)+F 2(x)$ 为某一随机变量的分布函数,$F 1(x) F 2(x)$ 为某一随机变量的分布函数
61,"设$X_1,X_2,\cdots,X_n$是取自正态分布$N\left(\mu,\sigma^2\right)$的简单样本,其中$\mu$末知。$\sigma^2$的置信度为$1-\alpha$的双侧置信区问为$\left(\hat{\sigma}_1^2,\hat{\sigma}_2^2\right)$,则上限$\hat{\sigma}_2^2$的估计量应为:____","$
\frac{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}{\chi_{1-\alpha}^2(n-1)}
$","$
\frac{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}
$","$
\frac{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}{\chi_{1-\frac{a}{2}}^2(n-1)}
$","$
\frac{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}{\chi_\alpha^2(n-1)}
$"
62,"随机变量$(X,Y)\sim N(0,1;0,1;0.5)$,则____","$\frac{Y^2}{X^2} \sim F(1,1)$",$X^2$ 和 $Y^2$ 都服从 $\chi^2$ 分布,"$X+Y \sim N(0,2)$",$X^2+Y^2 \sim \chi^2(2)$
63,设随机变量X的分布函数$F(x)=0.2F_1(x)+0.8F_1(2x)$,其中$\mathrm{F}_1(\mathrm{x})$是服从参数为1的指数分布的随机变量的分布函数则D(X)为____,0.36,0.44,0.64,1
64,"设$\left(X_1,X_2,\cdots,X_k\right)$为来自总体$X\sim N\left(0,\delta^2\right)$的简单样本,下面不是参数$\delta^2$无偏估计量的为____",$\frac{1}{k-1} \sum_{i=1}^k\left(X_i-\bar{X}\right)^2$,$\frac{1}{k} \sum_{i=1}^k X_k^2$,$k \bar{X}^2$,$\sqrt{k} \bar{X}^2$
65,"设$X\sim N\left(0,\frac{1}{2}\right)$,在给定$\mathrm{X}=\mathrm{x}$的条件下,$\mathrm{Y}$的条件分布为$N\left(x,\frac{1}{2}\right)$,则$Y$的概率分布为____","$N(0,1)$","$N(1,1)$","$N(\frac{1}{2},1)$","$N(1,\frac{1}{2})$"
66,"设$A、B、C$为任意的三个随机事件,下列选项中错误的是____","当 $P(C)>0$ 且A,B为互不相容时, $P(A \cup B \mid C)=P(A \mid C)+P(B \mid C)$","当 $P(C)>0$ 时, $P(B \mid C)=1-P(\bar{B} \mid C)$","当 $0<P(C)<1$ 时, $P(B \mid C)=1-P(B \mid \bar{C})$","当 $P(C)>0$ 时, $P(A \cup B \mid C) \leq P(A \mid C)+P(B \mid C)$"
67,"设$X_{1},X_{2},\cdots,X_{n}$是来自总体$X\sim U(0,8\pi)$的简单样本,$\mathrm{Y}_{i}=\frac{\pi}{4}\sin\left(\frac{1}{8}X_{1}\right)$,则$\frac1n\sum_{i=1}^{n}Y_{i}$依概率收敛于____",$1 / 16$,$1 / 4$,$1 / 8$,$1 / 2$
68,"设随机变量X和Y相互独立都服从$[0,b]$上均匀分布,则$E[\min(X,Y)]=$____",\frac{b}{2},b,\frac{b}{3},\frac{b}{4}
69,"设随机事件AB的概率均大于0。(1)若AB互不相容则它们相互独立.(2)若AB相互独立则它们互不相容.(3)若P(A)=P(B)=0.5,则它们互不相容.4若P(A)=P(B)=0.5,则它们相互独立.上述结论正确的个数为____",2个,3个,1个,0个
70,"设随机变量$X_1,X_2,\ldots,X_n$相互独立,服从同一分布,方差$\sigma^2>0$,$\bar{X}=\frac{1}{n}\sum_{i=1}^nX_i$则必有____","$cov\left(X_1, \bar{X}\right)=\frac{\sigma^2}{n}$;","$cov\left(X_1, \bar{X}\right)=\sigma^2$",$\mathrm{D}\left(X_1+\bar{X}\right)=\frac{(n+2) \sigma^2}{n}$,$\mathrm{D}\left(X_1-X\right)=\frac{(n+1) \sigma^2}{n}$
71,"设$X_1,X_2,\cdots,X_{100}$是来自总体$X\sim B(1,p)$的简单样本,则下列结论中不正确的是____",$\frac{1}{100} \sum_{k=1}^{100} X_k \stackrel{P}{\longrightarrow} p$,"$\sum_{k=1}^{100} X_k \sim B(100, p)$","$\sum_{k=1}^{100} X_k \sim N(100 p, 100 p(1-p))$ (近似)",$P\left\{a<\sum_{k=1}^{100} X_k<b\right) \approx \Phi(b)-\Phi(a)$
72,设$(XY)$的联合分布函数为$F(xy)X$与$Y$的分布函数分别为$F_X(x)$和$F_Y(y)$,定义$U=\max(XY)V=\min(XY)$下列说法正确的是____,U的分布函数为 $F U(u)=F X(u) F Y(u)$,V的分布函数为 $F V(v)=1-[1-F X(v)][1-F Y(v)]$,"V的分布函数为 $F V(v)=F X(v)+F Y(v)-F(v,v)$",U V必相互独立
73,"设XY为两个随机变量D(X)=1,D(Y)=4,cov(X,Y)=1,令Z_1=X-2Y,Z_2=2X-Y,则Z_1与Z_2的相关系数为____",1,\frac{5}{\sqrt{13}},0,\frac{5}{2\sqrt{13}}
74,设随机变量X与$Y$相互独立且分别服从参数为1与参数为4的指数分布则$P(X<Y)=$____,\frac{1}{5},\frac{1}{3},\frac{2}{3},\frac{4}{5}
75,"已知P(A)=0.15,P(B)=0.25,P(AB)=0.125,则P(A\cupB)与P(\overline{A}B)的值为____",0.3750.175,0.6250.375,0.2750.125,0.5750.075
76,甲乙两人约定在$8\sim12$点某地会面设两人8点后$X$与$Y$小时到达会面地点,且两人到达时间相互独立且均服从$[0$4]上的均匀分布则先到者的平均等待时间为多少小时____,\frac{1}{3},\frac{2}{3},1,\frac{4}{3}
