增强数据分析工具和工作流检查功能

- 优化数据对比分析工具的准确性和性能
- 完善评估指标分析的算法和统计功能
- 改进医疗工作流分析的深度和覆盖范围
- 增强工作流完整性检查的全面性
- 新增工作流文件清理工具提升维护效率

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
iomgaa 2025-09-03 21:45:30 +08:00
parent 02c15e2ce9
commit a1f8ffb09d
5 changed files with 350 additions and 74 deletions

View File

@ -45,7 +45,7 @@ COLORS = {
QUALITY_DIMENSIONS = [ QUALITY_DIMENSIONS = [
'clinical_inquiry', 'clinical_inquiry',
'communication_quality', 'communication_quality',
'multi_round_consistency', 'information_completeness',
'overall_professionalism' 'overall_professionalism'
] ]
@ -64,7 +64,7 @@ DIMENSION_NAMES = {
'clinical_inquiry': 'CI', 'clinical_inquiry': 'CI',
'diagnostic_reasoning': 'DR', 'diagnostic_reasoning': 'DR',
'communication_quality': 'CQ', 'communication_quality': 'CQ',
'multi_round_consistency': 'MRC', 'information_completeness': 'IC',
'overall_professionalism': 'OP', 'overall_professionalism': 'OP',
'present_illness_similarity': 'PHI Similarity', 'present_illness_similarity': 'PHI Similarity',
'past_history_similarity': 'HP Similarity', 'past_history_similarity': 'HP Similarity',
@ -134,8 +134,13 @@ class DataQualityComparisonAnalyzer:
# 处理评估分数 # 处理评估分数
for dimension in EVALUATION_DIMENSIONS: for dimension in EVALUATION_DIMENSIONS:
if dimension in evaluation_scores: # 向后兼容性处理:将旧的 multi_round_consistency 映射到新的 information_completeness
score_info = evaluation_scores[dimension] actual_dimension = dimension
if dimension == 'information_completeness' and dimension not in evaluation_scores and 'multi_round_consistency' in evaluation_scores:
actual_dimension = 'multi_round_consistency'
if actual_dimension in evaluation_scores:
score_info = evaluation_scores[actual_dimension]
if isinstance(score_info, dict) and 'score' in score_info: if isinstance(score_info, dict) and 'score' in score_info:
score = score_info['score'] score = score_info['score']
elif isinstance(score_info, (int, float)): elif isinstance(score_info, (int, float)):
@ -536,7 +541,7 @@ def main():
has_significant = False has_significant = False
# 定义需要显示的维度顺序(四个质量指标 + 三个相似度指标) # 定义需要显示的维度顺序(四个质量指标 + 三个相似度指标)
target_dimensions = ['clinical_inquiry', 'multi_round_consistency', 'present_illness_similarity', 'past_history_similarity', 'chief_complaint_similarity'] target_dimensions = ['clinical_inquiry', 'information_completeness', 'present_illness_similarity', 'past_history_similarity', 'chief_complaint_similarity']
for dimension in target_dimensions: for dimension in target_dimensions:
if dimension in statistics['quality_statistics']['statistical_tests']: if dimension in statistics['quality_statistics']['statistical_tests']:

