优化核心配置管理和工作流执行系统

- 完善系统配置管理的灵活性和可维护性
- 优化主程序流程控制和错误处理机制
- 增强工作流步骤执行器的稳定性和性能
- 改进日志记录和状态追踪功能
- 提升整体系统的可扩展性和容错能力

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
iomgaa 2025-09-03 21:46:25 +08:00
parent a1f8ffb09d
commit d783229372
3 changed files with 110 additions and 18 deletions

View File

@ -19,9 +19,9 @@ LLM_CONFIG = {
"gpt-oss:latest": { "gpt-oss:latest": {
"class": "OpenAILike", "class": "OpenAILike",
"params": { "params": {
"id": "gpt-oss-20b", "id": "gpt-oss",
"base_url": "http://100.82.33.121:11001/v1", # Ollama OpenAI兼容端点 "base_url": "http://100.82.33.121:19090/v1", # Ollama OpenAI兼容端点
"api_key": "ollama" # Ollama不需要真实API密钥任意字符串即可 "api_key": "gpustack_d402860477878812_9ec494a501497d25b565987754f4db8c" # Ollama不需要真实API密钥任意字符串即可
} }
}, },
"deepseek-v3": { "deepseek-v3": {

106
main.py
View File

@ -12,6 +12,7 @@ import os
import sys import sys
import time import time
import threading import threading
import glob
from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime from datetime import datetime
from typing import Dict, Any, List, Optional from typing import Dict, Any, List, Optional
@ -28,6 +29,7 @@ class BatchProcessor:
self.processed_count = 0 # 已处理样本数 self.processed_count = 0 # 已处理样本数
self.success_count = 0 # 成功处理数 self.success_count = 0 # 成功处理数
self.failed_count = 0 # 失败处理数 self.failed_count = 0 # 失败处理数
self.skipped_count = 0 # 跳过的样本数
self.results = [] # 结果列表 self.results = [] # 结果列表
self.failed_samples = [] # 失败样本列表 self.failed_samples = [] # 失败样本列表
self.start_time = None # 开始时间 self.start_time = None # 开始时间
@ -50,6 +52,12 @@ class BatchProcessor:
'timestamp': datetime.now().isoformat() 'timestamp': datetime.now().isoformat()
}) })
def update_skipped(self, sample_index: int):
"""线程安全地更新跳过样本计数"""
with self.lock:
self.skipped_count += 1
logging.info(f"样本 {sample_index} 已完成,跳过处理")
def get_progress_stats(self) -> Dict[str, Any]: def get_progress_stats(self) -> Dict[str, Any]:
"""获取当前进度统计""" """获取当前进度统计"""
with self.lock: with self.lock:
@ -58,6 +66,7 @@ class BatchProcessor:
'processed': self.processed_count, 'processed': self.processed_count,
'success': self.success_count, 'success': self.success_count,
'failed': self.failed_count, 'failed': self.failed_count,
'skipped': self.skipped_count,
'success_rate': self.success_count / max(self.processed_count, 1), 'success_rate': self.success_count / max(self.processed_count, 1),
'elapsed_time': elapsed_time, 'elapsed_time': elapsed_time,
'samples_per_minute': self.processed_count / max(elapsed_time / 60, 0.01) 'samples_per_minute': self.processed_count / max(elapsed_time / 60, 0.01)
@ -91,7 +100,7 @@ def parse_arguments() -> argparse.Namespace:
parser.add_argument( parser.add_argument(
'--log-dir', '--log-dir',
type=str, type=str,
default='results/results0902', default='results/results0904',
help='日志文件保存目录' help='日志文件保存目录'
) )
parser.add_argument( parser.add_argument(
@ -105,7 +114,7 @@ def parse_arguments() -> argparse.Namespace:
parser.add_argument( parser.add_argument(
'--num-threads', '--num-threads',
type=int, type=int,
default=40, default=60,
help='并行处理线程数' help='并行处理线程数'
) )
parser.add_argument( parser.add_argument(
@ -123,7 +132,7 @@ def parse_arguments() -> argparse.Namespace:
parser.add_argument( parser.add_argument(
'--end-index', '--end-index',
type=int, type=int,
default=120, default=5000,
help='结束处理的样本索引(不包含)' help='结束处理的样本索引(不包含)'
) )
parser.add_argument( parser.add_argument(
@ -170,6 +179,80 @@ def parse_arguments() -> argparse.Namespace:
return parser.parse_args() return parser.parse_args()
def is_case_completed(log_dir: str, case_index: int) -> bool:
"""
检查指定case是否已经完成工作流
如果存在不完整的文件则删除确保每个case在目录中只出现一次
Args:
log_dir: 日志目录
case_index: case序号
Returns:
bool: 如果case已完成返回True否则返回False
"""
# 构建文件路径模式workflow_*_case_{case_index:04d}.jsonl
pattern = os.path.join(log_dir, f"workflow_*_case_{case_index:04d}.jsonl")
matching_files = glob.glob(pattern)
if not matching_files:
return False
# 应该只有一个匹配的文件
if len(matching_files) > 1:
logging.warning(f"发现多个匹配文件 case {case_index}: {matching_files}")
# 检查每个匹配的文件
for log_file in matching_files:
try:
with open(log_file, 'r', encoding='utf-8') as f:
# 读取最后一行
lines = f.readlines()
if not lines:
# 文件为空,删除
os.remove(log_file)
logging.info(f"删除空文件: {log_file}")
continue
last_line = lines[-1].strip()
if not last_line:
# 最后一行为空,删除
os.remove(log_file)
logging.info(f"删除最后一行为空的文件: {log_file}")
continue
# 解析最后一行的JSON
try:
last_entry = json.loads(last_line)
if last_entry.get("event_type") == "workflow_complete":
# 找到完整的文件
logging.info(f"发现已完成的case {case_index}: {log_file}")
return True
else:
# 文件不完整,删除
os.remove(log_file)
