triage/workflow/step_executor.py

634 lines
27 KiB
Python
Raw Normal View History

import time
from typing import Dict, Any, List, Optional
from agent_system.recipient import RecipientAgent
from agent_system.triager import TriageAgent
from agent_system.monitor import Monitor
from agent_system.controller import TaskController
from agent_system.prompter import Prompter
from agent_system.inquirer import Inquirer
from agent_system.virtual_patient import VirtualPatientAgent
from agent_system.evaluetor import Evaluator
from .task_manager import TaskManager, TaskPhase
from .workflow_logger import WorkflowLogger
class StepExecutor:
"""
单step执行器
负责执行单个step中的完整agent pipeline流程
"""
# 全局变量存储历史评分
_global_historical_scores = {
"clinical_inquiry": 0.0,
"communication_quality": 0.0,
"information_completeness": 0.0,
"overall_professionalism": 0.0,
"present_illness_similarity": 0.0,
"past_history_similarity": 0.0,
"chief_complaint_similarity": 0.0
}
@classmethod
def reset_historical_scores(cls):
"""重置全局历史评分"""
cls._global_historical_scores = {
"clinical_inquiry": 0.0,
"communication_quality": 0.0,
"information_completeness": 0.0,
"overall_professionalism": 0.0,
"present_illness_similarity": 0.0,
"past_history_similarity": 0.0,
"chief_complaint_similarity": 0.0
}
def __init__(self, model_type: str = "gpt-oss:latest", llm_config: dict = None):
"""
初始化step执行器
Args:
model_type: 使用的语言模型类型除Evaluator外的所有agent使用
llm_config: 语言模型配置
Note:
Evaluator agent 固定使用 gpt-oss:latest 模型不受 model_type 参数影响
"""
self.model_type = model_type
self.llm_config = llm_config or {}
# 初始化所有agent
self.recipient = RecipientAgent(model_type=model_type, llm_config=self.llm_config)
self.triager = TriageAgent(model_type=model_type, llm_config=self.llm_config)
self.monitor = Monitor(model_type=model_type, llm_config=self.llm_config)
self.controller = TaskController(model_type=model_type, llm_config=self.llm_config)
self.prompter = Prompter(model_type=model_type, llm_config=self.llm_config)
self.virtual_patient = VirtualPatientAgent(model_type=model_type, llm_config=self.llm_config)
# Evaluator 固定使用 gpt-oss:latest 模型
self.evaluator = Evaluator(model_type="gpt-oss:latest", llm_config=self.llm_config)
def execute_step(self,
step_num: int,
case_data: Dict[str, Any],
task_manager: TaskManager,
logger: WorkflowLogger,
conversation_history: str = "",
previous_hpi: str = "",
previous_ph: str = "",
previous_chief_complaint: str = "",
is_first_step: bool = False,
doctor_question: str = "") -> Dict[str, Any]:
"""
执行单个step的完整流程
Args:
step_num: step编号
case_data: 病例数据
task_manager: 任务管理器
logger: 日志记录器
conversation_history: 对话历史
previous_hpi: 上轮现病史
previous_ph: 上轮既往史
previous_chief_complaint: 上轮主诉
is_first_step: 是否为第一个step
doctor_question: 医生问题非首轮时
Returns:
Dict: step执行结果包含更新后的病史信息医生问题患者回应等
"""
step_result = {
"step_number": step_num,
"success": False,
"patient_response": "",
"updated_hpi": previous_hpi,
"updated_ph": previous_ph,
"updated_chief_complaint": previous_chief_complaint,
"triage_result": {
"primary_department": "",
"secondary_department": "",
"triage_reasoning": ""
},
"doctor_question": "",