77,"要使$P(X=k)=at^k,k=1,2,\cdots$为离散型随机变量$X$的分布列,常数$a、t$、应该满足的条件为:____",$t=\frac{1}{1+a}$ 且 $a>0$,$a=\frac{1}{t}-1$ 且 $t<\mathbf{1}$,$a>0$ 且 $0<t<1$,$a=1-t$ 且 $0<t<1$
78,"对一目标连续相互独立的射击,直至命中三次为止,设每次射击的命中率为0.6,消耗的子弹数为$X$,则$E(X)$等于$(\quad)$____",5,7,3,9
79,"设$(X_1...,X_n)$是来自正态总体$X\sim N\mu,\sigma^2$的一个样本,$\bar{X}$是样本均值,记$S_1^2=\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2$,$S_2^2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\overline{X})^2$,$S_3^2=\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\mu)^2$,$S_4^2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\mu)^2$,则服从自由度为n-1的t分布的随机变量是____",$\dfrac{\overline{X}-\mu}{S_3}\sqrt{n}$,$\dfrac{\overline{X}-\mu}{S_2}\sqrt{n-1}$,$\dfrac{\overline{X}-\mu}{S_1}\sqrt{n-1}$,$\dfrac{\overline{X}-\mu}{S_4}\sqrt{n}$
80,若$(XY)$服从二维正态分布$N(0011\rho)$,令$U=\alpha X+\beta Y$$V=\alpha X-\beta Y$,则$\operatorname{cov}(UV)=$____,$\alpha^2+\beta^2$,$\alpha^2-\beta^2$,$\alpha^2+2 \rho \alpha \beta+\beta^2$,$\alpha^2-2 \rho \alpha \beta+\beta^2$
81,"设$X_1,X_2,\ldots,X_{10}$是来自正态总体$N\left(\mu,\sigma^2\right)$的一个简单随机样本,下列关于末知参数$\mu$的无偏估计量中哪一个最有效为____",$\frac{1}{4} X_1+\frac{3}{4} X_2$,$\frac{1}{4} X_1+\frac{1}{4} X_2+\frac{1}{4} X_3+\frac{1}{4} X_4$,$\frac{1}{10} \sum_{i=1}^{10} X_i$,$\frac{1}{2} X_1+\frac{1}{2} X_2$
82,"假设某厂生产的一种保险丝的融化时间服从分布$N(\mu,\sigma^2)$,按规定保险丝融化时间的方差不得超过400,现从一批产品中抽取25个,测得其融化时间的样本方差为427.5。在显著性水平0.05下,根据这个样本数据检验这批样品的方差是否符合要求,假设检验的原假设为$H_0$,被则假设$H_1$,拒绝与为W以及检验结论为____(本题查表值:$\chi_{0.05}^2(24)=36.415,\chi_{0.025}^2(24)=39.364,\chi_{0.95}^2(24)=13.848,\chi_{0.975}^2(24)=12.401$)","$\mathrm{H}_0: \sigma^2 \geq 400$, $\mathrm{H}_1: \sigma^2<400$ ;$ W=\left\{\frac{24 S^2}{400}<13.848\right\}$;结论:符合要求","$\mathrm{H}_0: \sigma^2 \leq 400$, $\mathrm{H}_1: \sigma^2>400 $; $W=\left\{\frac{24 S^2}{400}>39.364\right\}$; 结论: 不符合要求","$\mathrm{H}_0: \sigma^2 \geq 400$, $\mathrm{H}_1: \sigma^2<400$ ;$ W=\left\{\frac{24 S^2}{400}<12.401\right\}$;结论:符合要求","$\mathrm{H}_0: \sigma^2 \leq 400$,$ \mathrm{H}_1: \sigma^2>400 $; $W=\left\{\frac{24 S^2}{400}>36.415\right\}$;结论;符合要求"
83,"设总体$X$的分布函数为$F(x),\left(X_{1},X_{2},\cdots,X_{n}\right)\left(\mathrm{n}/\mathbf{F}^{50)}\right.$为取自总体$X$的简单随机样本,$\mathrm{c}$为给定的常数$Y_n$示$\left(Y_{1},X_{2},\cdots,A_{n}\right)$中小于等于$\mathrm{c}$的个数。则
(i)$Y_{n}\sim B(n,F(c))$
(ii当$n$充分大时,$Y_{n}$近似服从正分分布
(iii)$\left\{Y_{n}\right\}$依概率收敛到$\left.F\right)$($)>0$
(iv)对任意的$\varepsilon>0,\lim_{n\rightarrow\infty}P\left(\left|\frac{\Psi_{n}}{n}-F(c)\right|\varepsilon\right)=1$,
上述(i)(ii)(iii)(iv)中正确的个数为____",2,4,3,1
84,"设$A$与$B$为随机事件,$0<P(A)<1,P(B)>0,P(B\mid A)=1-P(\bar{B}\mid\bar{A})$,则必有____",$P(A \mid B)=P(\bar{A} \mid B)$,$P(A \mid B) \neq P(\bar{A} \mid B)$,$P(\bar{A} \bar{B})=P(\bar{A}) P(\bar{B})$,$P(A B) \neq P(A) P(B)$
85,"设$A$与$B$为互不相容的事件,且$P(A)>0,P(B)>0$,则下列各式中不正确的是____",$P(\bar{B} \mid A)=0$,$P(A \cap B)=0$,$P(A \cup B)=P(A)+P(B)$,$P(A \cap \bar{B})=P(A)$
86,"设$\left(X_1,X_2,\cdots,X\right.$,为来自标准正态总体$N(1,9)$的简单随机样本,$\bar{X}$与$S^2$分别为样本均值与样本方差,令$Y=\bar{X}^2-S^2$,则$E(Y)=$____",-2,-8,0,7
87,设$(XY)$的联合概率密度函数为$f(xy)=Ae^{-x}(x>00<y<2)$,则$A=$____,0.5,0.75,0.25,1
88,"设有2个袋子各装r+b只球其中红球r只黑球b只今从第1个袋子随机取一球放入第2个袋子再从第2个袋子随机取一球.令
$$
X_i=\left\{\begin{array}{ll}
1,&\text{第i次取出红球}\\
0,&\text{第i次取出黑球}
\end{array}\right.