logging.info(f"删除不完整的文件: {log_file}")
continue
except json.JSONDecodeError:
# JSON解析失败删除文件
os.remove(log_file)
logging.info(f"删除JSON格式错误的文件: {log_file}")
continue
except Exception as e:
logging.warning(f"检查文件 {log_file} 时出错: {e}")
# 出现异常也删除文件,避免后续问题
try:
os.remove(log_file)
logging.info(f"删除异常文件: {log_file}")
except:
pass
continue
# 所有匹配的文件都被删除或没有完整的文件
return False
def load_dataset(dataset_path: str, start_index: int = 0, def load_dataset(dataset_path: str, start_index: int = 0,
end_index: Optional[int] = None, end_index: Optional[int] = None,
sample_limit: Optional[int] = None) -> List[Dict[str, Any]]: sample_limit: Optional[int] = None) -> List[Dict[str, Any]]:
@ -306,9 +389,10 @@ def print_progress_report(processor: BatchProcessor, total_samples: int):
print(f"\n=== 处理进度报告 ===") print(f"\n=== 处理进度报告 ===")
print(f"已处理: {stats['processed']}/{total_samples} ({stats['processed']/total_samples:.1%})") print(f"已处理: {stats['processed']}/{total_samples} ({stats['processed']/total_samples:.1%})")
print(f"成功: {stats['success']} | 失败: {stats['failed']} | 成功率: {stats['success_rate']:.1%}") print(f"成功: {stats['success']} | 失败: {stats['failed']} | 跳过: {stats['skipped']} | 成功率: {stats['success_rate']:.1%}")
print(f"耗时: {stats['elapsed_time']:.1f}s | 处理速度: {stats['samples_per_minute']:.1f} 样本/分钟") print(f"耗时: {stats['elapsed_time']:.1f}s | 处理速度: {stats['samples_per_minute']:.1f} 样本/分钟")
print(f"预计剩余时间: {(total_samples - stats['processed']) / max(stats['samples_per_minute'] / 60, 0.01):.1f}s") remaining_samples = total_samples - stats['processed'] - stats['skipped']
print(f"预计剩余时间: {remaining_samples / max(stats['samples_per_minute'] / 60, 0.01):.1f}s")
print("=" * 50) print("=" * 50)
def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace) -> Dict[str, Any]: def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace) -> Dict[str, Any]:
@ -326,9 +410,9 @@ def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace)
# 启动进度监控线程 # 启动进度监控线程
def progress_monitor(): def progress_monitor():
while processor.processed_count < total_samples: while processor.processed_count + processor.skipped_count < total_samples:
time.sleep(args.progress_interval) time.sleep(args.progress_interval)
if processor.processed_count < total_samples: if processor.processed_count + processor.skipped_count < total_samples:
print_progress_report(processor, total_samples) print_progress_report(processor, total_samples)
progress_thread = threading.Thread(target=progress_monitor, daemon=True) progress_thread = threading.Thread(target=progress_monitor, daemon=True)
@ -341,6 +425,12 @@ def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace)
future_to_index = {} future_to_index = {}
for i, sample_data in enumerate(dataset): for i, sample_data in enumerate(dataset):
sample_index = args.start_index + i sample_index = args.start_index + i
# 检查case是否已经完成
if is_case_completed(args.log_dir, sample_index):
processor.update_skipped(sample_index)
continue
future = executor.submit( future = executor.submit(
process_single_sample, process_single_sample,
sample_data, sample_data,
@ -375,6 +465,7 @@ def run_workflow_batch(dataset: List[Dict[str, Any]], args: argparse.Namespace)
'processed_samples': processor.processed_count, 'processed_samples': processor.processed_count,
'successful_samples': processor.success_count, 'successful_samples': processor.success_count,
'failed_samples': processor.failed_count, 'failed_samples': processor.failed_count,
'skipped_samples': processor.skipped_count,
'success_rate': stats['success_rate'], 'success_rate': stats['success_rate'],
'total_execution_time': total_time, 'total_execution_time': total_time,
'average_time_per_sample': total_time / max(processor.processed_count, 1), 'average_time_per_sample': total_time / max(processor.processed_count, 1),
@ -428,6 +519,7 @@ def generate_summary_report(batch_results: Dict[str, Any],
f.write(f"处理样本数: {summary['processed_samples']}\n") f.write(f"处理样本数: {summary['processed_samples']}\n")
f.write(f"成功样本数: {summary['successful_samples']}\n") f.write(f"成功样本数: {summary['successful_samples']}\n")
f.write(f"失败样本数: {summary['failed_samples']}\n") f.write(f"失败样本数: {summary['failed_samples']}\n")
f.write(f"跳过样本数: {summary['skipped_samples']}\n")
f.write(f"成功率: {summary['success_rate']:.2%}\n") f.write(f"成功率: {summary['success_rate']:.2%}\n")
f.write(f"总执行时间: {summary['total_execution_time']:.2f}\n") f.write(f"总执行时间: {summary['total_execution_time']:.2f}\n")
f.write(f"平均处理时间: {summary['average_time_per_sample']:.2f} 秒/样本\n") f.write(f"平均处理时间: {summary['average_time_per_sample']:.2f} 秒/样本\n")