"conversation_history": conversation_history,
"task_completion_summary": {},
"errors": []
}
try:
# 更新任务管理器的当前步骤
task_manager.current_step = step_num
# Step 1: 获取患者回应
patient_response = self._get_patient_response(
step_num, case_data, logger, is_first_step, doctor_question
)
step_result["patient_response"] = patient_response
# 更新对话历史
if is_first_step:
updated_conversation = f"患者: {patient_response}"
else:
updated_conversation = conversation_history + f"\n医生: {doctor_question}\n患者: {patient_response}"
step_result["conversation_history"] = updated_conversation
# Step 2: 使用Recipient更新病史信息
recipient_result = self._execute_recipient(
step_num, logger, updated_conversation, previous_hpi, previous_ph, previous_chief_complaint
)
step_result.update({
"updated_hpi": recipient_result.updated_HPI,
"updated_ph": recipient_result.updated_PH,
"updated_chief_complaint": recipient_result.chief_complaint
})
# Step 3: 使用Triager进行科室分诊仅当当前阶段是分诊阶段时
current_phase = task_manager.get_current_phase()
if current_phase == TaskPhase.TRIAGE:
# 当前处于分诊阶段
triage_result = self._execute_triager(
step_num, logger, recipient_result
)
step_result["triage_result"] = {
"primary_department": triage_result.primary_department,
"secondary_department": triage_result.secondary_department,
"triage_reasoning": triage_result.triage_reasoning
}
else:
# 分诊已完成或已超过分诊阶段,使用已有的分诊结果
existing_triage = step_result.get("triage_result", {})
step_result["triage_result"] = {
"primary_department": existing_triage.get("primary_department", "未知"),
"secondary_department": existing_triage.get("secondary_department", "未知"),
"triage_reasoning": existing_triage.get("triage_reasoning", "分诊已完成")
}
# Step 4: 使用Monitor评估任务完成度
monitor_results = self._execute_monitor_by_phase(
step_num, logger, task_manager, recipient_result, step_result.get("triage_result", {})
)
# Step 5: 更新任务分数
self._update_task_scores(step_num, logger, task_manager, monitor_results)
# Step 6: 使用Controller选择下一个任务
controller_result = self._execute_controller(
step_num, logger, task_manager, recipient_result
)
# Step 7: 使用Prompter生成询问策略
prompter_result = self._execute_prompter(
step_num, logger, recipient_result, controller_result
)
# Step 8: 使用Inquirer生成医生问题
doctor_question = self._execute_inquirer(
step_num, logger, recipient_result, prompter_result
)
step_result["doctor_question"] = doctor_question
# Step 9: 使用Evaluator进行评分
evaluator_result = self._execute_evaluator(
step_num, logger, case_data, step_result
)
step_result["evaluator_result"] = evaluator_result
# Step 10: 获取任务完成情况摘要
step_result["task_completion_summary"] = task_manager.get_completion_summary()
step_result["success"] = True
except Exception as e:
error_msg = f"Step {step_num} 执行失败: {str(e)}"
step_result["errors"].append(error_msg)
logger.log_error(step_num, "step_execution_error", error_msg, {"case_data": case_data})
print(error_msg)
return step_result
def _get_patient_response(self, step_num: int, case_data: Dict[str, Any],
logger: WorkflowLogger, is_first_step: bool,
doctor_question: str = "") -> str:
"""获取虚拟患者的回应"""
start_time = time.time()
try:
# 构建虚拟患者输入
if is_first_step:
worker_inquiry = "您好,请问您哪里不舒服?"
