优化核心配置管理和工作流执行系统
- 完善系统配置管理的灵活性和可维护性 - 优化主程序流程控制和错误处理机制 - 增强工作流步骤执行器的稳定性和性能 - 改进日志记录和状态追踪功能 - 提升整体系统的可扩展性和容错能力 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
parent
a1f8ffb09d
commit
d783229372
@ -19,9 +19,9 @@ LLM_CONFIG = {
|
||||
"gpt-oss:latest": {
|
||||
"class": "OpenAILike",
|
||||
"params": {
|
||||
"id": "gpt-oss-20b",
|
||||
"base_url": "http://100.82.33.121:11001/v1", # Ollama OpenAI兼容端点
|
||||
"api_key": "ollama" # Ollama不需要真实API密钥,任意字符串即可
|
||||
"id": "gpt-oss",
|
||||
"base_url": "http://100.82.33.121:19090/v1", # Ollama OpenAI兼容端点
|
||||
"api_key": "gpustack_d402860477878812_9ec494a501497d25b565987754f4db8c" # Ollama不需要真实API密钥,任意字符串即可
|
||||
}
|
||||
},
|
||||
"deepseek-v3": {
|
||||
|
||||
106
main.py
106
main.py
@ -12,6 +12,7 @@ import os
|
||||
import sys
|
||||
import time
|
||||
import threading
|
||||
import glob
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from datetime import datetime
|
||||
from typing import Dict, Any, List, Optional
|
||||
@ -28,6 +29,7 @@ class BatchProcessor:
|
||||
self.processed_count = 0 # 已处理样本数
|
||||
self.success_count = 0 # 成功处理数
|
||||
self.failed_count = 0 # 失败处理数
|
||||
self.skipped_count = 0 # 跳过的样本数
|
||||
self.results = [] # 结果列表
|
||||
self.failed_samples = [] # 失败样本列表
|
||||
self.start_time = None # 开始时间
|
||||
@ -49,6 +51,12 @@ class BatchProcessor:
|
||||
'error': str(error),
|
||||
'timestamp': datetime.now().isoformat()
|
||||
})
|
||||
|
||||
def update_skipped(self, sample_index: int):
|
||||
"""线程安全地更新跳过样本计数"""
|
||||
with self.lock:
|
||||
self.skipped_count += 1
|
||||
logging.info(f"样本 {sample_index} 已完成,跳过处理")
|
||||
|
||||
def get_progress_stats(self) -> Dict[str, Any]:
|
||||
"""获取当前进度统计"""
|
||||
@ -58,6 +66,7 @@ class BatchProcessor:
|
||||
'processed': self.processed_count,
|
||||
'success': self.success_count,
|
||||
'failed': self.failed_count,
|
||||
'skipped': self.skipped_count,
|
||||
'success_rate': self.success_count / max(self.processed_count, 1),
|
||||
'elapsed_time': elapsed_time,
|
||||
'samples_per_minute': self.processed_count / max(elapsed_time / 60, 0.01)
|
||||
@ -91,7 +100,7 @@ def parse_arguments() -> argparse.Namespace:
|
||||
parser.add_argument(
|
||||
'--log-dir',
|
||||
type=str,
|
||||
default='results/results0902',
|
||||
default='results/results0904',
|
||||
help='日志文件保存目录'
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -105,7 +114,7 @@ def parse_arguments() -> argparse.Namespace:
|
||||
parser.add_argument(
|
||||
'--num-threads',
|
||||
type=int,
|
||||
default=40,
|
||||
default=60,
|
||||
help='并行处理线程数'
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -123,7 +132,7 @@ def parse_arguments() -> argparse.Namespace:
|
||||
parser.add_argument(
|
||||
'--end-index',
|
||||
type=int,
|
||||
default=120,
|
||||
default=5000,
|
||||
help='结束处理的样本索引(不包含)'
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -170,6 +179,80 @@ def parse_arguments() -> argparse.Namespace:
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
def is_case_completed(log_dir: str, case_index: int) -> bool:
|
||||
"""
|
||||
检查指定case是否已经完成工作流
|
||||
如果存在不完整的文件则删除,确保每个case在目录中只出现一次
|
||||
|
||||
Args:
|
||||
log_dir: 日志目录
|
||||
case_index: case序号
|
||||
|
||||
Returns:
|
||||
bool: 如果case已完成返回True,否则返回False
|
||||
"""
|
||||
# 构建文件路径模式:workflow_*_case_{case_index:04d}.jsonl
|
||||
pattern = os.path.join(log_dir, f"workflow_*_case_{case_index:04d}.jsonl")
|
||||
matching_files = glob.glob(pattern)
|
||||
|
||||
if not matching_files:
|
||||
return False
|
||||
|
||||
# 应该只有一个匹配的文件
|
||||
if len(matching_files) > 1:
|
||||
