- 新增完整的workflow模块,包含MedicalWorkflow、TaskManager、StepExecutor和WorkflowLogger四个核心组件 - 实现分诊、现病史、既往史三阶段任务管理和状态跟踪机制 - 优化Monitor智能体支持针对特定任务的精准评估,解决任务评价针对性问题 - 完善agent_system各模块的__init__.py文件,确保正确的模块导入 - 实现详细的jsonl格式日志记录系统,支持完整workflow执行追踪 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
374 lines
15 KiB
Python
374 lines
15 KiB
Python
import time
|
||
from typing import Dict, Any, List, Optional
|
||
from agent_system.recipient import RecipientAgent
|
||
from agent_system.monitor import Monitor
|
||
from agent_system.controller import TaskController
|
||
from agent_system.prompter import Prompter
|
||
from agent_system.inquirer import Inquirer
|
||
from agent_system.virtual_patient import VirtualPatientAgent
|
||
from .task_manager import TaskManager, TaskPhase
|
||
from .workflow_logger import WorkflowLogger
|
||
|
||
class StepExecutor:
|
||
"""
|
||
单step执行器
|
||
负责执行单个step中的完整agent pipeline流程
|
||
"""
|
||
|
||
def __init__(self, model_type: str = "gpt-oss:latest", llm_config: dict = None):
|
||
"""
|
||
初始化step执行器
|
||
|
||
Args:
|
||
model_type: 使用的语言模型类型
|
||
llm_config: 语言模型配置
|
||
"""
|
||
self.model_type = model_type
|
||
self.llm_config = llm_config or {}
|
||
|
||
# 初始化所有agent
|
||
self.recipient = RecipientAgent(model_type=model_type, llm_config=self.llm_config)
|
||
self.monitor = Monitor(model_type=model_type, llm_config=self.llm_config)
|
||
self.controller = TaskController(model_type=model_type, llm_config=self.llm_config)
|
||
self.prompter = Prompter(model_type=model_type, llm_config=self.llm_config)
|
||
self.virtual_patient = VirtualPatientAgent(model_type=model_type, llm_config=self.llm_config)
|
||
|
||
def execute_step(self,
|
||
step_num: int,
|
||
case_data: Dict[str, Any],
|
||
task_manager: TaskManager,
|
||
logger: WorkflowLogger,
|
||
conversation_history: str = "",
|
||
previous_hpi: str = "",
|
||
previous_ph: str = "",
|
||
previous_chief_complaint: str = "",
|
||
is_first_step: bool = False,
|
||
doctor_question: str = "") -> Dict[str, Any]:
|
||
"""
|
||
执行单个step的完整流程
|
||
|
||
Args:
|
||
step_num: step编号
|
||
case_data: 病例数据
|
||
task_manager: 任务管理器
|
||
logger: 日志记录器
|
||
conversation_history: 对话历史
|
||
previous_hpi: 上轮现病史
|
||
previous_ph: 上轮既往史
|
||
previous_chief_complaint: 上轮主诉
|
||
is_first_step: 是否为第一个step
|
||
doctor_question: 医生问题(非首轮时)
|
||
|
||
Returns:
|
||
Dict: step执行结果,包含更新后的病史信息、医生问题、患者回应等
|
||
"""
|
||
step_result = {
|
||
"step_number": step_num,
|
||
"success": False,
|
||
"patient_response": "",
|
||
"updated_hpi": previous_hpi,
|
||
"updated_ph": previous_ph,
|
||
"updated_chief_complaint": previous_chief_complaint,
|
||
"doctor_question": "",
|
||
"conversation_history": conversation_history,
|
||
"task_completion_summary": {},
|
||
"errors": []
|
||
}
|
||
|
||
try:
|
||
# Step 1: 获取患者回应
|
||
patient_response = self._get_patient_response(
|
||
step_num, case_data, logger, is_first_step, doctor_question
|
||
)
|
||
step_result["patient_response"] = patient_response
|
||
|
||
# 更新对话历史
|
||
if is_first_step:
|
||
updated_conversation = f"患者: {patient_response}"
|
||
else:
|
||