else:
worker_inquiry = doctor_question
# 调用虚拟患者agent
patient_result = self.virtual_patient.run(
worker_inquiry=worker_inquiry,
is_first_epoch=is_first_step,
patient_case=case_data
)
execution_time = time.time() - start_time
patient_response = patient_result.current_chat
# 记录日志
logger.log_agent_execution(
step_num, "virtual_patient",
{
"worker_inquiry": worker_inquiry,
"is_first_epoch": is_first_step,
"case_data": case_data
},
{"patient_response": patient_response},
execution_time
)
logger.log_patient_response(step_num, patient_response, is_first_step)
return patient_response
except Exception as e:
error_msg = f"虚拟患者执行失败: {str(e)}"
logger.log_error(step_num, "virtual_patient_error", error_msg)
# 返回默认回应
return "对不起,我不太清楚怎么描述,医生您看着办吧。"
def _execute_recipient(self, step_num: int, logger: WorkflowLogger,
conversation_history: str, previous_hpi: str,
previous_ph: str, previous_chief_complaint: str):
"""执行Recipient agent"""
start_time = time.time()
input_data = {
"conversation_history": conversation_history,
"previous_HPI": previous_hpi,
"previous_PH": previous_ph,
"previous_chief_complaint": previous_chief_complaint
}
result = self.recipient.run(**input_data)
execution_time = time.time() - start_time
output_data = {
"updated_HPI": result.updated_HPI,
"updated_PH": result.updated_PH,
"chief_complaint": result.chief_complaint
}
logger.log_agent_execution(step_num, "recipient", input_data, output_data, execution_time)
return result
def _execute_triager(self, step_num: int, logger: WorkflowLogger,
recipient_result):
"""执行Triage agent进行科室分诊"""
start_time = time.time()
input_data = {
"chief_complaint": recipient_result.chief_complaint,
"hpi_content": recipient_result.updated_HPI,
"ph_content": recipient_result.updated_PH
}
result = self.triager.run(**input_data)
execution_time = time.time() - start_time
output_data = {
"primary_department": result.primary_department,
"secondary_department": result.secondary_department,
"triage_reasoning": result.triage_reasoning
}
logger.log_agent_execution(step_num, "triager", input_data, output_data, execution_time)
return result
def _execute_monitor_by_phase(self, step_num: int, logger: WorkflowLogger,
task_manager: TaskManager, recipient_result, triage_result: Dict[str, Any] = None) -> Dict[str, Dict[str, float]]:
"""按阶段执行Monitor评估只评估当前阶段未完成的任务"""
monitor_results = {}
current_phase = task_manager.get_current_phase()
# 如果所有任务都完成了,不需要评估
if current_phase == TaskPhase.COMPLETED:
return monitor_results
# 获取当前阶段未完成的任务
pending_tasks = task_manager.get_pending_tasks(current_phase)
if not pending_tasks:
return monitor_results
start_time = time.time()
try:
# 使用for循环逐个评估所有未完成的任务
phase_scores = {}
for task in pending_tasks:
task_name = task.get("name", "")
task_description = task.get("description", "")
# 调用Monitor评估特定任务
# 分诊阶段传入triage_result其他阶段不传入
if current_phase == TaskPhase.TRIAGE:
# 使用传入的triage_result
monitor_result = self.monitor.run(
hpi_content=recipient_result.updated_HPI,
ph_content=recipient_result.updated_PH,
chief_complaint=recipient_result.chief_complaint,
task_name=task_name,
task_description=task_description,
triage_result=triage_result if triage_result and triage_result.get("primary_department") else None
)
else:
# 现病史/既往史阶段不传入triage_result
monitor_result = self.monitor.run(
hpi_content=recipient_result.updated_HPI,
ph_content=recipient_result.updated_PH,
chief_complaint=recipient_result.chief_complaint,
task_name=task_name,
task_description=task_description
)
phase_scores[task_name] = monitor_result.completion_score
print(f"任务'{task_name}'评分: {monitor_result.completion_score:.2f} - {monitor_result.reason}")
execution_time = time.time() - start_time