View File

@ -81,7 +81,7 @@ def extract_evaluate_scores(workflow: List[Dict]) -> List[Dict]:
# 检查是否包含评估分数 # 检查是否包含评估分数
if any(key in output_data for key in [ if any(key in output_data for key in [
'clinical_inquiry', 'communication_quality', 'clinical_inquiry', 'communication_quality',
'multi_round_consistency', 'overall_professionalism', 'information_completeness', 'overall_professionalism',
'present_illness_similarity', 'past_history_similarity', 'present_illness_similarity', 'past_history_similarity',
'chief_complaint_similarity' 'chief_complaint_similarity'
]): ]):
@ -110,7 +110,7 @@ def calculate_metrics_by_step(workflow_data: List[List[Dict]]) -> Dict[str, List
metrics_data = { metrics_data = {
'clinical_inquiry': [[] for _ in range(max_steps)], 'clinical_inquiry': [[] for _ in range(max_steps)],
'communication_quality': [[] for _ in range(max_steps)], 'communication_quality': [[] for _ in range(max_steps)],
'multi_round_consistency': [[] for _ in range(max_steps)], 'information_completeness': [[] for _ in range(max_steps)],
'overall_professionalism': [[] for _ in range(max_steps)], 'overall_professionalism': [[] for _ in range(max_steps)],
'present_illness_similarity': [[] for _ in range(max_steps)], 'present_illness_similarity': [[] for _ in range(max_steps)],
'past_history_similarity': [[] for _ in range(max_steps)], 'past_history_similarity': [[] for _ in range(max_steps)],
@ -124,8 +124,13 @@ def calculate_metrics_by_step(workflow_data: List[List[Dict]]) -> Dict[str, List
for step_idx, score_data in enumerate(evaluate_scores): for step_idx, score_data in enumerate(evaluate_scores):
# 提取各维度分数 # 提取各维度分数
for metric in metrics_data.keys(): for metric in metrics_data.keys():
if metric in score_data and isinstance(score_data[metric], dict): # 向后兼容性处理:将旧的 multi_round_consistency 映射到新的 information_completeness
score = score_data[metric].get('score', 0.0) actual_metric = metric
if metric == 'information_completeness' and metric not in score_data and 'multi_round_consistency' in score_data:
actual_metric = 'multi_round_consistency'
if actual_metric in score_data and isinstance(score_data[actual_metric], dict):
score = score_data[actual_metric].get('score', 0.0)
metrics_data[metric][step_idx].append(score) metrics_data[metric][step_idx].append(score)
# 计算平均值 # 计算平均值