updated_conversation = conversation_history + f"\n医生: {doctor_question}\n患者: {patient_response}"
|
||
step_result["conversation_history"] = updated_conversation
|
||
|
||
# Step 2: 使用Recipient更新病史信息
|
||
recipient_result = self._execute_recipient(
|
||
step_num, logger, updated_conversation, previous_hpi, previous_ph, previous_chief_complaint
|
||
)
|
||
step_result.update({
|
||
"updated_hpi": recipient_result.updated_HPI,
|
||
"updated_ph": recipient_result.updated_PH,
|
||
"updated_chief_complaint": recipient_result.chief_complaint
|
||
})
|
||
|
||
# Step 3: 使用Monitor评估任务完成度
|
||
monitor_results = self._execute_monitor_by_phase(
|
||
step_num, logger, task_manager, recipient_result
|
||
)
|
||
|
||
# Step 4: 更新任务分数
|
||
self._update_task_scores(step_num, logger, task_manager, monitor_results)
|
||
|
||
# Step 5: 使用Controller选择下一个任务
|
||
controller_result = self._execute_controller(
|
||
step_num, logger, task_manager, recipient_result
|
||
)
|
||
|
||
# Step 6: 使用Prompter生成询问策略
|
||
prompter_result = self._execute_prompter(
|
||
step_num, logger, recipient_result, controller_result
|
||
)
|
||
|
||
# Step 7: 使用Inquirer生成医生问题
|
||
doctor_question = self._execute_inquirer(
|
||
step_num, logger, recipient_result, prompter_result
|
||
)
|
||
step_result["doctor_question"] = doctor_question
|
||
|
||
# Step 8: 获取任务完成情况摘要
|
||
step_result["task_completion_summary"] = task_manager.get_completion_summary()
|
||
|
||
step_result["success"] = True
|
||
|
||
except Exception as e:
|
||
error_msg = f"Step {step_num} 执行失败: {str(e)}"
|
||
step_result["errors"].append(error_msg)
|
||
logger.log_error(step_num, "step_execution_error", error_msg, {"case_data": case_data})
|
||
print(error_msg)
|
||
|
||
return step_result
|
||
|
||
def _get_patient_response(self, step_num: int, case_data: Dict[str, Any],
|
||
logger: WorkflowLogger, is_first_step: bool,
|
||
doctor_question: str = "") -> str:
|
||
"""获取虚拟患者的回应"""
|
||
start_time = time.time()
|
||
|
||
try:
|
||
# 构建虚拟患者输入
|
||
if is_first_step:
|
||
worker_inquiry = "您好,请问您哪里不舒服?"
|
||
else:
|
||
worker_inquiry = doctor_question
|
||
|
||
# 调用虚拟患者agent
|
||
patient_result = self.virtual_patient.run(
|
||
worker_inquiry=worker_inquiry,
|
||
is_first_epoch=is_first_step,
|
||
patient_case=case_data
|
||
)
|
||
|
||
execution_time = time.time() - start_time
|
||
patient_response = patient_result.current_chat
|
||
|
||
# 记录日志
|
||
logger.log_agent_execution(
|
||
step_num, "virtual_patient",
|
||
{
|
||
"worker_inquiry": worker_inquiry,
|
||
"is_first_epoch": is_first_step,
|
||
"case_data": case_data
|
||
},
|
||
{"patient_response": patient_response},
|
||
execution_time
|
||
)
|
||
|
||
logger.log_patient_response(step_num, patient_response, is_first_step)
|
||
|
||
return patient_response
|
||
|
||
except Exception as e:
|
||
error_msg = f"虚拟患者执行失败: {str(e)}"
|
||
logger.log_error(step_num, "virtual_patient_error", error_msg)
|
||
# 返回默认回应
|
||
return "对不起,我不太清楚怎么描述,医生您看着办吧。"
|
||
|
||
def _execute_recipient(self, step_num: int, logger: WorkflowLogger,
|
||
conversation_history: str, previous_hpi: str,
|
||
previous_ph: str, previous_chief_complaint: str):