logging.warning(f"发现多个匹配文件 case {case_index}: {matching_files}")
|
||||
|
||||
# 检查每个匹配的文件
|
||||
for log_file in matching_files:
|
||||
try:
|
||||
with open(log_file, 'r', encoding='utf-8') as f:
|
||||
# 读取最后一行
|
||||
lines = f.readlines()
|
||||
if not lines:
|
||||
# 文件为空,删除
|
||||
os.remove(log_file)
|
||||
logging.info(f"删除空文件: {log_file}")
|
||||
continue
|
||||
|
||||
last_line = lines[-1].strip()
|
||||
if not last_line:
|
||||
# 最后一行为空,删除
|
||||
os.remove(log_file)
|
||||
logging.info(f"删除最后一行为空的文件: {log_file}")
|
||||
continue
|
||||
|
||||
# 解析最后一行的JSON
|
||||
try:
|
||||
last_entry = json.loads(last_line)
|
||||
if last_entry.get("event_type") == "workflow_complete":
|
||||
# 找到完整的文件
|
||||
logging.info(f"发现已完成的case {case_index}: {log_file}")
|
||||
return True
|
||||
else:
|
||||
# 文件不完整,删除
|
||||
os.remove(log_file)
|
||||
logging.info(f"删除不完整的文件: {log_file}")
|
||||
continue
|
||||
|
||||
except json.JSONDecodeError:
|
||||
# JSON解析失败,删除文件
|
||||
os.remove(log_file)
|
||||
logging.info(f"删除JSON格式错误的文件: {log_file}")
|
||||
continue
|
||||
|
||||
except Exception as e:
|
||||
logging.warning(f"检查文件 {log_file} 时出错: {e}")
|
||||
# 出现异常也删除文件,避免后续问题
|
||||
try:
|
||||
os.remove(log_file)
|
||||
logging.info(f"删除异常文件: {log_file}")
|
||||
except:
|
||||
pass
|
||||
continue
|
||||
|
||||
# 所有匹配的文件都被删除或没有完整的文件
|
||||
return False
|
||||
|
||||
def load_dataset(dataset_path: str, start_index: int = 0,
|
||||
end_index: Optional[int] = None,
|
||||
sample_limit: Optional[int] = None) -> List[Dict[str, Any]]:
|
||||
@ -306,9 +389,10 @@ def print_progress_report(processor: BatchProcessor, total_samples: int):
|
||||
|
||||
print(f"\n=== 处理进度报告 ===")
|
||||
print(f"已处理: {stats['processed']}/{total_samples} ({stats['processed']/total_samples:.1%})")
|
||||
print(f"成功: {stats['success']} | 失败: {stats['failed']} | 成功率: {stats['success_rate']:.1%}")
|
||||
print(f"成功: {stats['success']} | 失败: {stats['failed']} | 跳过: {stats['skipped']} | 成功率: {stats['success_rate']:.1%}")
|
||||
print(f"耗时: {stats['elapsed_time']:.1f}s | 处理速度: {stats['samples_per_minute']:.1f} 样本/分钟")
|
||||
print(f"预计剩余时间: {(total_samples - stats['processed']) / max(stats['samples_per_minute'] / 60, 0.01):.1f}s")
|
||||
remaining_samples = total_samples - stats['processed'] - stats['skipped']
|
||||
print(f"预计剩余时间: {remaining_samples / max(stats['samples_per_minute'] / 60, 0.01):.1f}s")
|
||||
print("=" * 50)
|
||||
|
||||
def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace) -> Dict[str, Any]:
|
||||
@ -326,9 +410,9 @@ def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace)
|
||||
|
||||
# 启动进度监控线程
|
||||
def progress_monitor():
|
||||
while processor.processed_count < total_samples:
|
||||
while processor.processed_count + processor.skipped_count < total_samples:
|
||||
time.sleep(args.progress_interval)
|
||||
if processor.processed_count < total_samples:
|
||||
if processor.processed_count + processor.skipped_count < total_samples:
|
||||
print_progress_report(processor, total_samples)
|
||||
|
||||
progress_thread = threading.Thread(target=progress_monitor, daemon=True)
|
||||
@ -341,6 +425,12 @@ def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace)
|
||||
future_to_index = {}
|
||||
for i, sample_data in enumerate(dataset):
|
||||
sample_index = args.start_index + i
|
||||
|
||||
# 检查case是否已经完成
|
||||
if is_case_completed(args.log_dir, sample_index):
|
||||
processor.update_skipped(sample_index)
|
||||
continue
|
||||
|
||||
future = executor.submit(
|
||||
process_single_sample,
|
||||
sample_data,
|
||||
@ -375,6 +465,7 @@ def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace)