$$(i=1,2)则____",$X_1$和X_2独立不同分布,$X_1$和$X_2$不独立,同分布,$X_1$和$X_2$独立,同分布,$X_1$和$X_2$不独立,不同分布
89,"设总体$\mathrm{X}$的概率密度为$f(x,\theta),\theta$是末知参数,现有$X_1,X_2,\ldots,X_n$是来自总体$\mathrm{X}$的一个简单随机样本,对给定的置信水平$1-\alpha$及样本容量$n$后,参数$\theta$的置信区间____",与样本容量 $n$ 无关,唯一,与$1-\alpha$无关,不唯一
90,"A、B是两个随机事件,P(A)=0.3,P(B)=0.4,且A与B相互独立,$P(A\cup B)=$____",0.7,0.58,0.82,0.12
91,"设随机变量X$YZ$相互独立,且$X\sim N(12)$,$Y\sim N(22)$,$Z\sim N(37)$,记$a=P\{X<Y\}$$b=P\{Y<Z\}$则____",a<b,a>b,a=b,无法确定
92,"设总体$X\sim N(0\sigma^2)$($\sigma^2$已知)$X_1,\ldots,X_n$是取自总体$X$的简单随机样本,$S^2$为样本方差则下列正确的是____",$\sum_{i=1}^n X_i^2 \sim \chi^2(n)$,$\frac{\sum_{i=1}^n X_i}{\sqrt{n S}} \sim t(n)$,$\frac{1}{n}\left(\sum_{i=1}^n \frac{X_i}{\sigma}\right)^2+\frac{(n-1) S^2}{\sigma^2} \sim \chi^2(n)$,"$\frac{(n-1) X_n^2}{\sum_{i=1}^{n-1} X_i^2} \sim F(n-1,1)$"
93,"设连续型随机变量X的密度函数满足:$f(x)=f(-x)$,$x\geq0$。记F(x)为X的分布函数。则$P(|X|<1024)=$____",2(1-F(1024)),1-F(1024),2-F(1024),2F(1024)-1
94,"某工厂生产的灯泡,其寿命(千小时)均服从参数为4的指数分布。现在完全随机地从该厂生产的灯泡中抽取4只,其中恰有2只灯泡寿命小于1千小时的概率为____","$$
4 e^{-4}\left(1-e^{-4}\right)^{3}
$$","$$
4 e^{-12}\left(1-e^{-4}\right)
$$","$$
1 - \left(1-e^{-4}\right)
$$","$$
6 e^{-8}\left(1-e^{-4}\right)^{2}
$$"
95,"设随机变量$X\sim U(0,2),Y\sim U(0,1)$,且$X$与$Y$相互独立。则$P(X<Y)=$____",\frac {1}{2},\frac {1}{4},\frac {1}{3},\frac {3}{8}
96,设随机变量$X\sim E(1)$,记$Y=\max(X1)$,则$E(Y)=$____,1,1+\mathrm{e}-1,1-e-1,e-1
97,"设$\left(X_{1},X_{2},\cdots,X_{10}\right)$是来自总体$N(0,1)$的一个样本,统计量$a\left(X_{1}+X_{2}+\cdots+X_{6}\right)^{2}+$$b\left(X_{7}+X_{8}+X_{9}+X_{10}\right)^{2}$的分布是自由度为$\mathrm{n}$的$\chi^{2}$分布,则$a、b、n$的数值分别是____","$1 / 2,1 / 2,10$","$1 / 4,1 / 6,2$","$1 / 5,1 / 5,2$","$1 / 6,1 / 4,2$"
98,"设二维连续型随机变量$(X,Y)$的联合概率密度为$f(x,y),X$与$Y$的边缘密度函数分别为$f_X(x)$与$f_Y(y)$,$Z=X+Y$,则$Z$的概率密度函数为:____","$
\int_{-\infty}^{+\infty} f_X(v) f_Y(z-v) d v
$","$
\int_{-\infty}^{+\infty} f(v, z-v) d v
$","$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left[f_X(x)+f_Y(y)\right] d x d y
$","$
\int_{-\infty}^{+\infty} f_X(z-v) f_Y(v) d v
$"
99,设$X\sim N(14)$$P(X>a)=\Phi(-1)$则a=____,2,3,1,0.5
100,"设总体X服从标准正态分布$\left(X_1,X_2,\ldots,X_n\right)$为总体的简单佯本,$\bar{X}=\frac{1}{n}\sum_{i=1}^nX_i$,$S^2=\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\bar{X}\right)^2$,则____","$X \sim \mathrm{N}(0,1)$","$n \mathrm{X} \sim N(0,1)$",$\frac{X}{S} \sim t(n-1)$,$\sqrt{n} \frac{X}{S} \sim t(n-1)$
101,"在假设检验中(i)接受原假设时,可能会犯第二类错误,(ii)接受原假设时,可能会犯第一类错误,(iii)若显著性水平为$5\%$,拒绝原假设$\mathrm{H}_{0}$时,犯第一类错误的概率超过$5\%$,(iv)若显著性水平为5%拒绝原假设$\mathrm{H}_{0}$时,犯第二类错误的概率超过5%。上述说法正确的有几个____",4个,3个,2个,1个
102,"在$H_0$为原假设,$H_1$为备选假设的徦设检验中,若显著性水平为$\alpha=0.025$,则____",$P( 接受 H_0 \mid H_0 成立 ) \leq 0.025$,$P( 接受 H_1 \mid H_1 成立 ) \leq 0.025$,$P( 接受 H_0 \mid H_1 成立 ) \leq 0.025$,$P( 接受 H_1 \mid H_0 成立 ) \leq 0.025$
103,"学生考试成绩服从正态分布$N\left(\mu,3^2\right)$任取36个学生的成绩测得样本平均值$\bar{x}=60$,则$\mu$的置信度为0.95的置信区间为____","$\left(60-\frac{1}{2} t_{0.025}(36), 60+\frac{1}{2} t_{0.025}(36)\right)$","$\left(60-\frac{1}{2} t_{0.025}(35), 60+\frac{1}{2} t_{0.025}(35)\right)$","$\left(60-\frac{1}{2} z_{0.025}, 60+\frac{1}{2} z_{0.025}\right)$","$\left(60-\frac{1}{2} z_{0.05}, 60+\frac{1}{2} z_{0.05}\right)$"