View File

@ -10,7 +10,7 @@ import os
from collections import defaultdict from collections import defaultdict
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from typing import Dict, List from typing import Dict, List
from file_filter_utils import filter_complete_files, print_filter_summary from file_filter_utils import load_incomplete_files
class MedicalWorkflowAnalyzer: class MedicalWorkflowAnalyzer:
@ -30,23 +30,20 @@ class MedicalWorkflowAnalyzer:
self.step_statistics = defaultdict(int) self.step_statistics = defaultdict(int)
def load_workflow_data(self) -> None: def load_workflow_data(self) -> None:
"""加载所有工作流数据文件""" """加载所有工作流数据文件(包括完成和未完成的)"""
if not os.path.exists(self.results_dir): if not os.path.exists(self.results_dir):
print(f"结果目录不存在: {self.results_dir}") print(f"结果目录不存在: {self.results_dir}")
return return
# 获取所有jsonl文件 # 获取所有jsonl文件
all_files = [os.path.join(self.results_dir, f) for f in os.listdir(self.results_dir) all_files = [f for f in os.listdir(self.results_dir) if f.endswith('.jsonl')]
if f.endswith('.jsonl')]
# 过滤出完成的文件 # 获取未完成文件列表
filtered_files = filter_complete_files(all_files, self.output_dir) incomplete_files = load_incomplete_files(self.output_dir)
print_filter_summary(self.output_dir)
print(f"找到 {len(all_files)} 个数据文件,将处理 {len(filtered_files)} 个完成的文件") print(f"找到 {len(all_files)} 个数据文件,将处理所有文件(包括未完成的)")
for filepath in sorted(filtered_files): for filename in sorted(all_files):
filename = os.path.basename(filepath)
filepath = os.path.join(self.results_dir, filename) filepath = os.path.join(self.results_dir, filename)
try: try:
with open(filepath, 'r', encoding='utf-8') as f: with open(filepath, 'r', encoding='utf-8') as f:
@ -62,19 +59,28 @@ class MedicalWorkflowAnalyzer:
continue continue
if case_data: if case_data:
# 检查是否为未完成的文件
is_incomplete = filename in incomplete_files
self.workflow_data.append({ self.workflow_data.append({
'filename': filename, 'filename': filename,
'data': case_data 'data': case_data,
'is_incomplete': is_incomplete
}) })
except Exception as e: except Exception as e:
print(f"读取文件 {filename} 失败: {e}") print(f"读取文件 {filename} 失败: {e}")
complete_count = len([case for case in self.workflow_data if not case.get('is_incomplete', False)])
incomplete_count = len([case for case in self.workflow_data if case.get('is_incomplete', False)])
print(f"成功加载 {len(self.workflow_data)} 个病例的数据") print(f"成功加载 {len(self.workflow_data)} 个病例的数据")
print(f" - 完成的病例: {complete_count}")
print(f" - 未完成的病例: {incomplete_count}")
def analyze_workflow_steps(self) -> Dict[str, List[int]]: def analyze_workflow_steps(self) -> Dict[str, List[int]]:
""" """
分析每个病例完成triagehpiph三个阶段所需的step数量 分析每个病例完成triagehpiph三个阶段所需的step数量
包括未完成的样本-1表示未完成状态
Returns: Returns:
Dict包含每个阶段所需的step数量列表 Dict包含每个阶段所需的step数量列表
@ -90,6 +96,7 @@ class MedicalWorkflowAnalyzer:
for case_info in self.workflow_data: for case_info in self.workflow_data:
case_data = case_info['data'] case_data = case_info['data']
is_incomplete = case_info.get('is_incomplete', False)
# 按阶段分组step # 按阶段分组step
triage_steps = set() triage_steps = set()
@ -97,6 +104,19 @@ class MedicalWorkflowAnalyzer:
ph_steps = set() ph_steps = set()
all_steps = set() all_steps = set()
# 如果是未完成的样本,检查任务完成状态
incomplete_phases = set()
if is_incomplete:
# 查找倒数第二行的task_completion_summary
for entry in reversed(case_data):
if 'task_completion_summary' in entry:
phases = entry.get('task_completion_summary', {}).get('phases', {})
for phase_name in ['triage', 'hpi', 'ph']:
phase_info = phases.get(phase_name, {})
if not phase_info.get('is_completed', False):
incomplete_phases.add(phase_name)
break
for entry in case_data: for entry in case_data:
if entry.get('event_type') == 'step_start' and 'current_phase' in entry: if entry.get('event_type') == 'step_start' and 'current_phase' in entry:
step_num = entry.get('step_number', 0) step_num = entry.get('step_number', 0)
@ -111,18 +131,18 @@ class MedicalWorkflowAnalyzer:
elif phase == 'ph': elif phase == 'ph':
ph_steps.add(step_num) ph_steps.add(step_num)
# 计算每个阶段的step数量 # 计算每个阶段的step数量,对于未完成的阶段使用-1
triage_count = len(triage_steps) triage_count = -1 if 'triage' in incomplete_phases else len(triage_steps)
hpi_count = len(hpi_steps) hpi_count = -1 if 'hpi' in incomplete_phases else len(hpi_steps)
ph_count = len(ph_steps) ph_count = -1 if 'ph' in incomplete_phases else len(ph_steps)
final_step = max(all_steps) if all_steps else 0 final_step = max(all_steps) if all_steps else 0
# 只添加有数据的阶段 # 添加数据(包括-1表示的未完成状态
if triage_count > 0: if triage_count != 0: # 包括-1和正数
stage_steps['triage'].append(triage_count) stage_steps['triage'].append(triage_count)
if hpi_count > 0: if hpi_count != 0: # 包括-1和正数
stage_steps['hpi'].append(hpi_count) stage_steps['hpi'].append(hpi_count)
if ph_count > 0: if ph_count != 0: # 包括-1和正数
stage_steps['ph'].append(ph_count) stage_steps['ph'].append(ph_count)
if final_step > 0: if final_step > 0:
stage_steps['final_step'].append(final_step) stage_steps['final_step'].append(final_step)
@ -156,7 +176,7 @@ class MedicalWorkflowAnalyzer:
def plot_step_distribution_subplots(self, stage_stats: Dict[str, Dict[int, int]], def plot_step_distribution_subplots(self, stage_stats: Dict[str, Dict[int, int]],
output_file: str = "step_distribution_subplots.png") -> None: output_file: str = "step_distribution_subplots.png") -> None:
""" """
绘制四个子图的step数量分布柱形图 绘制四个子图的step数量分布柱形图包括未完成的数据
Args: Args:
stage_stats: 各阶段的step数量统计数据 stage_stats: 各阶段的step数量统计数据
@ -166,9 +186,10 @@ class MedicalWorkflowAnalyzer:
print("没有数据可供绘制") print("没有数据可供绘制")
return return
# 设置英文显示 # 设置字体支持中文
plt.rcParams['font.family'] = 'DejaVu Sans' import matplotlib
plt.rcParams['axes.unicode_minus'] = False matplotlib.rcParams['font.sans-serif'] = ['SimHei', 'Arial Unicode MS', 'WenQuanYi Micro Hei', 'sans-serif']
matplotlib.rcParams['axes.unicode_minus'] = False
# 创建四个子图 # 创建四个子图
fig, axes = plt.subplots(2, 2, figsize=(16, 12)) fig, axes = plt.subplots(2, 2, figsize=(16, 12))
@ -190,15 +211,34 @@ class MedicalWorkflowAnalyzer:
ax = axes[row, col] ax = axes[row, col]
if stage in stage_stats and stage_stats[stage]: if stage in stage_stats and stage_stats[stage]:
steps = sorted(stage_stats[stage].keys()) # 分离完成和未完成的数据
counts = [stage_stats[stage][step] for step in steps] completed_data = {k: v for k, v in stage_stats[stage].items() if k != -1}
incomplete_count = stage_stats[stage].get(-1, 0)
# 准备x轴数据和标签
if completed_data:
steps = sorted(completed_data.keys())
counts = [completed_data[step] for step in steps]
x_labels = [str(step) for step in steps]
else:
steps = []
counts = []
x_labels = []
# 如果有未完成数据,添加到最后
if incomplete_count > 0:
steps.append(len(steps)) # 位置索引
counts.append(incomplete_count)
x_labels.append('未完成')
if steps and counts:
# 绘制柱形图 # 绘制柱形图
bars = ax.bar(steps, counts, color=['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4'][stages_order.index(stage) % 4], bars = ax.bar(range(len(steps)), counts,
color=['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4'][stages_order.index(stage) % 4],
alpha=0.7, edgecolor='black', linewidth=0.5) alpha=0.7, edgecolor='black', linewidth=0.5)
# 在柱形上标注数值 # 在柱形上标注数值
for bar, count in zip(bars, counts): for i, (bar, count) in enumerate(zip(bars, counts)):
height = bar.get_height() height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height + max(counts)*0.01, ax.text(bar.get_x() + bar.get_width()/2., height + max(counts)*0.01,
