171 lines
7.3 KiB
Python
Raw Normal View History

from typing import Dict, Any
from config import LLM_CONFIG
from agent_system.base import BaseAgent
from agent_system.virtual_patient.response_model import TriageVirtualPatientResponseModel
from agent_system.virtual_patient.prompt import TriageVirtualPatientPrompt
class VirtualPatientAgent(BaseAgent):
"""
虚拟患者智能体类用于模拟真实患者在分诊过程中的自然对话行为
主要功能
- 基于病历信息生成符合真实患者表达习惯的对话
- 严格控制信息边界仅基于病历记录回答问题
- 支持首轮主诉和后续问诊的不同对话模式
- 渐进式信息提供避免信息过载
Attributes:
model_type (str): 使用的大语言模型类型默认为 gpt-oss:latest
llm_config (dict): LLM模型配置参数
"""
def __init__(self, model_type: str = "gpt-oss:latest", llm_config: dict = None):
"""
初始化虚拟患者智能体
Args:
model_type (str): 大语言模型类型默认使用 gpt-oss:latest
llm_config (dict): LLM模型的配置参数如果为None则使用默认配置
"""
super().__init__(
model_type=model_type,
description=TriageVirtualPatientPrompt.description,
instructions=TriageVirtualPatientPrompt.instructions,
response_model=TriageVirtualPatientResponseModel,
llm_config=llm_config or {},
structured_outputs=True,
markdown=False,
use_cache=False
)
def run(
self,
worker_inquiry: str,
is_first_epoch: bool,
patient_case: Dict[str, Any] = None,
**kwargs
) -> TriageVirtualPatientResponseModel:
"""
运行虚拟患者智能体生成对话回复
Args:
worker_inquiry (str): 医护人员的询问内容
is_first_epoch (bool): 是否为首轮对话
patient_case (Dict[str, Any], optional): 患者病历信息
Returns:
TriageVirtualPatientResponseModel: 包含虚拟患者对话回复的响应模型
"""
prompt = self._build_prompt(worker_inquiry, is_first_epoch, patient_case)
return super().run(prompt, **kwargs)
async def async_run(
self,
worker_inquiry: str,
is_first_epoch: bool,
patient_case: Dict[str, Any] = None,
**kwargs
) -> TriageVirtualPatientResponseModel:
"""
异步运行虚拟患者智能体生成对话回复
Args:
worker_inquiry (str): 医护人员的询问内容
is_first_epoch (bool): 是否为首轮对话
patient_case (Dict[str, Any], optional): 患者病历信息
Returns:
TriageVirtualPatientResponseModel: 包含虚拟患者对话回复的响应模型
"""
prompt = self._build_prompt(worker_inquiry, is_first_epoch, patient_case)
return await super().async_run(prompt, **kwargs)
def _build_prompt(
self,
worker_inquiry: str,
is_first_epoch: bool,
patient_case: Dict[str, Any] = None
) -> str:
"""
构建虚拟患者对话的动态提示词
根据对话轮次首轮/后续和病历信息生成相应的提示词
确保虚拟患者仅基于病历记录进行回答
Args:
worker_inquiry (str): 医护人员的询问内容
is_first_epoch (bool): 是否为首轮对话
patient_case (Dict[str, Any], optional): 患者病历信息
Returns:
str: 构建完成的动态提示词
"""
if patient_case is None:
patient_case = {}
# 第一部分:从病历中提取关键信息(严格限制信息范围)
# 提取病历各个字段,确保信息的完整性和准确性
case_info = patient_case.get("病案介绍", {})
basic_info = case_info.get("基本信息", "").strip()
chief_complaint = case_info.get("主诉", "").strip()
history_details = case_info.get("现病史", "").strip()
past_history = case_info.get("既往史", "").strip()
# 构建病历背景信息(严格限定信息范围)
medical_context = (
"【唯一可用病历信息 - 不得超出此范围】\n"
f"基本信息:{basic_info}\n"
f"主诉:{chief_complaint}\n"
f"现病史:{history_details}\n"
f"既往史:{past_history if past_history else ''}\n"
"\n【重要提醒】以上即为全部可用信息,不得添加任何未明确记录的内容\n"
)
# 第二部分:根据对话阶段生成相应的场景提示词
if is_first_epoch:
# 首轮对话prompt
scenario_prompt = (
"【首轮对话】\n"
"你是一位前来就诊的虚拟患者,刚到分诊台。\n"
"仅基于上述基本信息和主诉内容用1-2句话描述最主要的不适症状。\n"
f"参考示例:'医生您好我今年18岁了最近三天头一直痛' \n"
"\n**首轮严格约束**\n"
"- 仅能描述主诉和基本信息中明确记录的内容\n"
"- 禁止添加任何时间、程度、部位等未记录的细节\n"
"- 禁止描述现病史中的具体情况\n\n"
"输出格式示例:\n"
f"{TriageVirtualPatientPrompt.get_example_output()}\n\n"
"请严格按照上JSON格式输出。"
)
else:
# 后续对话prompt
scenario_prompt = (
"【后续对话】\n"
f"护士/医生询问:「{worker_inquiry}\n"
"请根据你的病历信息如实回答这个问题。\n\n"
"**严格回答原则 - 禁止虚构任何信息**\n"
"1. 【核心约束】仅能基于上述病历信息回答,严禁编造任何内容\n"
"2. 【信息边界】病历未提及的内容一律回答'没有''''从来没有'\n"
"3. 【不确定处理】模糊记忆用'记不清了''不太确定'表达\n"
"4. 【直接回应】禁止回避问题,必须针对性回答\n"
"5. 【禁止推测】不能基于症状推测其他可能的病症或情况\n\n"
"**否定回答示例**\n"
"- 询问既往疾病:'没有,我身体一直很好'\n"
"- 询问手术史:'没有做过手术'\n"
"- 询问过敏史:'没有,我不过敏'\n"
"- 询问家族史:'家里人都挺健康的,没有这方面的病'\n"
"- 询问用药史:'这是第一次出现这种情况,之前没吃过药'\n\n"
"回答要自然真实用1-3句话即可。\n\n"
"输出格式示例:\n"
f"{TriageVirtualPatientPrompt.get_example_output()}\n\n"
"请严格按照上JSON格式输出。"
)
# 组合病历信息和场景提示,形成完整的动态提示词
return f"{medical_context}\n{scenario_prompt}"