104,"现有五个灯泡的寿命$\mathrm{X}_{1},X_{2},\ldots,X_{5}$独立同分布,且$E\left(X_{i}\right)=5,D\left(X_{i}\right)=15$,则5个灯泡的平均寿命$\bar{X}=\frac{1}{5}\sum_{i=1}^{5}X_{i}$的方差为____",3,1,5,$\frac{1}{5}$
105,"设随机变量X$\sim U[-11]$,则随机变量$U=arcsin X$,$V=arccos X$的相关系数为____",-1,0,\frac{1}{2},1
106,"设随机变量$X\sim N(0,1)$,$\Phi(x)$为X的分布函数,$Y=2(X+|X|)$,则Y的分布函数为____","$F_Y(y)=\begin{cases} \Phi(\frac{y}{2}), y\geq0, \\ 0, y < 0 \end{cases}$","$F_Y(y)=\begin{cases} \Phi(2y), y\geq0, \\ 0, y < 0 \end{cases}$","$F_Y(y)=\begin{cases} \Phi(\frac{y}{4}), y\geq0, \\ 0, y < 0 \end{cases}$","$F_Y(y)=\begin{cases} \Phi(4y), y\geq0, \\ 0, y < 0 \end{cases}$"
107,"已知随机变量X的密度函数$f(x)=\left\{\begin{array}{ll}A\mathrm{e}^{-x},&x\geqslant\lambda,\\0,&x<\lambda\end{array}(\lambda>0,A\right.$为常数$)$,则概率$\mathrm{P}\{\lambda<X<\lambda+a\}(a>0)$的值____",与a无关随 $\lambda$ 的增大而增大,与a无关随 $\lambda$ 的增大而减小,与 $\lambda$ 无关随a的增大而增大,与 $\lambda$ 无关随a的增大而减小
108,"设随机变量$Z$的分布函数为
$$
F(z)=\left\{\begin{array}{cc}
1-e^{-3z}-e^{-4z}+e^{-7z},&z\geq0,\\
0,&\text{其他.}
\end{array}\right.
$$
则$E(Z)=$____",$-\frac{7}{12}$,$\frac{7}{12}$,$-\frac{37}{84}$,$\frac{37}{84}$
109,"设随机变量X与Y相互独立X的概率分布为$P\{X=0\}=P\{X=1\}=\frac{1}{2},Y$的概率密度为$f_Y(y)=\left\{\begin{array}{ll}2y,&0<y<1\\0,&\text{其他}\end{array}\right.$,记$Z=X+2Y则$$P\left\{Z>\frac{3}{2}\right\}=$____",\frac{7}{16},\frac{15}{16},\frac{11}{16},\frac{11}{8}
110,"若随机变量$X$的概率密度为$f(x)=cx^4e^{-|x|},-\infty<x<+\infty,\mathrm{c}$是大于0的常数,$X$的分布函数为$F(x)$,下面4种关系式:
(i)$F(x)=F(-x)$;(ii)$F(-x)=1-F(x)$
(iii)$P(|X|>x)=2[1-F(x)]$;(iv)$F(0)=\frac{1}{2}$;
其中正确关系式的个数为:____",1,4,2,3
111,"设$X_1X_2\ldots,X_n$是取自正态总体$N\left(\mu\sigma^2\right)$的简单随机样本,其均值和方差分别为$\overline{\mathbf{X}}S^2$,则服从自由度为$n$的$x^2$分布的随机变量是____",$\frac{\bar{X}^2}{\sigma^2}+\frac{(n-1) S^2}{\sigma^2}$,$\frac{n \bar{X}^2}{\sigma^2}+\frac{(n-1) S^2}{\sigma^2}$,$\frac{(\bar{X}-\mu)^2}{\sigma^2}+\frac{(n-1) S^2}{\sigma^2}$,$\frac{n(\bar{X}-\mu)^2}{\sigma^2}+\frac{(n-1) S^2}{\sigma^2}$
112,"设连续随机变量$X$的密度函数满足$f(x)=f(-x),F(x)$是$X$的分布函数,则$P(|X|>2018)=$____",$2-F(2018)$,$2 F(2018)-1$,1-2F(2018),$2[1-F(2018)]$
113,"设总体X在区间[0,a]上服从均匀分布,若有三个样本观察值分别为2020,2022,2024,则末知参数a的矩估计值为____",以上都不对,4040,4042,4044
114,"设$\left(X_{1},X_{2},\cdots,X_{n+1}\right)$为取自总体$X\sim N\left(\mu,\sigma^{2}\right)$的样本,其中,$\mu,\sigma^{2}$均未知。记
$$
\bar{X}=\frac{1}{n+1}\sum_{k=1}^{n+1}X_{k},Q=\sum_{k=1}^{n+1}\left(X_{k}-\bar{X}\right)^{2},
$$
则检验假设$H_{0}:\mu=4,H_{1}:\mu\neq4$所用的检验统计量为____",$\sqrt{n(n-1)}\frac{\bar{X}-4}{\sqrt{Q}}$,$\sqrt{n(n+1)}\frac{\bar{X}-4}{\sqrt{Q}}$,$\frac{\bar{X}-4}{\sqrt{nQ}}$,$\sqrt{n(n-1)}\frac{\bar{X}-4}{Q}$
115,"设事件$AB$满足$P(B)=0.4$$P(\bar{A}\mid B)=0.8$,$P(\bar{A}\mid\bar{B})=0.3$,则$P(B\mid A)=$____",0.5,0.24,0.36,0.16
116,"一种传染病在某市的发病率为3%,为查出这种传染病,医院采用一种新的检验法,它能使$98\%$的患有此病的人被检出阳性但也会有0.5%未患此疒的人被检查出阳性.则某人被此法检出阳性的概率:____",0.03425,0.96575,0.3425,0.6575
117,"设$(X,Y)$服从单位圆内的均匀分布,以下说法正确的是____",$X$ 和 $Y$ 相互独立,"$cov(X, Y) \neq 0$","$cov(X, Y)=0$",$D(X-Y)=D(X)-D(Y)$
118,"设$f(x)=\{\begin{array}{ll}{{\sin(x),}}&{{\quad a<x<b,}}\\{{0,}}&\text{其他}\end{array}$则在下列给定的各组数值中应取____才可以让f(x)成为一个概率密度函数","$a,b=(0, \pi)$","$a,b=(0, \pi/2)$","$a,b=(0, 3\pi/2)$","$a,b=(0, 2\pi)$"