|
||
"""执行Recipient agent"""
|
||
start_time = time.time()
|
||
|
||
input_data = {
|
||
"conversation_history": conversation_history,
|
||
"previous_HPI": previous_hpi,
|
||
"previous_PH": previous_ph,
|
||
"previous_chief_complaint": previous_chief_complaint
|
||
}
|
||
|
||
result = self.recipient.run(**input_data)
|
||
execution_time = time.time() - start_time
|
||
|
||
output_data = {
|
||
"updated_HPI": result.updated_HPI,
|
||
"updated_PH": result.updated_PH,
|
||
"chief_complaint": result.chief_complaint
|
||
}
|
||
|
||
logger.log_agent_execution(step_num, "recipient", input_data, output_data, execution_time)
|
||
|
||
return result
|
||
|
||
def _execute_monitor_by_phase(self, step_num: int, logger: WorkflowLogger,
|
||
task_manager: TaskManager, recipient_result) -> Dict[str, Dict[str, float]]:
|
||
"""按阶段执行Monitor评估,只评估当前阶段未完成的任务"""
|
||
monitor_results = {}
|
||
current_phase = task_manager.get_current_phase()
|
||
|
||
# 如果所有任务都完成了,不需要评估
|
||
if current_phase == TaskPhase.COMPLETED:
|
||
return monitor_results
|
||
|
||
# 获取当前阶段未完成的任务
|
||
pending_tasks = task_manager.get_pending_tasks(current_phase)
|
||
if not pending_tasks:
|
||
return monitor_results
|
||
|
||
start_time = time.time()
|
||
|
||
try:
|
||
# 使用for循环逐个评估所有未完成的任务
|
||
phase_scores = {}
|
||
for task in pending_tasks:
|
||
task_name = task.get("name", "")
|
||
task_description = task.get("description", "")
|
||
|
||
# 调用Monitor评估特定任务
|
||
monitor_result = self.monitor.run(
|
||
hpi_content=recipient_result.updated_HPI,
|
||
ph_content=recipient_result.updated_PH,
|
||
chief_complaint=recipient_result.chief_complaint,
|
||
task_name=task_name,
|
||
task_description=task_description
|
||
)
|
||
|
||
phase_scores[task_name] = monitor_result.completion_score
|
||
print(f"任务'{task_name}'评分: {monitor_result.completion_score:.2f} - {monitor_result.reason}")
|
||
|
||
execution_time = time.time() - start_time
|
||
monitor_results[current_phase] = phase_scores
|
||
|
||
# 记录日志
|
||
input_data = {
|
||
"hpi_content": recipient_result.updated_HPI,
|
||
"ph_content": recipient_result.updated_PH,
|
||
"chief_complaint": recipient_result.chief_complaint,
|
||
"evaluated_phase": current_phase.value,
|
||
"pending_tasks": [t["name"] for t in pending_tasks]
|
||
}
|
||
|
||
output_data = {
|
||
"phase_scores": phase_scores,
|
||
"evaluated_tasks": list(phase_scores.keys()),
|
||
"average_score": sum(phase_scores.values()) / len(phase_scores) if phase_scores else 0.0
|
||
}
|
||
|
||
logger.log_agent_execution(step_num, "monitor", input_data, output_data, execution_time)
|
||
|
||
except Exception as e:
|
||
error_msg = f"Monitor执行失败: {str(e)}"
|
||
logger.log_error(step_num, "monitor_error", error_msg)
|
||
# 返回默认的低分评估
|
||
phase_scores = {task["name"]: 0.1 for task in pending_tasks}
|
||
monitor_results[current_phase] = phase_scores
|
||
|
||
return monitor_results
|
||
|
||
def _update_task_scores(self, step_num: int, logger: WorkflowLogger,
|
||
task_manager: TaskManager, monitor_results: Dict):
|
||
"""更新任务分数"""
|
||
for phase, scores in monitor_results.items():
|
||
if scores:
|
||