View File

@ -21,7 +21,7 @@ class StepExecutor:
_global_historical_scores = { _global_historical_scores = {
"clinical_inquiry": 0.0, "clinical_inquiry": 0.0,
"communication_quality": 0.0, "communication_quality": 0.0,
"multi_round_consistency": 0.0, "information_completeness": 0.0,
"overall_professionalism": 0.0, "overall_professionalism": 0.0,
"present_illness_similarity": 0.0, "present_illness_similarity": 0.0,
"past_history_similarity": 0.0, "past_history_similarity": 0.0,
@ -34,7 +34,7 @@ class StepExecutor:
cls._global_historical_scores = { cls._global_historical_scores = {
"clinical_inquiry": 0.0, "clinical_inquiry": 0.0,
"communication_quality": 0.0, "communication_quality": 0.0,
"multi_round_consistency": 0.0, "information_completeness": 0.0,
"overall_professionalism": 0.0, "overall_professionalism": 0.0,
"present_illness_similarity": 0.0, "present_illness_similarity": 0.0,
"past_history_similarity": 0.0, "past_history_similarity": 0.0,
@ -545,7 +545,7 @@ class StepExecutor:
round_data["evaluation_scores"] = { round_data["evaluation_scores"] = {
"clinical_inquiry": 0.0, "clinical_inquiry": 0.0,
"communication_quality": 0.0, "communication_quality": 0.0,
"multi_round_consistency": 0.0, "information_completeness": 0.0,
"overall_professionalism": 0.0, "overall_professionalism": 0.0,
"present_illness_similarity": 0.0, "present_illness_similarity": 0.0,
"past_history_similarity": 0.0, "past_history_similarity": 0.0,
@ -571,9 +571,9 @@ class StepExecutor:
"score": result.communication_quality.score, "score": result.communication_quality.score,
"comment": result.communication_quality.comment "comment": result.communication_quality.comment
}, },
"multi_round_consistency": { "information_completeness": {
"score": result.multi_round_consistency.score, "score": result.information_completeness.score,
"comment": result.multi_round_consistency.comment "comment": result.information_completeness.comment
}, },
"overall_professionalism": { "overall_professionalism": {
"score": result.overall_professionalism.score, "score": result.overall_professionalism.score,
@ -601,7 +601,7 @@ class StepExecutor:
self._global_historical_scores = { self._global_historical_scores = {
"clinical_inquiry": result.clinical_inquiry.score, "clinical_inquiry": result.clinical_inquiry.score,
"communication_quality": result.communication_quality.score, "communication_quality": result.communication_quality.score,
"multi_round_consistency": result.multi_round_consistency.score, "information_completeness": result.information_completeness.score,
"overall_professionalism": result.overall_professionalism.score, "overall_professionalism": result.overall_professionalism.score,
"present_illness_similarity": result.present_illness_similarity.score, "present_illness_similarity": result.present_illness_similarity.score,
"past_history_similarity": result.past_history_similarity.score, "past_history_similarity": result.past_history_similarity.score,
@ -620,7 +620,7 @@ class StepExecutor:
return EvaluatorResult( return EvaluatorResult(
clinical_inquiry=default_dimension, clinical_inquiry=default_dimension,
communication_quality=default_dimension, communication_quality=default_dimension,
multi_round_consistency=default_dimension, information_completeness=default_dimension,
overall_professionalism=default_dimension, overall_professionalism=default_dimension,
present_illness_similarity=default_dimension, present_illness_similarity=default_dimension,
past_history_similarity=default_dimension, past_history_similarity=default_dimension,