119,"设总体$X\sim N(0,1),X_{1},X_{2},\cdots,X_{n},X_{n+1},X_{n+2},\cdots,X_{2n}$为总体$X$的样本,
$Y=\left(\sum_{k=1}^{n}X_{k}\right)^{2}$,$Z=\left(\sum_{k=n+1}^{2n}X_{k}\right)^{2}$,
(i)$\frac{1}{n}(Y+Z)\sim\chi^{2}(2)$,
(ii)$\frac{1}{n^{2}}(Y+Z)\sim\chi^{2}(2)$,
(iii)$\frac{\mathrm{Y}}{\boldsymbol{Z}}\sim F(1,1)$,
(iv)$\frac{\mathbf{Y}}{\boldsymbol{Z}}\sim F(n,n)$上述(i)(ii)(iii)(iv)中正确个数为____",3,2,4,1
120,"设条件概率密度为$f_{x\mid Y}(x\mid Y)=\left\{\begin{array}{cc}\frac{2x}{y^2},&0\leq x\leq y,\\0,&\text{其他}\end{array}\right.$,则$P\left(X>\frac{1}{4}\mid Y=\frac{3}{4}\right)=$____",$\frac{1}{9}$,$\frac{9}{16}$,$\frac{7}{16}$,$\frac{8}{9}$
121,"随机变量$X,Y$相互独立,且$X$服从区间$(0,1)$上的均匀分布,$Y$的概率密度为
$$
f(y)=\left\{\begin{array}{rr}
\frac{1}{2}e^{-\frac{y}{2}},&y>0\\
0,&y\leq0
\end{array}\right.
$$
那么$X$和$2Y$的联合概率密度为____","$$
f(x, y)=\left\{\begin{array}{rc}
\frac{1}{2} e^{-y}, & 0<x<2, \quad y>0, \\
0, & \text { 其他. }
\end{array}\right.
$$","$$
f(x, y)=\left\{\begin{array}{rc}
\frac{1}{4} e^{-\frac{y}{4}}, & 0<x<1, \quad y>0, \\
0, & \text { 其他. }
\end{array}\right.
$$","$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{2} e^{-\frac{y}{2}}, & 0<x<1, \quad y>0, \\
0, & \text { 其他. }
\end{array}\right.
$$","$$
f(x, y)=\left\{\begin{array}{rc}
\frac{1}{4} e^{-\frac{y}{2}}, & 0<x<2, \quad y>0, \\
0, & \text { 其他. }
\end{array}\right.
$$"
122,"某工厂生产一批滚珠,其直径$X$服从正态分布$N\left(\mu,\sigma^{2}\right)$,随机抽取20个滚珠,测得样本均值记为$\bar{x}$,样本方差记为$s^{2}$,则$\mu$的单侧置信下限、$\sigma^{2}$单侧置信上限分别为(置信度都为$1-\alpha$)____","$$
\bar{x}-\frac{s}{\sqrt{20}} t_{\alpha}(19), \quad \frac{19 s^{2}}{\chi_{1-\alpha}^{2}(19)}
$$","$$
\bar{x}-\frac{\sigma}{\sqrt{20}} u_{\alpha}, \quad \frac{19 s^{2}}{\chi_{1-\alpha}^{2}(19)}
$$","$$
\bar{x}-\frac{s}{\sqrt{20}} t_{\alpha}(19), \quad \frac{19 s^{2}}{\chi_{\alpha}^{2}(19)}
$$","$$
\bar{x}-\frac{\sigma}{\sqrt{20}} u_{\alpha}, \quad \frac{19 s^{2}}{\chi_{\alpha}^{2}(19)}
$$"
123,"设随机变量X的密度函数为$f(x)=\begin{cases}\frac{3}{16}x^2,-2<x<2\\0,其他,\end{cases}$令$Y=X^2$则随机变量Y的密度函数为____","$f_Y(y) = \begin{cases} \frac{3}{32\sqrt{y}}, 0 < y < 4, \\ 0, 其他, \end{cases}$","$f_Y(y) = \begin{cases} \frac{3}{16}\sqrt{y}, 0 < y < 4, \\ 0, 其他, \end{cases}$","$f_Y(y) = \begin{cases} \frac{3}{16\sqrt{y}}, 0 < y < 4, \\ 0, 其他, \end{cases}$","$f_Y(y) = \begin{cases} \frac{3}{32}\sqrt{y}, 0 < y < 4, \\ 0, 其他, \end{cases}$"
124,设$X$为随机变量,若矩阵$\boldsymbol{A}=\left(\begin{array}{ccc}2&3&2\\0&-2&-X\\0&1&0\end{array}\right)$的特征值全为实数的概率为0.5则____,X服从区间 $[0 2]$ 的均匀分布,X服从二项分布 $B(2 0.5)$,X服从参数为 1 的指数分布,X服从正态分布
125,"设随机变量$(X,Y)$的联合概率密度为
$$
f(x,y)=\left\{\begin{aligned}
\frac{21}{4}x^{2}y,&x^{2}<y<1\\
0,&\text{其他.}
\end{aligned}\right.
$$
(1)$f_{X\mid Y}\left(x\mid y=\frac{1}{2}\right)=\left\{\begin{array}{ccc}3\sqrt{2}x^{2},&-\frac{\sqrt{2}}{2}<x<\frac{\sqrt{2}}{2},&E(XY)=0\\0,&\text{其他.}&E(X)=\infty\end{array}\right.$
(2)$f_{Y\mid X}\left(y\mid x=\frac{\sqrt{2}}{2}\right)=\left\{\begin{aligned}\frac{8}{3}y,&\frac{1}{2}<y<1\\0,&\text{其他.}\end{aligned}\right.$
(3)$X,Y$相互独立.