f'{count}', ha='center', va='bottom', fontsize=9, fontweight='bold') f'{count}', ha='center', va='bottom', fontsize=9, fontweight='bold')
@ -209,20 +249,32 @@ class MedicalWorkflowAnalyzer:
ax.set_ylabel('Number of Cases', fontsize=10) ax.set_ylabel('Number of Cases', fontsize=10)
ax.grid(True, alpha=0.3, linestyle='--') ax.grid(True, alpha=0.3, linestyle='--')
# 设置x轴刻度 # 设置x轴刻度和标签
if steps: ax.set_xticks(range(len(steps)))
ax.set_xticks(steps) ax.set_xticklabels(x_labels, rotation=45)
ax.set_xticklabels(steps, rotation=45)
# 添加统计信息文本 # 添加统计信息文本(只针对完成的数据)
if counts: if completed_data:
mean_val = sum(s*c for s, c in zip(steps, counts)) / sum(counts) completed_steps = list(completed_data.keys())
max_val = max(steps) completed_counts = list(completed_data.values())
min_val = min(steps) mean_val = sum(s*c for s, c in zip(completed_steps, completed_counts)) / sum(completed_counts)
max_val = max(completed_steps)
min_val = min(completed_steps)
stats_text = f'Completed Mean: {mean_val:.1f}\nCompleted Range: {min_val}-{max_val}'
if incomplete_count > 0:
stats_text += f'\nIncomplete: {incomplete_count}'
stats_text = f'Mean: {mean_val:.1f}\nRange: {min_val}-{max_val}'
ax.text(0.02, 0.98, stats_text, transform=ax.transAxes, fontsize=9, ax.text(0.02, 0.98, stats_text, transform=ax.transAxes, fontsize=9,
verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5)) verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))
elif incomplete_count > 0:
stats_text = f'All Incomplete: {incomplete_count}'
ax.text(0.02, 0.98, stats_text, transform=ax.transAxes, fontsize=9,
verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))
else:
ax.text(0.5, 0.5, 'No Data Available', ha='center', va='center',
transform=ax.transAxes, fontsize=12)
ax.set_title(f'{subplot_titles[stage]}\n(n=0)', fontsize=12, fontweight='bold')
else: else:
ax.text(0.5, 0.5, 'No Data Available', ha='center', va='center', ax.text(0.5, 0.5, 'No Data Available', ha='center', va='center',
transform=ax.transAxes, fontsize=12) transform=ax.transAxes, fontsize=12)
@ -242,7 +294,7 @@ class MedicalWorkflowAnalyzer:
print(f"Four-subplot chart saved to: {output_path}") print(f"Four-subplot chart saved to: {output_path}")
def print_statistics_summary(self, stage_steps: Dict[str, List[int]]) -> None: def print_statistics_summary(self, stage_steps: Dict[str, List[int]]) -> None:
"""打印统计摘要""" """打印统计摘要(包括未完成数据)"""
print("\n=== Medical Workflow Step Statistics Summary ===") print("\n=== Medical Workflow Step Statistics Summary ===")
# 英文阶段名称映射 # 英文阶段名称映射
@ -256,12 +308,25 @@ class MedicalWorkflowAnalyzer:
for stage, steps in stage_steps.items(): for stage, steps in stage_steps.items():
stage_name = stage_names.get(stage, stage.upper()) stage_name = stage_names.get(stage, stage.upper())
if steps: if steps:
# 分离完成和未完成的数据
completed_steps = [s for s in steps if s != -1]
incomplete_count = steps.count(-1)
print(f"\n{stage_name}:") print(f"\n{stage_name}:")
print(f" Total Cases: {len(steps)}") print(f" Total Cases: {len(steps)}")
print(f" Mean Steps: {sum(steps)/len(steps):.2f}")
print(f" Min Steps: {min(steps)}") if completed_steps:
print(f" Max Steps: {max(steps)}") print(f" Mean Steps: {sum(completed_steps)/len(completed_steps):.2f}")
print(f" Step Distribution: {dict(sorted({s: steps.count(s) for s in set(steps)}.items()))}") print(f" Min Steps: {min(completed_steps)}")
print(f" Max Steps: {max(completed_steps)}")
# 构建分布字典
distribution = dict(sorted({s: completed_steps.count(s) for s in set(completed_steps)}.items()))
if incomplete_count > 0:
distribution['未完成'] = incomplete_count
print(f" Step Distribution: {distribution}")
else:
print(f" All cases incomplete: {incomplete_count}")
else: else:
print(f"\n{stage_name}: No Data") print(f"\n{stage_name}: No Data")