monitor_results[current_phase] = phase_scores
# 记录日志
input_data = {
"hpi_content": recipient_result.updated_HPI,
"ph_content": recipient_result.updated_PH,
"chief_complaint": recipient_result.chief_complaint,
"evaluated_phase": current_phase.value,
"pending_tasks": [t["name"] for t in pending_tasks]
}
output_data = {
"phase_scores": phase_scores,
"evaluated_tasks": list(phase_scores.keys()),
"average_score": sum(phase_scores.values()) / len(phase_scores) if phase_scores else 0.0
}
logger.log_agent_execution(step_num, "monitor", input_data, output_data, execution_time)
except Exception as e:
error_msg = f"Monitor执行失败: {str(e)}"
logger.log_error(step_num, "monitor_error", error_msg)
# 返回默认的低分评估
phase_scores = {task["name"]: 0.1 for task in pending_tasks}
monitor_results[current_phase] = phase_scores
return monitor_results
def _update_task_scores(self, step_num: int, logger: WorkflowLogger,
task_manager: TaskManager, monitor_results: Dict):
"""更新任务分数"""
for phase, scores in monitor_results.items():
if scores:
old_scores = task_manager.get_task_scores(phase).copy()
task_manager.update_task_scores(phase, scores)
new_scores = task_manager.get_task_scores(phase)
logger.log_task_scores_update(step_num, phase.value, old_scores, new_scores)
def _execute_controller(self, step_num: int, logger: WorkflowLogger,
task_manager: TaskManager, recipient_result):
"""执行Controller agent"""
start_time = time.time()
# 获取当前阶段的未完成任务
current_phase = task_manager.get_current_phase()
pending_tasks = task_manager.get_pending_tasks(current_phase)
input_data = {
"pending_tasks": pending_tasks,
"chief_complaint": recipient_result.chief_complaint,
"hpi_content": recipient_result.updated_HPI,
"ph_content": recipient_result.updated_PH
}
result = self.controller.run(**input_data)
execution_time = time.time() - start_time
output_data = {
"selected_task": result.selected_task,
"specific_guidance": result.specific_guidance
}
logger.log_agent_execution(step_num, "controller", input_data, output_data, execution_time)
return result
def _execute_prompter(self, step_num: int, logger: WorkflowLogger,
recipient_result, controller_result):
"""执行Prompter agent"""
start_time = time.time()
input_data = {
"hpi_content": recipient_result.updated_HPI,
"ph_content": recipient_result.updated_PH,
"chief_complaint": recipient_result.chief_complaint,
"current_task": controller_result.selected_task,
"specific_guidance": controller_result.specific_guidance
}
result = self.prompter.run(**input_data)
execution_time = time.time() - start_time
output_data = {
"description": result.description,
"instructions": result.instructions
}
logger.log_agent_execution(step_num, "prompter", input_data, output_data, execution_time)
return result
def _execute_inquirer(self, step_num: int, logger: WorkflowLogger,
recipient_result, prompter_result) -> str:
"""执行Inquirer agent"""
start_time = time.time()
try:
# 使用Prompter生成的描述和指令初始化Inquirer
inquirer = Inquirer(
description=prompter_result.description,
instructions=prompter_result.instructions,
model_type=self.model_type,
llm_config=self.llm_config
)
input_data = {
"hpi_content": recipient_result.updated_HPI,
"ph_content": recipient_result.updated_PH,
"chief_complaint": recipient_result.chief_complaint
}
result = inquirer.run(**input_data)
execution_time = time.time() - start_time
doctor_question = result.current_chat
output_data = {"doctor_question": doctor_question}
logger.log_agent_execution(step_num, "inquirer", input_data, output_data, execution_time)
return doctor_question
except Exception as e:
error_msg = f"Inquirer执行失败: {str(e)}"
logger.log_error(step_num, "inquirer_error", error_msg)
# 返回默认问题
return "请您详细描述一下您的症状,包括什么时候开始的,有什么特点?"