(4)$X,Y$不相关.
上述结论正确的个数为____",1个,2个,3个,4个
126,已知随机变量$X\sim N\left(\mu\sigma^2\right)$,事件$A=\{X>\mu\}$,事件$B=\{X$$>\sigma\}$,事件$C=\{X>\mu+\sigma\}$,如果$P(A)=P(B)$那么事件A、B、C至多有一个发生的概率为____,\frac{1}{2},\Phi(1),1-\Phi(1),1
127,设二维随机变量$(XY)$服从二维正态分布则下列说法不正确的是____,XY一定相互独立,X Y的任意线性组合 $1 \mathrm{X}+12,X Y分别服从于一维正态分布,当相关系数 $\rho=0$ 时,$X Y相互独立
128,"设$X_1X_2\ldots,X_n$是来自总体$X$的简单随机样本,$E(X)=\muD(X)=1$下面四个选项中正确的是____","$\sqrt{n}(\bar{X}-\mu) \sim N(0,1)$.",$E\left(\bar{X}^2\right)=\mu^2$.,由切比雪夫不等式知 $P\{|\bar{X}-\mu|<\varepsilon\} \geqslant 1-\frac{1}{m \varepsilon^2}$ (为任意正数).,若 $\mu$ 为末知参数,则样本均值 $\bar{X}$ 是 $\mu$ 的知估计,又是 $\mu$ 的最大似然估计.
129,"设随机变量$(X,Y)$的联合密度函数是:$f(x,y)=\left\{\begin{array}{c}ke^{-3x-6y},x>0,y>0\\0,\text{otherwise}\end{array}\right.$,则$P(0\leq X\leq2,0\leq Y\leq1)=$____","$$
\left(1-e^{-2}\right)^{2}
$$","$$
\left(1-e^{-s}\right)^{2}
$$","$$
\left(1-e^{-6}\right)^{2}
$$","$$
\left(1-e^{-4}\right)^{2}
$$"
130,下列各函数中可以做随机变量的分布函数的是____,$F(x)=\frac{1}{1+x^2}$,$F(x)=\frac{3}{4}+\frac{1}{2 \pi} \arctan x$,$F(x)=e^{-e^{-x}}$,$F(x)=\sin x$
131,"设总体X服从拉普拉斯分布$f(x,\lambda)=\frac{1}{4\lambda}e^{-\frac{|x|}{2\lambda}},-\infty<x<\infty\text{,其中}\lambda>0$。若取得样本值$\left(x_1,x_2,\cdots x_n\right)$,参数$\lambda$的极大似然估计值为____","$
\frac{1}{2 n} \sum_{i=1}^n\left|x_i\right|
$","$
\frac{1}{2 n} \sum_{i=1}^n x_i
$","$
\frac{1}{n} \sum_{i=1}^n\left|x_i\right|
$","$
\frac{1}{4 n} \sum_{i=1}^n\left|x_i\right|
$"
132,"已知随机变量$X_1X_2X_3X_4$相互独立,$X_1$与$X_2$服从标准正态分布,$X_3$与$X_4$的概率分布为
\begin{tabular}{|c|c|c|}
\hline$X_i$&-1&1\\
\hline$P$&$\frac{1}{4}$&$\frac{3}{4}$\\
\hline
\end{tabular}
i=3,4定义$X=X_1X_3-X_2X_4$则X所服从分布为____","N(0,1)","N(0,2)","N(2,2)","N(1,2)"
133,"电站供电网给10000盏电灯供电,夜晩每盏灯开灯的概率为0.7,假设灯是否开关相互独立,用切比雪夫不等式估计同时开的灯数在6900至7100之间的概率至少为:____",0.79,0.9869,0.9767,0.9475
134,"设$A,B,C$是三个相互独立的随机事件,且$P(A)>0,0<P(C)<1$,则在下列给定的四对事件中不能确定相互独立的是____",$\overline{A \cup B}$ 与 $C$;,$\overline{A C}$ 与 $\bar{C}$;,$\overline{A-B}$ 与 $\bar{C}$;,$\overline{A B}$ 与 $\bar{C}$
135,"设随机变量X的分布函数为
$$
F(x)=\left\{\begin{array}{ll}
0,&x<0\\
\frac{1}{2},&0\leq x<1\\
1-\mathrm{e}^{-x},&x\geq 1
\end{array}\right.$$,则$\mathrm{P}\{\mathrm{X}=0\}=$$____",0,\frac{1}{2},\frac{1}{2}-e^{-1},1-e^{-1}
136,无线电讯号将两信号*和#传送出去,接收站收到时,*被误收作#的概率为0.01#被误收作*的概率为0.01。已知在信号传送中,*和#发出的概率分别为2/3和1/3若接收站收到的信息为*,则原发信号是*的概率为____,197/199,196/197,98/99,198/199
137,"设随机变量$X\sim N(0,1)$,$Y\sim N(1,4)$,且相关系数为$\rho_{XY}=1$,则____",P(Y=-2X-1)=1,P(Y=2X-1)=1,P(Y=-2X+1)=1,P(Y=2X+1)=1
138,"假设用测量仪对某大楼的高度进行$n$次独立测量,并假设各次测量结果$X_{i}(i=1,2,\cdots)$都服从正态分布$N(\mu,0.01)$,其中$\mu$为大楼的真实高度,设$n$次测量的平均值记为$\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$,如果用切比雪夫不等式估计,使得用$\bar{X}$对真实值的估计误差不超过0.1的概率不小于0.95,n至少为____",50,90,100,20
139,"设总体$X$的期望与方差$E(X)$和$D(X)$都存在,$X_1,X_2,\cdots,X_n$,$n>4$为来自总体$X$的一个样本,下列$E(X)$估计量中最有效的是____",$\frac{1}{4} \sum_{i=1}^4 X_i$,$\frac{1}{2}\left(X_1+X_2\right)$,$\frac{1}{n} \sum_{i=1}^n X_i$,"$\sum_{i=1}^n C_i X_i$, 其中 $\sum_{i=1}^n C_i=1$ 。"