old_scores = task_manager.get_task_scores(phase).copy()
|
||
task_manager.update_task_scores(phase, scores)
|
||
new_scores = task_manager.get_task_scores(phase)
|
||
|
||
logger.log_task_scores_update(step_num, phase.value, old_scores, new_scores)
|
||
|
||
def _execute_controller(self, step_num: int, logger: WorkflowLogger,
|
||
task_manager: TaskManager, recipient_result):
|
||
"""执行Controller agent"""
|
||
start_time = time.time()
|
||
|
||
# 获取当前阶段的未完成任务
|
||
current_phase = task_manager.get_current_phase()
|
||
pending_tasks = task_manager.get_pending_tasks(current_phase)
|
||
|
||
input_data = {
|
||
"pending_tasks": pending_tasks,
|
||
"chief_complaint": recipient_result.chief_complaint,
|
||
"hpi_content": recipient_result.updated_HPI,
|
||
"ph_content": recipient_result.updated_PH
|
||
}
|
||
|
||
result = self.controller.run(**input_data)
|
||
execution_time = time.time() - start_time
|
||
|
||
output_data = {
|
||
"selected_task": result.selected_task,
|
||
"specific_guidance": result.specific_guidance
|
||
}
|
||
|
||
logger.log_agent_execution(step_num, "controller", input_data, output_data, execution_time)
|
||
|
||
return result
|
||
|
||
def _execute_prompter(self, step_num: int, logger: WorkflowLogger,
|
||
recipient_result, controller_result):
|
||
"""执行Prompter agent"""
|
||
start_time = time.time()
|
||
|
||
input_data = {
|
||
"hpi_content": recipient_result.updated_HPI,
|
||
"ph_content": recipient_result.updated_PH,
|
||
"chief_complaint": recipient_result.chief_complaint,
|
||
"current_task": controller_result.selected_task,
|
||
"specific_guidance": controller_result.specific_guidance
|
||
}
|
||
|
||
result = self.prompter.run(**input_data)
|
||
execution_time = time.time() - start_time
|
||
|
||
output_data = {
|
||
"description": result.description,
|
||
"instructions": result.instructions
|
||
}
|
||
|
||
logger.log_agent_execution(step_num, "prompter", input_data, output_data, execution_time)
|
||
|
||
return result
|
||
|
||
def _execute_inquirer(self, step_num: int, logger: WorkflowLogger,
|
||
recipient_result, prompter_result) -> str:
|
||
"""执行Inquirer agent"""
|
||
start_time = time.time()
|
||
|
||
try:
|
||
# 使用Prompter生成的描述和指令初始化Inquirer
|
||
inquirer = Inquirer(
|
||
description=prompter_result.description,
|
||
instructions=prompter_result.instructions,
|
||
model_type=self.model_type,
|
||
llm_config=self.llm_config
|
||
)
|
||
|
||
input_data = {
|
||
"hpi_content": recipient_result.updated_HPI,
|
||
"ph_content": recipient_result.updated_PH,
|
||
"chief_complaint": recipient_result.chief_complaint
|
||
}
|
||
|
||
result = inquirer.run(**input_data)
|
||
execution_time = time.time() - start_time
|
||
|
||
doctor_question = result.current_chat
|
||
|
||
output_data = {"doctor_question": doctor_question}
|
||
|
||
logger.log_agent_execution(step_num, "inquirer", input_data, output_data, execution_time)
|
||
|
||
return doctor_question
|
||
|
||
except Exception as e:
|
||
error_msg = f"Inquirer执行失败: {str(e)}"
|
||
logger.log_error(step_num, "inquirer_error", error_msg)
|
||
# 返回默认问题
|
||
return "请您详细描述一下您的症状,包括什么时候开始的,有什么特点?" |