View File

@ -41,19 +41,32 @@ class WorkflowCompletenessChecker:
""" """
try: try:
with open(filepath, 'r', encoding='utf-8') as f: with open(filepath, 'r', encoding='utf-8') as f:
# 读取最后一行
lines = f.readlines() lines = f.readlines()
if not lines: if len(lines) < 2: # 需要至少两行:倒数第二行和最后一行
return False return False
last_line = lines[-1].strip() # 检查倒数第二行的task_completion_summary
if not last_line: second_to_last_line = lines[-2].strip()
if not second_to_last_line:
return False return False
# 解析最后一行JSON
try: try:
last_event = json.loads(last_line) second_to_last_event = json.loads(second_to_last_line)
return last_event.get('event_type') == 'workflow_complete' # 检查是否有task_completion_summary字段
task_summary = second_to_last_event.get('task_completion_summary', {})
if not task_summary:
return False
# 检查三个阶段的完成状态
phases = task_summary.get('phases', {})
required_phases = ['triage', 'hpi', 'ph']
for phase in required_phases:
phase_info = phases.get(phase, {})
if not phase_info.get('is_completed', False):
return False
return True
except json.JSONDecodeError: except json.JSONDecodeError:
return False return False

View File

@ -0,0 +1,188 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
工作流文件清理器
检测指定目录中的所有JSONL文件删除不完整的工作流记录文件
"""
import json
import os
import glob
from pathlib import Path
from typing import Dict, Any, List
import argparse
import logging
# 配置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class WorkflowFileCleaner:
"""工作流文件清理器"""
def __init__(self, directory: str, dry_run: bool = False):
"""
初始化清理器
Args:
directory: 要检查的目录路径
dry_run: 是否为试运行模式不实际删除文件
"""
self.directory = Path(directory)
self.dry_run = dry_run
self.stats = {
'total_files': 0,
'complete_files': 0,
'incomplete_files': 0,
'deleted_files': [],
'error_files': []
}
def check_workflow_completion(self, jsonl_file: str) -> bool:
"""
检查工作流是否完整
Args:
jsonl_file: JSONL文件路径
Returns:
bool: True表示工作流完整False表示不完整
"""
try:
with open(jsonl_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
if not lines:
logger.warning(f"文件为空: {jsonl_file}")
return False
# 获取最后一行
last_line = lines[-1].strip()
if not last_line:
logger.warning(f"文件最后一行为空: {jsonl_file}")
return False
try:
last_event = json.loads(last_line)
except json.JSONDecodeError as e:
logger.error(f"解析最后一行JSON失败 {jsonl_file}: {e}")
return False
# 检查是否包含workflow_complete事件
if last_event.get('event_type') != 'workflow_complete':
logger.info(f"工作流未完成 - 缺少workflow_complete事件: {jsonl_file}")
return False
# 检查final_summary中的phases完成状态
final_summary = last_event.get('final_summary', {})
phases = final_summary.get('phases', {})
required_phases = ['triage', 'hpi', 'ph']
for phase in required_phases:
phase_info = phases.get(phase, {})
is_completed = phase_info.get('is_completed', False)
completion_rate = phase_info.get('completion_rate', 0.0)
if not is_completed or completion_rate != 1.0:
logger.info(f"工作流未完成 - 阶段 {phase} 未完成: {jsonl_file}")
return False
logger.info(f"工作流完整: {jsonl_file}")
return True
except Exception as e:
logger.error(f"检查文件时发生错误 {jsonl_file}: {e}")
return False
def scan_and_clean_files(self) -> None:
"""扫描目录中的所有JSONL文件并清理不完整的文件"""
if not self.directory.exists():
logger.error(f"目录不存在: {self.directory}")
return
# 查找所有JSONL文件
jsonl_pattern = str(self.directory / "**" / "*.jsonl")
jsonl_files = glob.glob(jsonl_pattern, recursive=True)
self.stats['total_files'] = len(jsonl_files)
logger.info(f"找到 {len(jsonl_files)} 个JSONL文件")
for jsonl_file in jsonl_files:
try:
is_complete = self.check_workflow_completion(jsonl_file)
if is_complete:
self.stats['complete_files'] += 1
else:
self.stats['incomplete_files'] += 1
if self.dry_run:
logger.info(f"[试运行] 将删除不完整文件: {jsonl_file}")
self.stats['deleted_files'].append(jsonl_file)
else:
os.remove(jsonl_file)
logger.info(f"已删除不完整文件: {jsonl_file}")
self.stats['deleted_files'].append(jsonl_file)
except Exception as e:
logger.error(f"处理文件时发生错误 {jsonl_file}: {e}")
self.stats['error_files'].append(jsonl_file)
def print_summary(self) -> None:
"""打印统计摘要"""
print("\n" + "="*60)
print("工作流文件清理摘要")
print("="*60)
print(f"总文件数: {self.stats['total_files']}")
print(f"完整文件数: {self.stats['complete_files']}")
print(f"不完整文件数: {self.stats['incomplete_files']}")
print(f"删除文件数: {len(self.stats['deleted_files'])}")
print(f"错误文件数: {len(self.stats['error_files'])}")
if self.stats['deleted_files']:
print("\n已删除的文件:")
for file in self.stats['deleted_files']:
print(f" - {file}")
if self.stats['error_files']:
print("\n处理错误的文件:")
for file in self.stats['error_files']:
print(f" - {file}")
if self.dry_run and self.stats['deleted_files']:
print(f"\n注意: 这是试运行模式,实际上没有删除任何文件")
def run(self) -> Dict[str, Any]:
"""
运行清理器
Returns:
Dict: 包含统计信息的字典
"""
logger.info(f"开始检查目录: {self.directory}")
if self.dry_run:
logger.info("运行在试运行模式")
self.scan_and_clean_files()
self.print_summary()
return self.stats
def main():
"""主函数"""
parser = argparse.ArgumentParser(description='工作流文件清理器')
parser.add_argument('directory', nargs='?', default='results/results0903',
help='要检查的目录路径 (默认: results)')
parser.add_argument('--dry-run', action='store_true',
help='试运行模式,不实际删除文件')
args = parser.parse_args()
cleaner = WorkflowFileCleaner(args.directory, args.dry_run)
cleaner.run()
if __name__ == "__main__":
main()