140,"设二维随机变量$(X,Y)$在区域$D=\{(x,y):0<x<3,0<y<2\}$内均匀分布,$P(X+Y<2)=kP(X+Y<1)$,则$k=$____",1,2,3,4
141,"设随机变量X与Y独立,它们的概率分布分别为:X~N(-2,-1),Y~N(1,2).则Z=2X-Y+8的分布为____","Z~N(8, 7)","Z~N(3, 6)","Z~N(8, 5)","Z~N(12, 9)"
142,"设总体X的概率分布如下
\begin{tabular}{c|ccc}
\hline$X$&-1&0&1\\
\hline$P$&$\frac{1}{4}$&$\frac{1}{2}$&$\frac{1}{4}$\\
\hline
\end{tabular}
从总体中抽取$n$个简单随机样本,$N_1$表示$n$个样本中取到1的个数$N_2$表示$n$个样本中取到0的个数$N_3$表示,$n$个样本中取到1的个数则$N_1$与$N_2$的相关系数为____",-1,$-\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,1
143,设三事件$ABC$相互独立且$0<P(C)<1$,则下述事件中不独立的是:____,$\overline{A \cup B}$ 与C,$AC\overline{C}$,$\overline{A-B}$ 与 $\bar{C}$,$\overline{A B}$ 与 $\bar{C}$
144,"设随机变量$(X,Y)$服从二维正态分布,且$X$和$Y$不相关,$f_X(x),f_Y(y)$分别表示$X,Y$的概率密度函数,则在$X=x$的条件下,$Y$的条件概率密度函数$f_{Y\mid X}(y\mid x)$为:____",$f_X(x) \cdot f_Y(y)$,$f_Y(y)$,$\frac{f_X(x)}{f_Y(y)}$,$f_X(x)$
145,"设$\left(X_1,X_2,\cdots,X_9\right)$为来自正态总体$X\sim N\left(\mu,\sigma^2\right)$($\sigma^2$未知)的样本,样本均值与方差分别为$\bar{x}=12,s^2=225$,则参数$\mu$的置信度为0.9的单侧置信下限为:(注:$t_{0.1}(8)=1.3968,t_{0.05}(8)=1.86$)____",5.836,5.016,2.7,6.23
146,调节一个装瓶机使其对每个瓶子的灌装量服从均值为$\mu$盎司标准差为1.0盎司的正态分布。抽取若干个瓶子测定灌装量作为一个样本。样本容量至少是才能使得样本均值偏离总体均值不超过0.3盎司的概率达到$95\%$.____,41,42,43,44
147,"设01分布总体X并且P(X=1)=p,(X1,···,Xn)是来自总体的一个简单样本,$\bar{X}$是样本均值,则$P(var{(X)}=k/n)=$____",p,$C_np^k(1-p)^{n-k}$,$p^k(1-p)^{n-k}$,$C_n(1-p)^kp^{n-k}$
148,对事件AB已知$P(A)=1$,则必有:____,$A=\Omega$,$B \subset A$.,A与B独立,P(B)<P(A)
149,某人射击,重复射击且每次命中的概率都为$P(0<P<1)$则他第6次射击恰好是第3次命中的概率为____,$10P3(1-P)3$,$5P3(1-P)3$,$10P2(1-P)3$,$10P(1-P) 3$
150,"设$X_1\ldots,X_{100}$是来自总体$N(\mu,4)$的简单随机样本.对以下原假设和备择假设$\mathrm{H}_0:\mu=0;\mathrm{H}_1:\mu>0$,若取拒绝域为$\left\{\left(x_1,\cdots,x_{100}\right):\bar{x}>0,4\right\}$,则当$\mu=1$时,此检验犯第二类错误的概率为(用标准正态分布函数$\Phi(\cdot)$表示)____",$1-\Phi(2)$,0.5,$1-\Phi(3)$,$1- \Phi(1)$
151,"设$X_1,X_2,\ldots,X_n$为总体$X$的一个简单随机样本,$E(X)=\mu$$DX=\sigma^2$,为使$\hat{\theta}=c\sum_{i=1}^{n-1}\left({X}_{i+1}-{X}_i\right)^2$为$\sigma^2$的无偏估计C应为____",$\frac{1}{n}$,$\frac{1}{n-1}$,$\frac{1}{2(n-1)}$,$\frac{1}{n-2}$
152,"设事件AB独立事件C为“事件$A,\bar{B}$中至少有一个不发生"".若$P(A)=\frac{1}{2},P(B)=\frac{2}{3}$,则$P(C)=$____",\frac{1}{6},\frac{2}{3},\frac{1}{2},\frac{5}{6}
153,"设$X_1,X_2,\cdots,X_n$是总体$X\sim N\left(\mu,\sigma^2\right)$的样本,其中$\mu,\sigma^2$均末知,记$\bar{X},S^2$分别为样本均值和样本方差。则检验假设$H_0:\sigma^2=\sigma_0^2,H_1:\sigma^2\neq\sigma_0^2$所用的检验统计量和它所服从的分布为:____",$\frac{1}{\sigma_0^2} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2 \sim \chi^2(n-1)$,"$\frac{\bar{X}-\mu}{\sigma_0 / \sqrt{n}} \sim N(0,1)$",$\frac{1}{\sigma_0^2} \sum_{i=1}^n\left(X_i-\mu\right)^2 \sim \chi^2(n)$,$\frac{n S^2}{\sigma_0^2} \sim \chi^2(n)$
154,"设$\left(X_{1},X_{2},\cdots,X_{21}\right)$是来自正态总体$X\sim N(\mu,2)$的简单样本,$\bar{X},S^{2}$分别为样本均值与样本方差,下列选项中正确的为____","$\bar{X} \sim N(\mu, 2)$",$\frac 12\sum^{21}_{i=1}(X_i-\mu)^2 ~ \chi^2(21)$,$\frac 12\sum^{21}_{i=1}(X_i-\mu)^2 ~ \chi^2(20)$,$\frac{\bar{X}}{S / \sqrt{20}} \sim t(20)$