def _execute_evaluator(self, step_num: int, logger: WorkflowLogger,
case_data: Dict[str, Any], step_result: Dict[str, Any]):
"""执行Evaluator agent"""
start_time = time.time()
try:
# 准备评价器需要的数据格式,包含完整对话历史
conversation_history = step_result.get("conversation_history", "")
round_data = {
"patient_response": step_result.get("patient_response", ""),
"doctor_inquiry": step_result.get("doctor_question", ""),
"HPI": step_result.get("updated_hpi", ""),
"PH": step_result.get("updated_ph", ""),
"chief_complaint": step_result.get("updated_chief_complaint", "")
}
# 使用全局历史评分
historical_scores = self._global_historical_scores
# 调用评价器进行评价,传入完整对话历史和历史评分
input_data = {
"patient_case": case_data,
"current_round": step_num,
"round_data": round_data,
"conversation_history": conversation_history,
"historical_scores": historical_scores # 添加历史评分作为明确参数
}
# 构建所有轮次的数据用于多轮评估
all_rounds_data = []
# 从对话历史中提取每轮数据
lines = conversation_history.strip().split('\n')
current_round_data = {}
for line in lines:
line = line.strip()
if line.startswith('医生:') and current_round_data:
# 完成上轮,开始新轮
all_rounds_data.append(current_round_data)
current_round_data = {"doctor_inquiry": line[3:].strip(), "patient_response": ""}
elif line.startswith('医生:'):
# 新轮开始
current_round_data = {"doctor_inquiry": line[3:].strip(), "patient_response": ""}
elif line.startswith('患者:') and current_round_data:
current_round_data["patient_response"] = line[3:].strip()
elif line.startswith('患者:'):
# 第一轮只有患者回应
current_round_data = {"doctor_inquiry": "", "patient_response": line[3:].strip()}
# 添加最后一轮
if current_round_data:
current_round_data.update({
"HPI": step_result.get("updated_hpi", ""),
"PH": step_result.get("updated_ph", ""),
"chief_complaint": step_result.get("updated_chief_complaint", "")
})
all_rounds_data.append(current_round_data)
# 为所有轮次添加evaluation_scores使用全局历史评分
for i, round_data in enumerate(all_rounds_data):
if i < step_num - 1: # 历史轮次
# 使用全局历史评分
round_data["evaluation_scores"] = self._global_historical_scores
else: # 当前轮次
# 当前轮次尚未评分,使用空值占位
round_data["evaluation_scores"] = {
"clinical_inquiry": 0.0,
"communication_quality": 0.0,
"information_completeness": 0.0,
"overall_professionalism": 0.0,
"present_illness_similarity": 0.0,
"past_history_similarity": 0.0,
"chief_complaint_similarity": 0.0
}
# 调用支持多轮的评估方法
result = self.evaluator.run(
patient_case=case_data,
current_round=step_num,
all_rounds_data=all_rounds_data,
historical_scores=historical_scores
)
execution_time = time.time() - start_time
output_data = {
"clinical_inquiry": {
"score": result.clinical_inquiry.score,
"comment": result.clinical_inquiry.comment
},
"communication_quality": {
"score": result.communication_quality.score,
"comment": result.communication_quality.comment
},
"information_completeness": {
"score": result.information_completeness.score,
"comment": result.information_completeness.comment
},
"overall_professionalism": {
"score": result.overall_professionalism.score,
"comment": result.overall_professionalism.comment
},
"present_illness_similarity": {
"score": result.present_illness_similarity.score,
"comment": result.present_illness_similarity.comment
},
"past_history_similarity": {
"score": result.past_history_similarity.score,
"comment": result.past_history_similarity.comment
},
"chief_complaint_similarity": {
"score": result.chief_complaint_similarity.score,
"comment": result.chief_complaint_similarity.comment
},
"summary": result.summary,
"key_suggestions": result.key_suggestions
}
logger.log_agent_execution(step_num, "evaluator", input_data, output_data, execution_time)
# 更新全局历史评分
self._global_historical_scores = {
"clinical_inquiry": result.clinical_inquiry.score,
"communication_quality": result.communication_quality.score,
"information_completeness": result.information_completeness.score,
"overall_professionalism": result.overall_professionalism.score,
"present_illness_similarity": result.present_illness_similarity.score,
"past_history_similarity": result.past_history_similarity.score,
"chief_complaint_similarity": result.chief_complaint_similarity.score
}
return result
except Exception as e:
error_msg = f"Evaluator执行失败: {str(e)}"
logger.log_error(step_num, "evaluator_error", error_msg)
# 返回默认评价结果
from agent_system.evaluetor.response_model import EvaluatorResult, EvaluationDimension
default_dimension = EvaluationDimension(score=0.0, comment="评价失败")
return EvaluatorResult(
clinical_inquiry=default_dimension,
communication_quality=default_dimension,
information_completeness=default_dimension,
overall_professionalism=default_dimension,
present_illness_similarity=default_dimension,
past_history_similarity=default_dimension,
chief_complaint_similarity=default_dimension,
summary="评价失败",
key_suggestions=["系统需要调试"]
)