|
||||
'processed_samples': processor.processed_count,
|
||||
'successful_samples': processor.success_count,
|
||||
'failed_samples': processor.failed_count,
|
||||
'skipped_samples': processor.skipped_count,
|
||||
'success_rate': stats['success_rate'],
|
||||
'total_execution_time': total_time,
|
||||
'average_time_per_sample': total_time / max(processor.processed_count, 1),
|
||||
@ -428,6 +519,7 @@ def generate_summary_report(batch_results: Dict[str, Any],
|
||||
f.write(f"处理样本数: {summary['processed_samples']}\n")
|
||||
f.write(f"成功样本数: {summary['successful_samples']}\n")
|
||||
f.write(f"失败样本数: {summary['failed_samples']}\n")
|
||||
f.write(f"跳过样本数: {summary['skipped_samples']}\n")
|
||||
f.write(f"成功率: {summary['success_rate']:.2%}\n")
|
||||
f.write(f"总执行时间: {summary['total_execution_time']:.2f} 秒\n")
|
||||
f.write(f"平均处理时间: {summary['average_time_per_sample']:.2f} 秒/样本\n")
|
||||
|
||||
@ -21,7 +21,7 @@ class StepExecutor:
|
||||
_global_historical_scores = {
|
||||
"clinical_inquiry": 0.0,
|
||||
"communication_quality": 0.0,
|
||||
"multi_round_consistency": 0.0,
|
||||
"information_completeness": 0.0,
|
||||
"overall_professionalism": 0.0,
|
||||
"present_illness_similarity": 0.0,
|
||||
"past_history_similarity": 0.0,
|
||||
@ -34,7 +34,7 @@ class StepExecutor:
|
||||
cls._global_historical_scores = {
|
||||
"clinical_inquiry": 0.0,
|
||||
"communication_quality": 0.0,
|
||||
"multi_round_consistency": 0.0,
|
||||
"information_completeness": 0.0,
|
||||
"overall_professionalism": 0.0,
|
||||
"present_illness_similarity": 0.0,
|
||||
"past_history_similarity": 0.0,
|
||||
@ -545,7 +545,7 @@ class StepExecutor:
|
||||
round_data["evaluation_scores"] = {
|
||||
"clinical_inquiry": 0.0,
|
||||
"communication_quality": 0.0,
|
||||
"multi_round_consistency": 0.0,
|
||||
"information_completeness": 0.0,
|
||||
"overall_professionalism": 0.0,
|
||||
"present_illness_similarity": 0.0,
|
||||
"past_history_similarity": 0.0,
|
||||
@ -571,9 +571,9 @@ class StepExecutor:
|
||||
"score": result.communication_quality.score,
|
||||
"comment": result.communication_quality.comment
|
||||
},
|
||||
"multi_round_consistency": {
|
||||
"score": result.multi_round_consistency.score,
|
||||
"comment": result.multi_round_consistency.comment
|
||||
"information_completeness": {
|
||||
"score": result.information_completeness.score,
|
||||
"comment": result.information_completeness.comment
|
||||
},
|
||||
"overall_professionalism": {
|
||||
"score": result.overall_professionalism.score,
|
||||
@ -601,7 +601,7 @@ class StepExecutor:
|
||||
self._global_historical_scores = {
|
||||
"clinical_inquiry": result.clinical_inquiry.score,
|
||||
"communication_quality": result.communication_quality.score,
|
||||
"multi_round_consistency": result.multi_round_consistency.score,
|
||||
"information_completeness": result.information_completeness.score,
|
||||
"overall_professionalism": result.overall_professionalism.score,
|
||||
"present_illness_similarity": result.present_illness_similarity.score,
|
||||
"past_history_similarity": result.past_history_similarity.score,
|
||||
@ -620,7 +620,7 @@ class StepExecutor:
|
||||
return EvaluatorResult(
|
||||
clinical_inquiry=default_dimension,
|
||||
communication_quality=default_dimension,
|
||||
multi_round_consistency=default_dimension,
|
||||
information_completeness=default_dimension,
|
||||
overall_professionalism=default_dimension,
|
||||
present_illness_similarity=default_dimension,
|
||||
past_history_similarity=default_dimension,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user