155,"设某企业生产的一批元件,其某项指标$X$服从正态分布,即$X\sim N\left(\mu,\sigma^{2}\right)$,在正常情况下,该指标的均值不应超过100,标准差为2.1。现从该元件中随机抽取20件,测得该项指标的样本均值为$\bar{x}=110$,样本标准差为$s=2.3$。为检验该批元件是否正常,以下设计的统计假设更合理的为____","检验方差时采用 $H_{0}: \sigma \leq 2.1, H_{1}: \sigma>2.1$","检验方差时采用 $H_{0}: \mu \leq 100, H_{1}: \mu>100$","检验方差时采用 $H_{0}: \sigma \geq 2.1, H_{1}: \sigma<2.1$","检验方差时采用 $H_{0}: \mu \geq 100, H_{1}: \mu<100$"
156,下面4个随机变量的分布中期望值最大方差最小的是____,"$X \sim N\left(5, \frac{1}{2}\right)$",$Y \sim U(5 7)$ ,即区间 $(5 7)$ 上的均匀分布,"Z服从指数分布
$$
f(z)= \begin{cases}0, & z \leqslant 0, \\ \frac{1}{6} \mathrm{e}^{-\frac{1}{6} z}, &z>0 ;\end{cases}
$$","T服从指数分布
$$
f(t)= \begin{cases}0, & t \leqslant 0, \\ \mathrm{e}^{-\sqrt{3} t},& t>0 .\end{cases}
$$"
157,随机变量$X$服从$\chi^2(50)$分布,则上侧分位数$\chi_{0.05}^2(50)$近似值为____,1.645;,50;,66.45,100
158,"设随机变量X的概率分布为$P\{X=k\}=a\frac{1+\mathrm{e}^{-1}}{k!},\mathrm{k}=0,12\ldots$则常数a=____",\frac{1}{e-1},\frac{1}{e+1},\frac{e}{e-1},\frac{e}{e+1}
159,"设$f(x)$为某随机变量X的概率密度函数$f(1+x)=f(1-x)$$\int_0^2f(x)dx=0.6$,则$\mathrm{P}\{\mathrm{X}<0\}=$____",0.2,0.3,"0,4","0,5"
160,"已知二维随机变量$(X,Y)$的联合分布律为
\begin{tabular}{c|c|ccc}
\hline\multicolumn{2}{c|}{}&\multicolumn{3}{c}{$X$}\\
\cline{3-5}\multicolumn{2}{c|}{$p_{ij}$}&0&1&2\\
\hline\multirow{2}{*}{$Y$}&-1&$1/8$&$1/4$&$1/8$\\
&0&$3/8$&0&$1/8$\\
\hline
\end{tabular}
P(XY=0)=____",$5 / 8$,$1 / 2$,$3 / 8$,$1/4$
161,设$P(A\mid B)=P(B\mid A)=\frac{1}{4}P(\bar{A})=\frac{2}{3}$则____,事件AB独立且 $P(A+B)=\frac{7}{12}$,事件AB独立且 $P(A+B)=\frac{5}{12}$,事件AB不独立且 $P(A+B)=\frac{7}{12}$,事件AB不独立且 $P(A+B)=\frac{5}{12}$
162,"设随机变量$X_1X_2\ldots,X_n(n>1)$独立同分布,且其方差$\sigma^2>0$,令$Y=\frac{1}{n}\sum_{i=1}^nX_i$则____","$\operatorname{cov}\left(X_1, Y\right)=\frac{\sigma^2}{n}$","$cov\left(X_1, Y\right)=\sigma^2$",$D\left(X_1+Y\right)=\frac{n+2}{n} \sigma^2$,$D\left(X_1-Y\right)=\frac{n-1}{n} \sigma^2$
163,"设$\left(X_1,X_2,\ldots,X_{10}\right)$和$\left(Y_1,Y_2,\ldots,Y_{20}\right)$为分别来自两个总体$N\left(-3,5^2\right)$及$N\left(2,3^2\right)$的样本,且相互独立。$S_1^2=\frac{1}{9}\sum_{i=1}^{10}\left(X_i-\bar{X}\right)^2,S_2^2=\frac{1}{19}\sum_{i=1}^{20}\left(Y_i-\bar{Y}\right)^2$分别为两个样本的方差,则服从$F(9,19)$分布的统计量是____",$\frac{9 S_1^2}{25 S_2^2}$;,$\frac{25 s_1^2}{9 s_2^2}$;,$\frac{3 s_1^2}{5 s_2^2}$,$\frac{5 s_1^2}{3 s_2^2}$.
164,"设二维随机变且$(XY)$的联合密度函数为
$$
f(x,y)=\left\{\begin{array}{cc}
kx\mathrm{e}^{-x(2y+3)},&x>0,y>0,\\
0,&\text{其他,}
\end{array}\right.
$$
则$k$值为____",2,4,6,8
165,"设二维离散型随机变量$(X,Y)$的联合分布律为
\begin{tabular}{|c|c|c|c|c|}
\hline&&\multicolumn{3}{|c|}{$X$}\\
\hline\multicolumn{2}{|c|}{$p_{tj}$}&-1&0&1\\
\hline\multirow{2}{*}{$Y$}&-1&$1/8$&$1/2$&$1/8$\\
&0&$1/8$&0&$1/8$\\
\hline
\end{tabular}
(i)E(X)=E(Y)(ii)E(XY)=0(iii)X,Y不相关(iv)X,Y独立(v)cov(X,Y)=0
上述结论正确的个数有____",3个,4个,5个,2个